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Abstract: For some modeling problems a population may be better assessed as an

aggregate of unknown subpopulations, each with a distinct relationship between a

response and associated variables. The finite mixture of regressions (FMR) model,

in which an outcome is derived from one of a finite number of linear regression mod-

els, is a natural tool in this setting. In this article, we first propose a new penalized

regression approach. Then, we demonstrate how the proposed approach better iden-

tifies subpopulations and their corresponding models than a semiparametric FMR

method does. Our new method fits models for each person via grouping pursuit,

utilizing a new group-truncated L1 penalty that shrinks the differences between

estimated parameter vectors. The methodology causes the individuals’ models to

cluster into a few common models, in turn revealing previously unknown subpop-

ulations. In fact, by varying the penalty strength, the new method can reveal a

hierarchical structure among the subpopulations that can be useful in exploratory

analyses. Simulations using FMR models and a real-data analysis show that the

method performs promisingly well.

Key words and phrases: FMR, group LASSO, group TLP, grouping pursuit, penal-

ized regression, semiparametric.

1. Introduction

A traditional way of assessing the association between candidate variables

and an outcome of interest is to generate model estimates at a population level.

However, it is often reasonable to hypothesize that for different, unknown sub-

populations, an outcome results from different sets of variables (or possibly from

different sized effects of the same variables). For example, a disease outcome may

be a function of different sets of genetic variants for different groups of individuals

within a population. Modeling approaches that do not account for subpopulation-

induced heterogeneity and the possibility of subpopulation-specific effect sizes

could easily fail to identify factors associated with a response for only some of
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the subpopulations.

Statistically, modeling outcomes for a population may in fact require the

assumption of a distinct relationship for distinct, but unknown subpopulations.

One modeling framework useful for this strategy is the finite mixture of regres-

sions (FMR) model. Here, an individual’s outcome is predicted from one regres-

sion model (known as a component) out of a set of possible regression models.

Because the actual component is unknown for any given observation, a natural

choice for fitting FMR models is the expectation-maximization (EM) algorithm

of Dempster, Laird and Rubin (1977). Methods based on the EM algorithm yield

density estimates and component-level regression coefficient estimates based on

the likelihood assumptions used when fitting the model. Wedel and Desarbo

(1995) showed that the algorithm successfully estimates the regression param-

eters for mixtures of common distributions, such as normal and binomial dis-

tributions. An EM-like algorithm was developed by Benaglia, Chauveau and

Hunter (2009) to allow for more generality in the error term. However, although

it lowers the error rates, it is unclear what objective function is being maxi-

mized and whether successive iterations guarantee an increase in the objective

function. A maximum smoothed likelihood algorithm was developed by Levine,

Hunter and Chauveau (2011) to remedy the Benaglia shortcomings. However,

the algorithm’s advantages did not hold when using the Benaglia, Chauveau

and Hunter (2009) approach to updating bandwidths. Subsequently, Hunter

and Young (2012) developed a semiparametric EM-like algorithm, removing the

parametric assumptions on the components, that was successful when the ini-

tialization was directed towards true values. EM-based algorithms have been

successful in FMR problems in which it is possible to (1) specify the mixture

distribution and its corresponding number of components and (2) initialize the

algorithm.

The EM algorithm has also served as the main statistical tool for another

category of approaches to subpopulation estimation, namely, clustering subject-

specific regression models. In an early work, Desarbo and Cron (1988) used the

EM algorithm for a clusterwise linear regression. The methodology estimated sets

(one per cluster) of linear regression parameters, assuming normal densities and

a given number of clusters. Interested in the model-based clustering of cyclone

tracks or curves, Gaffney and Smyth (2003) used a maximum a posteriori (MAP)

EM algorithm for random effects regression mixtures under the assumption that

they were from one of k prespecified subpopulations that follow a normal density.

While still dependent on the density and component assumptions, their work
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demonstrates the potential of the clustering of subject-specific models.

In settings in which the number of subpopulations is unknown or the error

distribution cannot be reasonably assumed, alternatives to or enhancements of

the EM algorithm must be considered. A penalized regression as part of an

FMR model estimation has shown promise as one such improvement. Specific

to the goal of variable selection, some researchers have incorporated a penalized

regression within their models. An effective EM algorithm developed by Khalili

and Chen (2007) for a penalized mixture model was applied to an FMR setting

for the purpose of variable selection. However, the estimation was based on a

parametric likelihood assumption. Khalili, Chen and Lin (2010) developed an

EM approach using a penalized likelihood for variable selection. The approach

was effective in simulations at selecting important covariates, but this was after

applying a screening method. To the best of our knowledge, the most successful

approaches to date for estimating FMR models depend on a methodology based

on some form or approximation of the EM algorithm, and thus depend on making

successful likelihood assumptions or successful density estimations.

We take a novel approach to identifying unknown subgroups and their cor-

responding regression models via grouping pursuit (fusion). Our approach does

not depend on any likelihood assumptions or component density estimations.

The key to our methodology is the application of a new type of penalized regres-

sion to simultaneously fit separate regression models for each subject. If there

exist unknown subpopulations, then the individual fitted models should be the

same within the same subpopulation, but different across the subpopulations.

Specifically, the subjects within a subpopulation share a common model, but the

common models differ by subpopulation. Thus, a logical methodological step is

to include a grouping feature to penalize the differences in the estimated covariate

coefficients across individuals. As we will elaborate on shortly, we develop just

such a penalty that enables us to force the individuals’ models to cluster into a few

common models, corresponding to different subpopulations. The methodology

can be used as an exploratory data analysis tool, akin to hierarchical cluster-

ing versus model-based clustering or k-means clustering, where the number of

clusters is specified.

Penalized regressions have been researched specifically to assess their abil-

ity to identify and/or leverage groups of variables associated with an outcome.

Yuan and Lin (2006) demonstrated that when groups of variables appeared (or

disappeared) together in a model, using a group least absolute shrinkage and se-

lection operator (gLASSO) penalty to select groups of variables or factors results
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in better performance than when using the standard LASSO. Another penal-

ized regression approach, the fused LASSO of Tibshirani et al. (2005), adds an

additional penalty to the LASSO, specifically for differences in successive re-

gression coefficients. In situations where the features had a natural order, the

additional grouping penalty showed promise for both regression and classifica-

tion. Luo, Wang and Tsai (2008) proposed a modified EM algorithm for the

FMR estimation problem that incorporates a penalization of the differences in

the component regression coefficients. The method, called MR-LASSO, demon-

strated the ability to use a penalization of differences in estimated regression

models to identify mixture components. Shen, Huang and Pan (2012) developed

a penalized regression method for simultaneous supervised clustering and feature

selection over a given undirected graph, using a truncated L1 penalty (TLP) for

grouping pursuit. This approach makes it possible to successfully identify and

estimate unknown homogenous groups of effects. The method uses a single lin-

ear regression model for a single response, but assumes that the full coefficient

vector can be partitioned into subsets of homogeneous coefficients. The new

method improves parameter estimation and group identification by penalizing

the differences within these smaller vectors. In a related work, Pan, Shen and

Liu (2013) developed a penalized regression-based clustering (PRclust) method,

in which they apply the TLP penalty to differences in the centroids of the data

points. PRclust performs well in situations such as nonconvex clusters, where

other, more common methods do not. Pivotal to the current work, the success

of PRclust demonstrated the potential of comparisons across subjects with a

grouping penalty. Subsequently, Chi and Lange (2015) demonstrated how the al-

ternating direction method of multipliers (ADMM) can be effective when solving

convex clustering problems involving penalized differences in centroids. In fact,

Wu et al. (2016) recently provided a new DC-ADMM algorithm that combines

difference-of-convex (DC) programming with ADMM to more efficiently cluster

using the centroid difference TLP penalization.

The best-performing penalized regression-based strategies have forgone the

explicit use of FMR. Instead, they compare either subject-level differences in vec-

tors of numerical variables to aggregate into clusters, or differences in regression

model coefficients in known subgroups to collapse into clusters. Post our orig-

inal 2014 submission, we learned of the closely related work of Ma and Huang

(2017). In it, the authors presented a subgroup identification method based on

a pairwise penalization of subject-specific intercepts via a fusion approach with

convex penalties. Here, the intercept-only penalization was designed to identify
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a subgroup structure. Their work is exciting to us because their methodology is

approximately one case within our more general framework, thus demonstrating

the potential value of our approach. Ma and Huang emphasized the estimation

of the intercept term in the subgroup analysis. In contrast, we emphasize a slope

parameter in the mixture regression. That is, our work incorporates a grouping

pursuit framework to shrink the differences between the full subject-specific mod-

els for problems similar to FMR. Our approach to the penalized regression uses

grouping pursuit when simultaneously fitting separate models for each subject.

Specifically, we penalize only the differences in corresponding parameter esti-

mates between each pair of subject-specific regression models. We study both

the LASSO penalty developed by Tibshirani (1996) and the TLP of Shen, Pan

and Zhu (2012), in two ways. First, we penalize without using a group feature

by applying the penalty to the individual coefficient differences. In a sense, we

are grouping the subjects for each coefficient separately. This approach shrinks

the differences in the subjects’ models parameter by parameter, and does not

explicitly shrink the differences between the full models. Therefore, we next

apply two group penalties, based on the LASSO and TLP, respectively, to the

differences in the estimated parameter vectors for each pair of sample regression

models. Our work extends the research introduced above and, in particular, that

of Ma and Huang in a few critical ways. First, we allow the subgroups to be

defined by differences in observable factors. We feel this is important because it

accounts for the possibility that any set of variables might only affect a subset

of the population. Second, we incorporate the nonconvex TLP penalty in our

clustering approach. Previous works, such as that of Pan, Shen and Liu (2013),

have demonstrated the advantages of the TLP over L1 penalties for subject-level

penalizations.

When applied, it is our hypothesis that we will see a hierarchical clustering

of individual models that depends on the magnitude of the penalty and the

thresholding parameters. In turn, we reveal the increasingly granular partitions

of the population into subpopulations that result from monotonically changing

parameter values. It is important that the method provide a means to choose

the number of subpopulations; thus, we describe a generalized cross-validation

method to select a best set of subgroups. However, the discussion below focuses

on the larger question of finding the clustering paths that arise from our penalized

regression method. In this way, we provide a fuller view of the problems to which

our method can be applied. The following discussion uses simulated FMR models

to permit comparisons with previous methods, and is followed by application to
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a relevant true genetics data setting. The intent of the following is to show

that the proposed penalized regression-based method can handle FMR models

and the clustering of subject-level regression models. Because of this, we use this

article primarily to establish its efficacy in the cornerstone case of single-covariate

problems, a necessary step before building to higher dimensions in subsequent

work. The resulting estimates are compared to the very successful Hunter and

Young (2012) semiparametric FMR, which uses an EM-like approach.

2. Methods

In this section, we first describe the FMR model. Then, we present our

penalized regression approach and its computation.

2.1. FMR model

To motivate and contrast with our new method, we briefly review the FMR

model. Using the language of McLachlan and Peel (2000) and notation of Khalili

and Chen (2007), suppose Yi represents the value of a continuous random vari-

able, or response, for subject i = 1, . . . , n. Let Xji equal subject i’s value for

covariate j = 1, . . . , p; therefore, Xi = (x1i, x2i, . . . , xpi) is the vector of covariates

for subject i. Next, let f(y; θk(x), φk), for k = 1, . . . ,K, represent K conditional

parametric densities of y, given x, as a function of a canonical parameter, θk, and

a dispersion parameter, φk. Utilize the identity link function g(µ) = µ, such that

θ = xβ = µ and (x, Y ) follows an FMR model of order K, where the conditional

density function of Y , given x, has the form:

f(y;x,Ψ) =

K∑
k=1

πkf(y; θk(x), φk). (2.1)

The FMR model has order K <∞ because it is a mixture of K densities (known

as component densities). In this equation, the unknown parameters are Ψ =

(β1, β2, . . . , βK , φ, π), where βk = (β1k, β2k, . . . , βpk)
T , φ = (φ1, φ2, . . . , φK)T ,

and π = (π1, π2, . . . , πK−1)
T , such that both πk > 0 and

∑K
k=1 πk = 1.

Parametric approaches that specify a parametric form of f(θ, φ) and estimate

f(θ̂, φ̂) are most common. As described in the introduction, though, parametric

approaches can be too restrictive; therefore, we compare our penalized regression

approach to a semiparametric method developed by Hunter and Young (2012).

Their method estimates each of the component densities using a nonparametric

kernel estimate f̂(·), and provides component level regression coefficients based

on a specific K. The Hunter and Young method generates K sets of regression
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coefficient estimates, partly depending on the specified and estimated likelihoods

in an EM-like algorithm. As described in the next section, our method starts

with n overspecified sets of regression coefficients. Then, it uses grouping pursuit

with group penalties to find a hierarchical clustering of the individual regression

models, without specifying or estimating a parametric model or likelihood.

2.2. A new semiparametric approach based on a penalized regression

model

We begin by hypothesizing that the parameters of the underlying model for

a response can vary by subpopulation. To capture this, we estimate a model for

each subject in the study, using a penalized regression with a group feature to

reveal subpopulations via the clustering of these models.

As before, suppose Yi represents the value of a continuous response for sub-

ject i = 1, . . . , n. Again, let Xi = (x1i, . . . , xpi) be the vector of p covariates for

subject i. For each subject i, assume there is a subject-specific linear model:

Yi|Xi = β0i +Xiβi + εi, (2.2)

where βi = (β1i, . . . , βpi)
T and E(εi)= 0. Note how we initially allow for a

sample-dependent (β0i, β
T
i ) for each subject, and at no time specify or estimate

a density function for εi. Our method is semiparametric, because we specify the

linear form of the relationship, but we do not use f(·) in the FMR model. That is,

no specific parametric distribution is assumed. However, we require asymptotic

sub-Gaussian tails, as we explain shortly in a discussion on the conditions for

identifiability.

Observe from our model how the covariates associated with an outcome

would have nonzero values in βi, but we do not assume the set of nonzero coef-

ficients are identical for all i. For example, a set of covariates might affect the

responses of only a subset of the populations (affect only a subpopulation). Even

when the same set of covariates affect multiple subpopulations, the magnitude

and/or direction of the effect can vary. That is, a set of covariates might impact

the outcome of interest for several subpopulations, but impact each differently.

In each of these scenarios, there is one overarching principle: if multiple subjects’

outcomes result from the group of covariates in the same functional way, then

(β0i, β
T
i ) for this subset of the population should be identical. In this way, we

can partition our population into groups defined by identical (β0i, β
T
i ).

Our method provides estimates for β0i and βi by minimizing(
1

2

)
‖Y −Xβ‖22 + λP (β),
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with Y =


Y1
Y2
...

Yn

 , X =


1 X1 0 0 . . . 0

0 1 X2 0 . . . 0
...

. . .
. . .

. . .
...

0 0 . . . 0 1 Xn

 with 0T =


0

0
...

0


 p+ 1,

and β =



β01
β1
β02
β2
...

β0n
βn


.

The form of our objective function follows those of Wu et al. (2016) and

Ma and Huang (2017), where the penalty parameter λ is applied to a specified

penalty, P (β). We consider two penalty forms, and require λ > 0 for identifia-

bility: Tibshirani’s convex LASSO penalty (Tibshirani (1996)), and Shen, Pan,

and Zhu’s nonconvex TLP (Shen, Pan and Zhu (2012)). For our two approaches

with respect to the LASSO penalty and grouping pursuit:

1. PL(β) := LASSO(β) :=
∑

i<j ‖β0i − β0j‖1 +
∑p

m=1

∑
i<j ‖βmi − βmj‖1

2. PgL(β) := gLASSO(β) :=
∑

i<j ‖
(
β0i

βi

)
−
(β0j

βj

)
‖2,

where ‖·‖1 is the L1 norm and ‖·‖2 is the L2 norm. The nongroup version, PL(β),

bases its selection on the between-sample differences in individual coefficient es-

timates. Depending on the size of λ, the nongroup version chooses the nonzero

differences between the final estimated sample models by comparing correspond-

ing parameters separately. In contrast, the group version, PgL(β), shrinks the

differences between the full estimated parameter sets, and is more likely to have

(β0i, β
T
i ) = (β0j , β

T
j ).

The LASSO penalty shrinks all coefficient differences. However, if there

are in fact multiple groups, then the gLASSO encourages shrinkage between,

and not just within groups. To better maintain between-group, while reducing

within-group differences, one strategy is to truncate the penalty for large coef-

ficient differences. Potentially, this could lessen the between-group shrinkage,

thus maintaining between-group differences for better clustering or subpopula-

tion identification. The TLP does exactly this by implementing a thresholding

parameter, τ > 0. For our two approaches, with respect to the TLP:

1. PTLP (β) := TLP (β) :=
∑

i<j min(‖β0i − β0j‖1/τ, 1) +
∑p

m=1

∑
i<j min

(‖βmi − βmj‖1/τ, 1),
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2. PgTLP (β) := gTLP (β) :=
∑

i<j min(‖
(
β0i

βi

)
−
(β0j

βj

)
‖2/τ, 1).

Comparing the LASSO and TLP versions, there is no further penalty for

differences greater than τ for the TLP version, but there is for the LASSO.

Overall, LASSO parameter estimates are known to be biased, which the TLP

corrects by adaptively combining shrinkage and thresholding Shen, Pan and Zhu

(2012).

Computation

Given λ and τ (TLP only), estimates using the nongroup penalties PL and

PTLP were obtained from slight modifications of the gflasso and ncTLF functions

in FGSG: Feature Grouping and Selection Over an Undirected Graph in Matlab,

engineered by Yang et al. (2012).

We develop an ADMM to fit the models when using group penalties. The

ADMM form introduces another variable, Z, reflecting how the objective func-

tion can be separated, and subsequently solved, in parallel. In the ADMM, the

problem with respect to the gLASSO is stated as:

minimize f(β) =

(
1

2

)
‖Y −Xβ‖22 + λPgL(Z)

subject to Fβ − Z = 0,

where F is a linear transformation matrix that compares vectors of coefficients

for all pairs of samples (1 ≤ i < j ≤ n). That is, F =
[
F T1,2, F

T
1,3, . . . , F

T
n−1,n

]T
,

where each Fi,j is a (p+ 1)× n(p+ 1) matrix

(i(p+1)-p)th (j(p+1)-p)th

columny columny
Fi,j =


. . . 0 1 0 . . . 0 −1 0 . . . . . . . . . . . .

. . . . . . 0 1 0 . . . 0 −1 0 . . . . . . . . .

. . . . . . . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . . . . . . .

. . . . . . . . . . . . 0 1 0 . . . 0 −1 0 . . .

 .
The corresponding gLASSO objective function, derived as in the method of mul-

tipliers from an augmented Lagrangian, with u as the scaled dual variable, is

Lρ(β, z, u) =

(
1

2

)
‖Y −Xβ‖22 + λPgL(Z) +

(ρ
2

)
‖Fβ − z + u‖22.

Boyd et al. (2011) showed that the ADMM algorithm then iterates three steps

until converging to coefficient estimates:

1. β(h+1) = (XTX + ρF TF )−1
(
XTY + ρF T (z(h) − u(h))

)
,
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2. z(h+1) =


Sλ/ρ

(
F1,2β

(h+1) + u
(h)
1,2

)
...

Sλ/ρ
(
Fn−1,nβ

(h+1) + u
(h)
n−1,n

)
,

3. u(h+1) = u(h) + Fβ(h+1) − z(h+1).

In the above, the notation “(h)” denotes the hth iteration. S is the vector of

the soft thresholding operator : Sκ(a) =
(
1 − κ/‖a‖2

)
+
a, and a+ is equal to the

positive part of a. Note that Sκ(a) can shrink a whole vector to zero if the

coefficient vectors being compared are the same, in contrast to the individual

soft thresholding used in LASSO(β). Finally, u is partitioned corresponding to

the pairwise differences in coefficient vectors; thus, ui,j represents the subvector

of u corresponding to the comparison with Fi,j . For our estimation we set ρ, the

augmented Lagrangian parameter, equal to one.

The group TLP (gTLP) penalty is not convex, which is an important distinc-

tion from the gLASSO; therefore, we use a difference convex method to facilitate

the computation. First, define the objective function:

S(β) =

(
1

2

)∥∥∥Y −Xβ∥∥∥2
2

+ λ
∑
i<j

min

(
‖
(
β0i

βi

)
−
(β0j

βj

)
‖2

τ
, 1

)
.

Similarly to Shen, Huang and Pan (2012), S(β) can be written as a difference of

two convex functions S1(β)− S2(β), with

S1(β) =

(
1

2

)∥∥∥Y −Xβ∥∥∥2
2

+

(
λ

τ

)∑
i<j

∥∥∥(β0i
βi

)
−
(
β0j
βj

)∥∥∥
2
,

S2(β) =

(
λ

τ

)∑
i<j

(∥∥∥(β0i
βi

)
−
(
β0j
βj

)∥∥∥
2
− τ
)

+

.

As demonstrated by the authors, a sequence of upper approximations can be

constructed iteratively by replacing S2(β) at iteration h + 1 with its piecewise

affine minimization,

S2(β)(h) = S2(β̂
(h)) +

(
λ

τ

)∑
i<j

[
I
(∥∥∥(β̂0i

β̂i

)(h)

−
(
β̂0j

β̂j

)(h)∥∥∥
2
≥ τ

)

×
(∥∥∥(β0i

βi

)
−
(
β0j
βj

)∥∥∥
2
−
∥∥∥(β̂0i

β̂i

)(h)

−
(
β̂0j

β̂j

)(h)∥∥∥
2

)]
,

at iteration h, yielding an upper convex approximation for S(β) at iteration h+1:
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S(h+1)(β) =

(
1

2

)∥∥∥∥Y −Xβ∥∥∥∥2
2

+

(
λ

τ

)∑
i<j

(∥∥∥∥(β0iβi
)
−
(
β0j
βj

)∥∥∥∥
2

)

I

(∥∥∥∥(β̂0iβ̂i
)(h)

−
(
β̂0j

β̂j

)(h)∥∥∥∥
2

< τ

)
.

Thus we can use the ADMM for the gTLP by replacing step two of the gLASSO

algorithm with

z(h+1) =


Sλh/ρ

(
F1,2β

(h+1) + u
(h)
1,2

)
...

Sλh/ρ

(
Fn−1,nβ

(h+1) + u
(h)
n−1,n

)
 ,

where λh/ρ = λ(ρτ)−1 I
(∥∥∥(β̂0i

β̂i

)(h)
−
(β̂0j

β̂j

)(h)∥∥∥
2
< τ

)
is calculated for each com-

parison, i < j.

Our method is distinct from competing FMR estimation methods, which are

intended to find estimates at the component level. In particular, our method

is semiparametric in form, because no specific parametric distribution for the

errors is assumed. The choice to use the squared loss function was made to align

with ordinary linear regression, essentially to use the common form of the loss,

given the linear components of our model. A different choice for the loss function

could influence the error structure when performing the computation, presenting

another opportunity for future work to improve the gTLP by better pairing

loss functions with problem structures. Therefore, for comparison, we present

the results from applying the semiparametric FMR methodology of Hunter and

Young (2012), which estimates β0k and βk for k = 1, . . . ,K (refer to equation

(2.1)), that is, an estimate of β0 and β for each component k. The semiparametric

models were fitted using the default settings of the spregmix function in the R

package mixtools of Benaglia et al. (2009).

For both penalty types, models were fitted using a large decreasing sequence

of λ in order to show a wide range of degree of selection. When fitting models

for a data set, we started with the largest value of the penalty. The resulting

parameter estimates were used to initialize the subsequent model’s estimation

for the same data set (the model fitted using the next smallest candidate in the

sequence). We repeated this process until the model with the smallest λ was

initialized using the estimates from the second smallest λ. For the TLP models,

we considered a range of small to large candidates for the tuning parameter

τ . As such, we show results ranging from situations where nearly all differences
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exceed the threshold to situations with performance similar to that of the LASSO.

Lastly, a necessary question to resolve is whether the method can identify true

differences in regression models and, by proxy, identify true subgroups. Ma and

Huang (2017) provided a detailed exploration of the theoretical properties of

their method, which also applies to our method. Therefore, we can apply their

findings to the gTLP.

To provide an overview for completeness in the current setting, Ma and

Huang (2017) developed identification theorems from three conditions that are

commonly met (or reasonably assumed true) in their penalized framework. The

theorems specify the probability of recovery of the true group coefficients for K

groups within a quantifiably small distance. Our methodology and computational

algorithm fit Ma and Huang’s described framework; consequently, we can apply

their conclusions to the gTLP. The three conditions, using Ma and Huang’s

original notation, are as follows:

1. The minimum eigenvalue of [(Z,X)T (Z,X)] ≥ C1|Gmin| and ‖X‖∞ ≤ C2p,

where i ∈ Gk represents membership in group k for sample i, Z = {zik} is

the n×K matrix with zik = 1 for i ∈ Gk, and 0 otherwise, and C1 and C2

are positive finite constants.

2. P (β) is a symmetric function that is nondecreasing and concave for nonneg-

ative β, and ρ(β) = λ−1P (β) is constant for all β ≥ aλ for some constant

a > 0, with ρ(0) = 0. In addition ρ′(β) exists and is continuous, except for

a finite number of β, and ρ′(0+) = 1.

3. The noise vector ε = (ε1, . . . , εn)T has sub-Gaussian tails, such that P (|aT ε|
> ‖a‖x) ≤ 2 exp(−c1x2), for any vector a ∈ Rn and x > 0, where c1 is a

positive finite constant.

Condition 1 is weak and can be satisfied by a bounded X that is not nearly

perfectly correlated with the intercept terms. Condition 2 is met because the

gTLP is similar to the generalized LASSO. As discussed by Ma and Huang,

condition 3 is a common working assumption in high-dimensional settings. Given

that these three conditions hold, in addition to K = o(n), p = o(n), and |Gmin| �√
(K + p)n log(n), Ma and Huang showed that the coefficient estimates will be at

most c
−1/2
1 C−11

√
K + p|Gmin|−1

√
n log(n) from the true values, with probability

at least 1 − 2(K + p)n−1. Refer to Ma and Huang’s excellent work for further

details. Here, we focus on the question of how to best choose the penalization

parameters.
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The threshold and penalty parameters used for the results presented here

were determined using generalized cross-validation (GCV). Golub, Heath and

Wahba (1979) showed GCV’s viability in selecting the parameter in a ridge re-

gression, and Pan, Shen and Liu (2013) used GCV successfully to choose the

threshold parameter when applying their TLP-based PRclust clustering algo-

rithm. When calculating the GCV in our setting, first allow µ̂i = β̂0i + Xiβ̂i.

Following Golub, Heath and Wahba (1979), generalized cross-validation can be

defined as

GCV (df) =
RSS

(n− df)2
=

∑n
i=1(Yi − µ̂i)2

(n− df)2
.

Here, the notation shows how the GCV statistic is a function of df , equal to the

degrees of freedom used when generating µi. Pan, Shen and Liu (2013) found that

their estimates could be improved by using the generalized degrees of freedom

(GDF) instead of the usual df = p. Ye (1998) provided the calculation for the

GDF, which in our problem is

GDF =

n∑
i=1

lim
δ→0

Eµ

[
µ̂i(Yi + δei)− µ̂i(Yi)

δ

]
,

where ei is the ith column of the n×n identity matrix. Correspondingly, Ye (1998)

provided the following Monte Carlo algorithm to estimate the GDF (adapted to

our setting) when applying one of our four penalties:

1. Repeat steps 2 and 3 for b = 1, . . . , B. In the following, we set B = 100.

2. Generate ∆b = (δb,1, . . . , δb,n), with δb,i independent and identically dis-

tributed (i.i.d.) N (0, ν). For our problems, ν ≈ 0.5σY .

3. Compute µ̂(Y + ∆b) with the penalty-specific algorithm using data Y + ∆b.

4. Calculate ĥi as the regression slope from µ̂i(Y + ∆b) = α + ĥiδb,i, for b =

1, . . . , B.

5. UseGDF =
∑n

i=1 ĥi when calculating the GCV for β̂ found using a specified

λ and τ (TLP only).

The parameter values for the following results are those with the smallest GCV

(GDF ) statistic among the candidates considered. Once the candidate (λ, τ)

pair with the smallest GCV (GDF ) statistic is found, K can be calculated as the

number of unique regression coefficient vectors, (β0i, β
T
i ), among the i samples.
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3. Simulations

We initially explored multiple settings, with increasingly less separation, in

a single continuous response generated from a standard linear regression model,

with one continuous covariate (p = 1) and an intercept for n = 100 or 200

subjects. The responses were generated from an FMR model with K = 2 com-

ponents; that is, the responses were generated using different regression models

for k = 1 and k = 2. The settings were chosen to first verify the method’s capa-

bilities in an unambiguous scenario and, second, to provide insight into the data

features, where our new gTLP method improves on the classic semiparametric

approaches. The choice to simulate using a single covariate was deliberate. In iso-

lating a single covariate, while varying its effect’s size and direction by subgroup,

the simulations can provide clearer evidence of scenarios ideal for the gTLP,

simply because alternative sources of sample clustering have been minimized or

eliminated. In this manner, our first examinations established a foundation for

the gTLP, with an embedded flexibility that allows it to be extended naturally

to more complex settings. Here, K = 2 was chosen for the same reason. Fol-

lowing the initial phase of the simulation, we built the single-covariate K = 2

simulations into a single-covariate three-subgroup simulation, allowing us to test

our conclusions about the gTLP in a more challenging setting.

3.1. Simulation design

The component when K = 2 for sample i was simulated from a Bernoulli

distribution with mean equal to 0.5, that is, an equal probability of either compo-

nent generating the true response. As a result of using the Bernoulli distribution

to randomly assign groups, the subjects’ responses were created using each com-

ponent. The simulated response was generated as

Yi|Xi, k = β0k +Xiβ1k + εi, (3.1)

where k ∈ {1, 2} indicates the component that generates Yi, and (β0k, β1k)
T

denotes the intercept and regression coefficient for the kth regression component.

In the first stage of the simulation, we generate the covariate value. Let

Xi represent a continuous covariate. Specifically, Xi is generated from a normal

distribution with mean 2 and standard deviation 0.5. In the following, we de-

scribe simulations in which we considered two different (β01, β11)
T and (β02, β12)

T

combinations, and generated Yi from the respective regression components using

equation (3.1). A natural inquiry relates to how our method handles different er-

ror structures; consequently, εi are randomly sampled from various distributions.



A SEMIPARAMETRIC APPROACH TO FMRS VIA FUSION 797

(a) (b) (c)

Figure 1. (a) Yi and Xi scatterplot with true regression lines, and β0 (row 1) and β1
(row 2) estimates using (b) TLP and (c) LASSO.

3.2. Simulation results

The first simulation evaluates a scenario with strong separation between

responses generated from different components; as such, it demonstrates the

gTLP’s efficacy on a simple problem that can easily be made more challenging.

Set β01 = 1 and β11 = 1 for component one, and β02 = −4 and β12 = −3 for

component two. Errors were generated from the symmetric normal distribution

(N (0, 0.5)). The (Xi, Yi) pairs are plotted in Figure 1(a). Subjects from the

first component are plotted with circles, and subjects from the second compo-

nent are plotted with pluses. Additionally, the true regression lines for the two

components are plotted with solid lines.

The results in Figure 1 show the performance of the penalized regression with

nongroup penalties TLP (b) and LASSO (c). The individual λ regularization

paths for each subject i are plotted for β0i (top row) and β1i (bottom row). In

our usage, a regularization path is the curve connecting the estimates obtained

for person i when using each value of λ (horizontal axis) in decreasing sequential

order. Note, the figures use the notation λ2 on the horizontal axis for TLP-based

plots, instead of λ, to make expressly clear that the TLP and gTLP methods

are distinct from the LASSO-based methods. From left to right, the value of

the penalty parameter is decreasing to allow any natural hierarchical structure

to be exhibited. For the TLP, the plot is based on τ = 2, the value with the

lowest combined GCV statistics across the candidate penalty parameters. The

true coefficient values are given as horizontal lines, and the regularization paths

for subjects from the first component are darker than those from the second.
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(a) (b) (c)

Figure 2. β0 (row 1) and β1 (row 2) estimates using (a) gTLP, (b) gLASSO, and (c) SP.

Subjects from the two components can be distinguished for both the TLP and

the LASSO, given a sufficiently small λ. Not unexpectedly, the divergence in the

parameter estimates for subjects in the same component increases, in general,

with both the TLP and the LASSO methods as the penalty decreases. This

becomes significant because the λ at which the groups separate is different for

β0i and β1i. The TLP does outperform the LASSO in terms of providing closer

estimates of the true βi as λ decreases. However, there is still no range of λ for

either method at which both components’ β0 or β1 estimates are simultaneously

within even one unit, for all n subjects (using a course metric for illustrative

purposes). These two deficiencies prompted an investigation of the effect of a

group penalty applied to the distance between the samples’ coefficient vectors.

Figure 2(a) reveals the success of our gTLP method at overcoming these

issues. The individual λ regularization path for each sample i is plotted for τ =

2.5 (lowest total λ path GCV). As before, the hierarchical structure can be seen in

both the β0i and β1i plots, where the two distinct groups become more apparent

as the penalty is reduced. The key observation is how the estimates themselves

show increased β0 and β1 accuracy for both components simultaneously, unlike

in the TLP or LASSO versions (closer to the true values for small λ). The gTLP

definitely exhibits this property more than the gLASSO plots in Figure 2(b)

do. We see the gLASSO is effective at identifying two distinct components, but

shows less accuracy (distance between the true and estimated values) than the

gTLP approach in at least one parameter. Comparing the group and nongroup

approaches, the largest penalty parameter value that induces separation between

components is the same for both the slope and the coefficient.

Semiparametric (abbreviated SP) FMR models were fitted using K = 1, . . . ,
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10 specified components (in descending order on the x-axis); the parameter esti-

mates are plotted in the third panel of the figure. Figure 2(c) reports β0k (top

row) and β1k (bottom row) for the k = 1, . . . ,K components. The figures reveal

that for K = 2, the true component number, the SP estimation is not success-

ful overall, seeming to provide estimates centered around one of the two true

component parameter values for both β0 and β1. Note that because the default

spregmix function incorporates a random initialization, we confirmed the results

of 2(c) by repeating the process 25 times, each of which showed the same result.

The first simulation yielded evidence that the gTLP can outperform the

other methods and modeling approaches on, an admittedly, simple problem, but

it also provided better results with fewer assumptions. Our second simulation

considers the next logical complication, that of partially overlapping responses

for both components. This simulation includes two additional complications: (1)

we added weight to the tails of our previous symmetric normal distribution, and

(2) we added a skewed distribution for one of the component’s errors. Because

the structure and conclusions of the second scenario were incorporated into a

third, even more challenging simulation scenario, a full discussion of the second

simulation is presented as a supplement to this manuscript.

A possible insight from the early simulations is that the gTLP and, to a

lesser degree, the gLASSO are best when responses do not display a large degree

of overlap. The additional thresholding parameter when using the TLP may

be advantageous when the distance between the component coefficient vectors

is dominated by one parameter. Similarly, it may be valuable to truncate the

penalization in order to reduce the effect of penalizing samples that are truly in

different subpopulations.

Lastly, we believed it important to further test our conclusions about the

gTLP’s strengths, especially in a more challenging problem; thus, we created a

simulation scenario with K = 3 subgroups, using elements of each of our previous

scenarios. To be consistent with earlier scenarios, we again let Xi represent a

continuous covariate, generating it from a normal distribution with mean 1 and

standard deviation 0.5, and fixed β01 = 3.75 and β11 = 1/2 for component one,

β02 = 1/2 and β12 = −1/4 for component two, and β03 = −1.5 and β13 =

−1.5 for component three. Next, we let εi1 ∼ ln N (0, 1.25), εi2 ∼ t10, and

εi3 ∼ N (0, 0.5). We used a sample size of n = 150, with probability equal to

1/3 for each of the three components. Note that our three-group simulation is

(1) utilizing a more complicated mixture of the distribution families from the

first two simulations, (2) is continuing to use regression coefficients that vary in
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(a) (b) (c)

Figure 3. (a) Yi and Xi scatterplot with true regression lines, and β0 (row 1) and β1
(row 2) estimates using (b) gTLP and (c) SP. Note: the samples from components 1 to
3 are shown in increasingly lighter colors in panel (b).

magnitude and direction from zero, and (3) has two largely separated components

(key feature of simulation 1) that are essentially connected by a third component

that overlaps both to either a small or moderate degree (key feature of simulation

2). The effect is best viewed in Figure 3(a).

Comparing Figures 3(b) gTLP and (c) SP to their counterparts from the

earlier simulations and considering the findings, we would expect components one

and three to be distinct when viewing the gTLP results. The current simulation

does go further than simulation 1 in that component one is generated from a log-

normal distribution. As λ decreases in value in Figure 3(b), we see that the gTLP

is not hindered by the skewed distribution, because there is clear divergence in

both regression coefficients for components one and three, observed in the divides

of the top-most and bottom-most sets of estimates. Note that the gTLP appears

to handle the second component, which overlapped the other two components,

better in the K = 3 setting than in the previous K = 2 scenario. While the

estimated regression coefficients show more variance within component two than

in the other components (middle cluster of estimates), as a group, they have

noticeable separation from the other two components. Although not unexpected,

a trade-off for the improved component identification with the gTLP in the K = 3

scenario is increased bias in the actual coefficient estimates. Interestingly, this

occurred only for the intercept (β03) of the normally distributed component,

but not for the other two components’ β0k. For β1k, the least bias occurred in

estimates of the log-normal component.

Extending our insights about the gTLP, the K = 3 simulation, at a mini-
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mum, confirms the gTLP’s value in distinguishing samples from mostly nonover-

lapping components. In addition, the K = 3 simulation demonstrates that the

gTLP can do this for a mixture of symmetric and skewed distributions. Similarly,

the K = 3 simulation reaffirms, at a minimum, how the gTLP can potentially

extract a clearer partition of components, via their estimated regression coef-

ficients, when the outcomes overlap enough to be too problematic for classic

approaches, such as the semiparametric approach shown in Figure 3(c). The

SP method essentially identifies two groups, even when explicitly given K = 3.

Overall, the gTLP’s performance in the K = 3 scenario exceeded its performance

in the individual K = 2 scenarios. The gTLP’s success with increased numbers

of components in a complicated scenario, where several of the components had

responses that were not clearly differentiated or were overlapping to some degree,

is a promising finding to be leveraged in continuing work.

4. Real Data

The final applied section shows a real-data example to test the conclusions

drawn from the simulated data sets. That is, we test our conclusion that the

gTLP would be promising in a scenario in which the differences in a continuous

factor’s effect are consistent enough by group to cause some degree of clustering of

responses. Gene expression data provide a natural setting, because such research

tries to find creative ways to quantify the impact of differentially expressed genes.

The expression levels of single genes provide logical factors with to explore the

gTLP that parallel those of our simulations.

4.1. Small, round blue cell tumor data

Khan et al. (2001) explored the ability to train artificial neural networks

to use gene expression data from cDNA microarrays to classify types of small,

round blue cell cancerous tumors (SRBCTs) in children (Khan et al. (2001)).

The data were made available in the CMA R package (Slawski, Boulesteix and

Bernau (2009)), providing expression data for 2,308 genes that met the authors’

quality control standards. The expression data were from 63 subjects, with one of

four specified classes of SRBCTs: neuroblastoma (n = 12), rhabdomyosarcoma

(n = 20), non-Hodgkin lymphoma (n = 8), and Ewing family (n = 23). The

optimal treatment differs by type, but diagnoses using traditional clinical meth-

ods are difficult, per the authors. Note how the Khan et al. (2001) data allow

us to explore a likely expectation of researchers when using semiparametric or
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(a) (b) (c)

Figure 4. Khan et al. (2001) expression data presented as (a) a scatterplot of gene 1195
and gene 1663, and β0 (row 1) and β1 (row 2) estimates using (b) gTLP and (c) SP.

nonparametric statistical tools, namely, their applicability to small sample sizes.

Khan et al. (2001) used artificial neural network (ANN) models incorporating

96 of the genes to classify the cancer set. The 96 genes represented a parsimonious

subset of the 2,308 genes that minimized their classification error rates. In order

to agnostically limit our candidate set, we restricted our analysis to genes with

a statistically significant (α = 0.05) difference in expression level between the

four types of tumors, as determined by a global F -test on the means. Three

genes met this threshold, labeled 154, 1195, and 1663 in the data. To this point,

our intent was to identify an even smaller subset of the candidate genes in an

objective and commonplace way, and to then assess the gTLP’s performance

with respect to the same goal of Khan et al. (2001) To select the final genes

and cancer subtypes for our assessment, we chose the two genes and two cancer

types with a relationship between the expression data that best matched our

simulation-derived conclusions about where the gTLP would be effective. Our

final two subtypes (non-Hodgkin lymphoma and neuroblastoma) had the highest

sensitivity for both the original and the test cases using the ANN approach

(although all cancer subtypes were classified correctly to a very high degree).

We thought this an important supporting detail, because the true type of cancer

was only assessed to a high degree of confidence using traditional diagnostic

approaches; thus, the credibility of our conclusions about correct classification is

further enhanced by the ANN-based confirmation of the true cancer subtype.

Figure 4(a) shows that our data are related to elements of the first two

simulations (but with much smaller samples sizes). However, after adding in-
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dividual subtype fitted lines to (a), we find that the separation does not result

from the components defined strongly by a linear association. The neuroblas-

toma subtype exhibits a relationship closer to those used in simulation one, but

the non-Hodgkin lymphoma samples show noticeably less of this. Both subtypes

exhibit skewness in the gene 1663 distributions, although it is possible that this

is driven by an outlier for the non-Hodgkin lymphoma samples.

The gTLP performance is presented in Figure 4(b), and the semiparametric

performance is shown in panel (c). Here, SP is not able to distinguish between

cancer subtypes. However, the gTLP appears to be able to successfully parti-

tion the cancer types. The dendrogram-like clustering is not present, but simply

partitioning by a positive or a negative trend in the coefficient for gene 1195 as

λ decreases provides a perfect classification. Note that we have a user-driven

setting within this real data-example. However, it is perhaps even more note-

worthy that we have replicated a classification based on 96 genes by applying the

gTLP to the relationship between two genes found among 1,000s using a simple

ANOVA. Lastly, Figure 4(b) shows an unexpected result for the gTLP. Observe

that the darker lines in part (b) of this figure correspond to the non-Hodgkin

lymphoma samples. The estimated regression coefficients for this cancer sub-

type more closely match a model fit without the one likely outlier visible in 4(a).

Consequently, the gTLP might additionally provide a degree of robustness in its

estimation process.

5. Discussion

Using real data, and supported by simulation, we have shown that our

new grouping pursuit gTLP method, and to a lesser extent, a grouping pursuit

gLASSO, handles certain types of problems for which previous methods, such as

Hunter and Young’s semiparametric approach, were not successful. Our novel

gTLP approach was successful in scenarios using FMR when responses generated

by different component regression models were at least generally clustered, but

not necessarily distinct, in one dimension. The gTLP method, which applies

a group penalization to the differences between coefficient vectors, was able to

correctly classify subpopulations in our applied gene expression data example.

The gTLP method also returned reasonable to very good estimates of the known

regression coefficients in simulations without strong overlaps in the subgroup

responses. While warranting further investigation, the truncation threshold pa-

rameter (τ) used by the gTLP improved on the gLASSO methods, likely because
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of its weighting of the penalty toward within-component differences. If the re-

sponses from different component regression models are well separated, or do not

exhibit a large degree of overlap, the gTLP may be better than the gLASSO

at maintaining between-component/subpopulation separation in the coefficients,

while reducing within-component differences. In addition, we have confirmed that

group penalties, such as the gTLP and gLASSO, can improve component iden-

tification and regression model estimation over their corresponding coefficient-

specific penalties, the TLP and LASSO.

Importantly, our new method focuses on the estimation (and then cluster-

ing) of individual regression models. This holds great promise for application to

personalized medicine. In the present work, we have only begun to show how a

different grouping approach to a penalized regression may be able to overcome

some of the limitations of current approaches. The simulations were basic and

do not cover a large range of possible combinations of component models, but

they do provide minimally ambiguous support for the gTLP’s value in the essen-

tial setting (single variable) needed for analysis of more complicated scenarios.

Future work will need to apply the method to additional scenarios to further

refine the class of problems for which the gTLP shows strong promise. This work

included one capstone simulation with three subgroups, offering further, and in

some ways, stronger evidence for our conclusions about the gTLP’s advantages.

Even more advantageous to future work, it is constructed from basic scenarios;

thus, our final simulation shows how the foundation built in this study can be

leveraged effectively and adapted to future research. For example, a particular

problem of interest occurs when a variant has a true effect for only one of several

subsets of the population. In addition, future work must include scenarios with

more covariates in order to make it applicable to the very likely scenario of health

or disease outcomes resulting from complex functions of multiple variables. In-

creasing the number of covariates will also enable an exploration of the variable

selection features, in addition to the grouping features. Similarly, establishing

the gTLP’s effectiveness with large samples will be paramount, considering the

growth in availability of data with multiple thousands of samples. However, these

extensions represent an involved second phase of research that requires that we

first establish a comprehensive and credible foundation for the gTLP, which was

the motivation for and aim of the current work. We thought it valuable to show

how the penalty magnitude can uncover a hierarchal structure, thus showing

the potential for different partitions of the population. The work to date has

employed the squared loss function only, but the method can be modified to ac-
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commodate other loss functions that might better serve a problem. For example,

it could be interesting to consider an L1 function in data with outliers, especially

considering the robustness of the gTLP found in the gene expression data exam-

ple. Finally, we showed that GCV can be used to choose a single set of coefficient

estimates from among those generated by different threshold and penalty values.

However, it will be beneficial to revisit this issue and potentially develop a bet-

ter criterion for selecting optimal tuning parameters and, by extension, discover

the number of components (if indeed they exist). This GCV-based standard in

the present study is possibly the most conservative standard for assigning sam-

ples to the same group; consequently, there is great promise in advancing our

method to consider a more probabilistic-based approach. Our main goal here is

to demonstrate the feasibility and promise of our proposed penalized regression

approach as a proof of concept; however, our results go further, documenting the

early successes of the gTLP as a hierarchical clustering tool that can uncover a

subpopulation structure in a data set.

Supplementary Material

The online Supplementary Material provides full details of the second simu-

lation example referenced in Section 3.2.
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