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S.1 Conditions in Theorem [1]

These are conditions needed to establish the asymptotic properties of B in Theorem

(C1) The univariate kernel function K (-) is symmetric, has compact support and is Lipschitz

continuous on its support. It satisfies
JK(u)du =1, JuiK(u)du =0(t=1,...,m—1), 0 f|u|mK(u)du < o0.

Thus K is a m-th order kernel. The d-dimensional kernel function is a product of d uni-
variate kernel functions, that is, K (u) = K (u/h)/h* = 11j_, K (u;) = 11—, K (u;/h)/h?
foru = (uq,... ,ud)T. Without causing misunderstanding, we use the same K regardless

of the dimension of its argument.

e probability density function o x, denote: y X), 1Is bounded away Irom
C2) Th bability density function of 8Tx, d d by f(8Tx), is bounded f

zero and infinity.

(C3) Let r(B8Tx) = E{a(x) | BTx}f(8Tx). The (m — 1)-th derivatives of r(3Tx) and f(87x)

are locally Lipschitz-continuous as functions of 8Tx.

(C4) The bandwidth h = O(n™") for (2m)™' <k < (2d)™*.
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S.2 Proof of the result regarding B in Theorem

Since a(3) solves , we obtain the Taylor expansion

0 = % 2 A(BX,) [a(xi) - m{B8"X,, &(ﬁ)}]
-+ Z A(BX) [a(X) — m{B7Xs, ao(8)}]
= Z ATx) 28 X () - an(8) + opl1)
This leads to

_ b

Vvn{a(B) — ao(B)} n

Let mg{B"X;,a0(8)} = om(B"Xi, a)/dovecl(B)" |acays), as(B) = d0&(B)/dvecl(B)" and
0.5(B) = dao(B)/0vecl(B)™. Since B solves , plugging the expression of &(8) — ao(83), we

further have

0 = De0[ax) ~miB'x. a3}
- L Zl g(v) [a(X.) - m(8"X..a(8))|
- ig(m)ﬁ{vecl(ﬁ A" [ma{B7Xi, a0(8)) + ma (87X &(B)}as(8)| + op(1)
77 5800200~ miB"Xe )] - 72 31600 [maf6" XKoo col@}009) - )]
- ig(yi)mvecl(ﬁ " [ma{B7Xs, 0(8)} + ma {87 Xs a0(B)}eto,5(8)| +0,(1)
-+ z &(v) [a(X) - m(87X. c0(8)}]

L D a0 (B ABTX,) [a(X,) - m(87X, a0(8)}| ) mE(6" X c0(8))
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We vectorize the above display and write the relation equivalently as

0 =

3 p—
i

vee (0% [a(X0) - m{8" X a0 ()] ")

-
H'M:
3 [ =

3 mal6"X,,00(8)) @5(Y.) (B AB"X) [3(X,) ~mi(5"X,. a0(8)}])

3=

[mﬁ{ﬁ Xi, @0(8)} + ma (87X, a0 (8)}ovo,(8)| @ g(¥:)v/nvecl(B — B) + 0,(1)
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L. ®g(¥)) [a(X:) - m{B8"X,, a0 (8)} |

_ sl-

|
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B (B1 'A(BTX)) [a(Xi) - m{ﬁTXz‘aaO(ﬂ)}D
[mﬁ{ﬂ X, a0(B)} + ma{B'X, ao(B)}ans(8) | @ 8(Y)) vaveel(B - B) + 0,(1)

{1, @ &(¥) ~ BaBi " A(B"X)} [a(X) ~ m{B"Xu c0(0)}]

Il
= Si-
Ms

[mﬁ{a X, a0(8)} + ma{BX, o (B)}eo,a(8)| ® E{g(Y) | 87X}) vaveel(B - 8)
o (1). (S.1)

Because a&(3) solves and since we assume the model is correct, ao(83) = lim,—o @(3) and

FE{a(X)|B8TX} = m{ﬁTX ao(B)} for any B. This leads to

E ([a(X) - m{B"X, a0 (8)}] @ E{g(Y) | B7X}) = 0

for any 3, hence

B ([-mas{A"X, a0(B)} — ma{8"X, an(8)}ans(8) | ® Elg(Y) | AX})

oE{g(Y) | ﬂTX})
ovecl(B3)T

= B([-ms{B"X, c0(8)} ~ ma{BX, (B} 5(8)| ® B{g(Y) | 87X}) +

= 0.

‘B ([aoq —m{8"X, a0(8)}] ®

We thus can rewrite (S.1) as

1 < -1 T T
0 = ﬁ; {Ipa ®g(Yi) —B2B] A(8 Xi)} [a(Xi) - m{3 Xi,ag(,B)}]
—Sav/nvecl(B — B) + 0,(1),

which leads to the result in Theorem [Il O
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S.3 Proof of Theorem

Because a(3) solves , we obtain the Taylor expansion
0 - mi{8"X,, &(8)}Q " (87X) [a(X,) - m{B8"X,, &(8)}]

mi {8 X, a0 (8)}Q 1 (8"X) [a(X,) — m{8" X, a0 ()}
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Q'(8X) [a(X,) — m{B"X:, a0 (B8)}] vV{ds (8) — ao;(B))

oo ‘a:ao(ﬁ)

= 5

am(/gTXh Ot) }
oa” a=ag(B)

mg {8"X:, a0 (8)}Q ' (87X) Vi{a(B) — ao(B)} + 0p(1)

T

>
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(8)}Q " (87X) [a(X.) — m{BTX,, o (8)}

=
iD= 1ps DD
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om(8TX;, o)

m. {8 X, a0 (8)}Q (B X) oL )a:ao(ﬁ)

S

V{a(B) — ao(B)} + op(1).

This leads to

n

Vil () — e (B)} = %Bal Y, mA{B X, &(8)}Q 7 (B7X) [a(X) — m{8"Xs, a0(B)}] + 0,(1).

Following the same derivation as that in the proof of Theorem [I] we then obtain the expansion
of B.
Tt is easy to verify that
2 { ([T © Ble(r) | 57X) - BB ml (67X, a0(8)Q ' (5"X)] [a00) - m{5"X, a0 (6)])”
B2B; 'mi{A7X, 0(8)}Q 7 (87X) [a(X) - m{BTX, ao(8)}] }
— traceE { (|1, ® B{g(Y) | 87X} - B2B; 'mi{BTX, a0(8)}Q ' (87X)]
[200) ~ m{8"X.a0(8)}])" BB ml (47X, a0(8))Q ' (8"X) [a(X) ~ m{5"X, a0 (6))] |
= traceE (BoB; 'mi{B"X, a0(8)}Q 7 (8"X) [a(X) - m{8"X, an(8)}]
[0%) - m(B"X. a0())]" [1,. ® Ble(r) | 57X} - BB wl (5"X. a0()Q (5" X)] ")
— traceE (BnglmE{ﬂTx, a0 (8)} |1, ® E{g(Y) | 87X} - B2B; 'mi{8"X, ao(ﬁ)}Q‘l(ﬁTX)]T>

— tracel (B2B; 'mL {87 X, a0(8)} |1, ® E{g"(¥) | 87X} - @ (8" X)ma{B"X, a0(8)}B; "B} )
—  trace (BQBglE[mz{ﬂTX, ao(B8)} ® E{g" (V) | B7X}] - BQB;IBQT)

= 0.
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Thus the orthogonality result is verified. (I

S.4 Proof of Theorem [3

Because no constraints are imposed on f1(3TX) other than it is a valid pdf, hence its nuisance
tangent space contains all mean zero functions of 8TX. In addition to being a valid conditional
pdf, f2 (,BTX, €) is subject to the mean zero condition. This restricts the corresponding nuisance
tangent space, and it is easy to verify that it has the form given in As. The results of A3 can
be similarly derived as Ai, by treating Y as the random variable. We omit the details of the
derivation of Aj, A2 and Aj since they involve only standard practice. It is also easy to verify
that the three spaces are orthogonal to each other, hence we obtain the results concerning A.

It is also not hard to see that A1 contains all the functions g(X,Y") such that E{g(X,Y) |
BTX} = 0, Ay contains all the functions g(X,Y) such that E{g(X,Y) | 87X, €} has the form
a(B"X)+A(B"X)e, and A3 contains all the functions g(X,Y) such that E{g(X,Y) | 87X, Y}
has the form a(8TX). Thus, taking the intersection of AT, A3 and As, we obtain AL as
described in Theorem [3

To obtain the efficient score, we first calculate the score function with respect to the

parameter of interest contained in 3, i.e. 35. The score function is

_ dogfi(BTX) dlogf2(B"X,e) dlogfa(BTX, €) dm(B7X, B,)
Sp, = vec|Xz oXT3 XT3 €T 0XT3
+6logf3(,3TX, Y) }] ~ om" (87X, B,) dlogf2(B"X, €)
oXTg3 ovec(B,) O€ '

We now decompose the score function into Sg, = Seg + R, where

dlogf1 (8™ 0 ! .
S TN 10 0 5700 + i

om(8"X.8,) |  dlogfs(8"X, Y., om (87X, B,)
XT3 2T X 8 ovec(B,)

Seg = vec (ez

xQ; ' (BTX) Q; ' (8" X)es,
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and

dlog f1(B"X)
oXT3

dlogf2(BX, €2) N dlogf2(BX, €2)

T
+ m(ﬁ X:/BQ) aleB €2 6XT5

R = vec (m(ﬁTx,ﬁQ)

X - 1 X -
SLE [Le {0 e | - m(atx. g, { FERZX) 1 o 6mx)

T T T
X am(a'BX;{E;ﬁQ) - {62 alngzé'iTX’ €2) + Ip*d} 7§m(§xizﬁ2) +m(3"X, 3,)
alng3(/6TX7Y) am(BTX,B ) amT(IBTXMB ) alngQ(IBTX762) —1,,T
xR T XA )_ avec(By) { o€z + Q2 (8 X)GQ}'

Here, when taking derivative of a matrix with respect to a row vector, we obtain a block row
matrix, with the jth block element is the derivative of the matrix with respect to the jth element
of the vector. We can easily check that indeed Sg, = Scs + R. It is also straightforward to

verify that Seg € At. In addition, we easily obtain

T T
Ri = vec {m(ﬁTX,ﬂz)alog@];(Tﬁg X) + am(égxfﬂ’/%)} =

dlogf3(B"X,Y)
XT3

R

m(8"X, 3,) € As.

Finally, using the relation

olog fa( 8TX, €)

[ )
olog fa( 8TX, 62) T B
E{ xtg P X} -
E{&logfz BX.e) | X}
O€eY
E{eg Glog/( 6 %.2) s X} o
E {62j62j 4alogfz(a,fTX7 €z) | ﬁTX} =

through tedious but straightforward calculation, we can verify that

dlogf2(BTX, €2) N dlogf2(BTX, €2)

R, = vec (m(,@TX,ﬁZ)

XT3 ©T XT3
0Q2(B" _ dlogfa 2 _
0B (Lo (@i (8TX0e | - m(sx.py) { ZBEE X)L g, 570
« am(IBTX7ﬂ2) _ [ 6logf2(,8TX €2) +1 ] om IBTX B2) )
oXT3 O€d pd 0XT3
om™ (87X, B,) [logf2(BTX, €2) 1,47
B ovec(B,) { Oes +Q. (8 X)62} € As.

We can see that R = R1 + R2 + Rs3, hence R € A. This shows that Seg is indeed the efficient

score. O
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S.5 Proof of Theorem [

Similar to the derivation in proving Theorem [3] the form of Ai, A3 are unchanged. Regarding
As, because in addition to being a valid conditional pdf, fa(8T X, €2) is subject to the mean zero
and constant variance conditions, the corresponding nuisance tangent space is further restricted.
It is also easy to verify that it has the form given in As. The orthogonality of the three spaces
A1, A2 and As still holds, hence we obtain the results concerning A.

Obviously, At and A3 remain unchanged from in those in Theorem As contains all
the functions g(X,Y) such that E{g(X,Y) | 8TX, &} has the form a(8"X) + A(BTX)&: +
B(BYX)&¢e;. Thus, taking the intersection of AT, Ay and A3, we obtain At as described in

Theorem |4 Note that our construction ensures that E(€2vT | 8T7X) = 0. We then can write

A= [h(BTX) : E{h(8"X)} = 0, E{h" (3" X)h(B"X)} < 0,h(8"X) € R<p—d>d]

A = [h(BTX,%): Eh("X, &) | 47X} - 0, E{@&:h" (87X, %) | 87X} - 0,
E{vh'(8"X,&) | "X} = 0, E{h" (8" X, &)h(8" X, &)} < o,
h(8"X, %) e R("’d)d]

As = [B(BTX,Y): E{h(8TX,Y) | 87X} = 0, E{h" (87X, Y)h(87X,V)} < o,
h(8"X,Y) e R@*‘”d]

A = [sX V) B{g(X,Y) | 87X, &) = ABTX)e: + B(8TX)v,

E{g(X,Y)|B"X,Y} =0,E{g"(X,Y)g(X,Y)} < o0,g(X,Y) e R(”_d)d] )

To obtain the efficient score, we first calculate the score function with respect to the

parameter of interest contained in 3, i.e. B,. The score function is different from that in
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Theorem [Bl and we obtain

_ dlogfi1(B"X)  dlogfa(B"X,&) dlogfe(B X, &) om(B8"X, B,)
Se, = vee [Xg{ oXT xXTg N
T -1
+ 810gf;§5r18)(, Y) }] + (gzc(ﬁ(f;z [Lp-a)a ® {X - m(8"X, B8,)}]
D) BT B) | Alogf(8TX, &) _ dlogdet{D(B,)}
27 ovec(B,)T 0éz dvec(B,)
T T ~ T ~ T
o[ {BIAETX) | gl TR _ Aog SR 5 ST K )
o T oD~! N _ om(B8TX, B
+AosBE XN |4 (2 a0 (D(B)21] - D () P2 2
, Ologf>(BTX, &)  dlogdet{D(B,)}
0€s ovec(B,) '

The key difference is in how the score function should be decomposed, reflecting the change of

the spaces A and AL. We can rewrite

T ~
Sg, = vec [Xg {610‘?;1((%8;)() + 6logf§)((,6TTg(7 Y) + alng;;'BT;Q €2) }]
T dlogf2(BTX, &) 1 om(B"X, 3,)
~vec{m(p X, 02) E2 LD () s |
om™ (87X, B,) (-1 T dlogf2(B" X, &)
C ovec(B,) =D (8} 0€;
—vee { D)2, SR KBy ) I X 0) |
2
D~(B,) 2 1) logfa(BTX, &) dlogdet{D(B,)}
+ (W[I(wdﬂ ® {D(ﬁz)@}]) % - veo(B,) 2
T ~
C e [X2 {alo%J;(Tﬁ;X) N alogf;,}({ﬁ:ﬁx Y) N 6logf;§?TﬁX, eg)}]
om” (87X, B,) T om” (87X, B,) -1 T dlogf2(B7X, &)
- {%—sz ®m(B X, B,) + W} {D7(8,)} e
mT T T ~
([P ook
. Jlogfo(B"X, &)\  dlogdet{D(B,)}
+C1(8,)vec {62 (?Eg } — vec(B,) 2
_ dogf1(B"X)  dlogfs(BTX,Y) | dlogf2(B"X, &)
B e e e |
T ~ T ~
(7, 0,) TELE ) i (57, 9, vee {2 TELE KB |

_ Jlogdet{D(B,)}
dvec(B,)
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We decompose the score function into Sg, = Seg + R, where R € A and Seq € At and

hence is the efficient score and. Here,

S = vee (D)2 M ELE ) 4 g, DO X))

—Ki(8"X, B,)& + Ka(B" X, B,)v — Ku(B' X, B,)v

and
R = vec{ (,8 X 52)810?;1((58)() + (,3 X BQ)W‘FHI(,@TX752)%W}
T ~
#vee {D(B, )2 JslF XE) e
JrI<1(I@T}(7 Bs)€x — KQ(IBT}(7 By)v + K3(,3TX,,62)V€3C{ w + Ip—d}

dlog det{D(8,)}

ovec(8,) K3 (8" X, B,)vec(Ip—a).

+K4(IBTX7 ﬁQ)V -

It is obvious that Scs € AL. Careful and tedious calculations, through grouping the terms
in R as the second, the third, the fourth+fifth, the sixth4seventh+eighth, ninth+tenth, and
first+eleventh+twelfth terms, verify that R € A. O
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