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This supplementary file has two main constituents. Section S1 an contains extensive set of

numerical results; we follow a division into the vector and matrix case, respectively. The

remaining sections contain proofs of Propositions 1 to 7.

S1 Empirical results

We have conducted a series of simulations to compare the different meth-

ods considered herein and to provide additional support for several key

aspects of the present work. Specifically, we study compressed sensing,

least squares regression, mixture density estimation, and quantum state to-

mography based on Pauli measurements in the matrix case. The first two

of these only differ by the presence respectively absence of noise. We also

present a real data analysis example concerning portfolio optimization for
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NASDAQ stocks based on weekly price data from 03/2003 to 04/2008.

S1.1 Compressed sensing

We consider the problem of recovering β∗ ∈ ∆p
0(s) from few random lin-

ear measurements Yi = 〈Xi, β
∗〉, where Xi has standard Gaussian entries,

i = 1, . . . , n. In short, Y = Xβ∗ with Y = (Yi)
n
i=1 and X having the

{Xi}ni=1 as its rows. Identifying β∗ with a probability distribution π on

{1, . . . , p}, we may think of the problem as recovering π from expectations

Yi =
∑p

j=1(Xi)jπ({j}). We here show the results for p = 500, s = 50 and

n = cs log(p/s) with c ∈ [0.8, 2] (cf. Figure 1). The target β∗ is generated

by selecting its support uniformly at random, drawing the non-zero entries

randomly from [0, 1] and normalizing subsequently. This is replicated 50

times for each value of n.

Several approaches are compared for the given task, assuming squared

loss Rn(β) = ‖Y −Xβ‖22/n:

’Feasible set’: Note that ERM here amounts to finding a point in D(0). The

output is used as initial iterate for ’L2’, ’weighted L1’, and ’IHT’ below.

’L2’: ℓ2-norm maximization (4.4) with λ = 0, i.e., over

D(0) = {β ∈ ∆p : X
⊤(Xβ −Y) = 0}

= {β ∈ ∆p : Xβ = Y} with probability 1.

(S1.1)
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’Pilanci’: The method of Pilanci, Ghaoui, and Chandrasekaran (2012) that

maximizes the ℓ∞-norm over (S1.1).

’weighted L1’: Weighted ℓ1-norm minimization (cf. §3) over (S1.1).

’IHT’: Iterative hard threshold under simplex constraints (Kyrillidis et al.,

2013). Regarding the step size used for gradient projection, we use the

method in Kyrillidis and Cevher (2011) which empirically turned out to be

superior compared to a constant step size. ’IHT’ is run with the correct

value of s and is hence given an advantage.

Results. Figure 1 visualizes the fractions of recovery out of 50 repli-

cations. A general observation is that the constraint β ∈ ∆p is power-

ful enough to reduce the required number of measurements considerably

compared to 2s log(p/s) when using standard ℓ1-minimization without con-

straints. At this point, we refer to Donoho and Tanner (2005) who gave

a precise asymptotic characterization of this phenomenon in the regime

n/p → c ∈ (0, 1) and s/n → c′ ∈ (0, 1). When solving the feasibility prob-

lem, one does not explicitly exploit sparsity of the solution (even though

the constraint implicitly does). Enforcing sparsity via ’Pilanci’, ’IHT’, ’L2’
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Figure 1: Contour plots of the empirical relative frequencies of exact recovery in depen-

dency of the number of measurements (horizontal axis) and s (vertical axis). The left

and right plot show the contour levels .75 and .99, respectively. Note that the smaller

the area “left” to and “above” the curve, the better the performance.

further improves performance. The improvements achieved by ’L2’ are most

substantial and persist throughout all sparsity levels. ’weighted L1’ does not

consistently improve over the solution of the feasibility problem.

S1.2 Least squares regression

We next consider the Gaussian linear regression model

Yi = X⊤
i β

∗ + εi, εi ∼ N(0, σ2), i = 1, . . . , n. (S1.2)

with the {Xi}ni=1 as in the previous subsection. Put differently, the previ-

ous data-generating model is changed by an additive noise component. The

target β∗ is generated as before, with the change that the subvector β∗
S(β∗)

corresponding to S(β∗) is projected on [b∗min, 1]
s ∩∆s to ensure sufficiently
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strong signal, where b∗min = ̺σ
√

2 log(p)/n with σ = s−1 and ̺ = 1.7 con-

trolling the signal strength relative to the noise level λ0 = σ
√
2 log(p)/n.

The following approaches are compared.

’ERM’: Empirical risk minimization.

’Thres’: ’ERM’ followed by hard thresholding (cf. §3).

’L2-ERM’: Regularized ERM with negative ℓ2-regularization (4.3). For the

parameter λ, we consider a grid Λ of 100 logarithmically spaced points from

0.01 to φmax(X
⊤
X/n), the maximum eigenvalue of X⊤

X/n. Note that for

λ ≥ φmax(X
⊤
X/n), the optimization problem (4.3) becomes concave and

the minimizer must consequently be a vertex of ∆p, i.e., the solution is

maximally sparse at this point, and it hence does not make sense to con-

sider even larger values of λ. When computing the solutions {β̂ℓ2λ , λ ∈ Λ},

we use a homotopy-type scheme in which for each λ ∈ Λ, Algorithm 1 is

initialized with the solution for the previous λ, using the output β̂ of ’ERM’

as initialization for the smallest value of λ.

’L2-D’: ℓ2-norm maximization (4.4) over D(Cλ0) with λ0 being the noise

level defined above and C ∈ {0.5, 0.55, . . . , 2}. Algorithm 1 is initialized

with β̂ provided it is feasible. Otherwise, a feasible point is computed by
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linear programming.

’weighted L1’: The approach in (3.2). Regarding the regularization param-

eter, we follow van de Geer, Bühlmann, and Zhou (2013) who let λ = Cλ2
0.

We try 100 logarithmically spaced values between 0.1 and 10 for C.

’IHT’: As above, again with the correct value of s. We perform a second

sets of experiments though in which s is over-specified by different factors

(1.2, 1.5, 2) in order to investigate the sensitivity of the method w.r.t. the

choice of the sparsity level.

’L1’: The approach (3.3), i.e., dropping the unit sum constraint and nor-

malizing the output of the non-negative ℓ1-regularized estimator β̂ℓ1λ . We

use λ = λ0 as recommended in the literature, cf. e.g. Negahban et al. (2012).

’oracle’: ERM given knowledge of the support S(β∗).

For ’Thres’,’L2-ERM’ and other methods for which multiple values of a

hyperparameter are considered, hyperparameter selection is done by mini-

mizing the RIC as defined in §3 after evaluating each support set returned

for a specific value of the hyperparameter.

Results. The results are summarized in Figures 2 and 3. Turning to the

upper panel of Figure 2, the first observation is that ’L1’ yields noticeably
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Figure 2: Upper panel: Average estimation errors ‖θ̂−β∗‖2 (log10 scale) in dependence of

n over 50 trials for selected values of s. Here, θ̂ is a placeholder for any of the estimators

under consideration. Middle and Lower panel: contour plots of the average Matthew’s

correlation in dependence of n (horizontal axis) and s (vertical axis) for the contour

levels 0.7, 0.8, 0.9, 0.95. Note that the smaller the area between the lower left corner of

the plot and a contour line of a given level, the better the performance.
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Figure 3: Sensitivity of ’IHT’ w.r.t. the choice of s. The plots display error curves of IHT

run with the correct value of s as appearing in Figure 2 as well with overspecification of s

by the factors 1.2, 1.5, 2. The drop in performance is substantial: for 2s, the improvement

over ERM (here used as a reference) is only minor.

higher ℓ2 estimation errors than ’ERM’, which yields reductions roughly be-

tween a factor of 10−.1 ≈ 0.79 and 10−.2 ≈ 0.63. A further reduction in

error of about the same order is achieved by several of the above meth-

ods. Remarkably, the basic two-stage methods, thresholding and weighted

ℓ1-regularization for the most part outperform the more sophisticated meth-

ods. Among the two methods based on negative ℓ2-regularization, ’L2-ERM’

achieves better performance than ’L2-D’. We also investigate success in sup-

port recovery by comparing S(θ̂) and S(β∗), where θ̂ represents any of the

considered estimators, by means of Matthew’s correlation coefficient (MCC)

defined by

MCC = (TP·TN−FP·FN)/ {(TP + FP)(TP + FN)(TN + FP)(TN + FN)}1/2 ,

with TP,FN etc. denoting true positives, false negatives etc. The larger the
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criterion, which takes values in [0, 1], the better the performance. The two

lower panels of Figure 2 depict the MCCs in the form of contour plots,

split by method. The results are consistent with those of the ℓ2-errors. The

performance of ’weighted L1’ and ’thres’ improves respectively is on par with

that of ’IHT’ which is provided the sparsity level. Figure 3 reveals that this

is a key advantage since the performance drops sharply as the sparsity level

is over-specified by an increasing extent.

S1.3 Density estimation

Let us recall the setup from the corresponding bullet in §1. For simplicity,

we here suppose that the {Zi}ni=1 are i.i.d. random variables with den-

sity φβ∗ , where for β ∈ ∆p, φβ =
∑p

j=1 φjβj and F = {φj}pj=1 is a given

collection of densities. Specifically, we consider univariate Gaussian densi-

ties φj = φθj , where θj = (µj, σj) contains mean and standard deviation,

j = 1, . . . , p. As an example, one might consider p0 locations andK different

standard deviations per location so that p = p0K, i.e., θ(k−1)p0+l = (µl, σk),

k = 1, . . . , K, and l = 1, . . . , p0. This construction provides more flexibility

compared to usual kernel density estimation where the locations equal the

data points, a single bandwidth is used, and the coefficients β are all 1/n.

For large F , sparsity in terms of the coefficients is common as a specific
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target density can typically be well approximated by using an appropriate

subset of F of small cardinality.

As in Bunea et al. (2010), we work with the empirical risk

Rn(β) = β⊤Qβ − 2c⊤β, c = (
∑n

i=1 φj(Zi)/n)
p

j=1 ,

andQ = (〈φj , φk〉)pj,k=1, where 〈f, g〉 =
∫
R
fg for f ,g such that ‖f‖, ‖g‖ < ∞

with ‖f‖ = 〈f, f〉1/2.

In our simulations, we let p0 = 100, K = 2, σk = k, k = 1, 2. The locations

{µl}p0l=1 are generated sequentially by selecting µ1 randomly from [0, δ], µ2

from [µ1 + δ, µ1 + 2δ] etc. where δ is chosen such that the ’correlations’

〈φj , φk〉 /‖φj‖‖φk‖ ≤ 0.5 for all (j, k) corresponding to different locations.

An upper bound away from 1 is needed to ensure identifiability of S(β∗)

from finite samples. Data generation, the methods compared, and the way

they are run is almost identical to the previous subsections. Slight changes

are made for S(β∗) (still selected uniformly at random, but it is ruled that

any location is selected twice), b∗min (̺ is set to 2) and hyperparameter se-

lection. For the latter, a separate validation data set (also of size n) is

generated, and hyperparameters are selected as to minimize the empirical

risk from the validation data.

Results. Figure 4 confirms once again that making use of simplex con-
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straints yields markedly lower error than ℓ1-regularization followed by nor-

malization (Bunea et al., 2010). ’L2-ERM’ and ’weighted L1’ perform best,

improving over ’IHT’ (which is run with knowledge of s).
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Figure 4: Average estimation errors ‖θ̂−β∗‖2 for density estimation over 50 trials. Since

the performance of ’L1’ falls short of the rest of the competitors, whose differences we

would like to focus on, ’L1’ is compared to ’ERM’ and ’oracle’ in separate plots in the

right column. Standard errors are smaller than 0.025 for all methods.

S1.4 Portfolio Optimization

We use a data set available from http://host.uniroma3.it/docenti/

cesarone/datasetsw3_tardella.html containing the weekly returns of

p = 2196 stocks in the NASDAQ index collected during 03/2003 and

04/2008 (264 weeks altogether). For each stock, the expected returns is
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estimated as the mean return µ̂ from the first four years (208 weeks). Like-

wise, the covariance of the returns is estimated as the sample covariance

Σ̂ of the returns of the first four years. Given µ̂ and Σ̂, portfolio selection

(without short positions) is based on the optimization problem

min
β∈∆p

β⊤Σ̂β − τµ̂⊤β (S1.3)

where τ ∈ [0, τmax] is a parameter controlling the trade-off between return

and variance of the portfolio. Assuming that µ̂ has a unique maximum

entry, τmax is defined as the smallest number such that the solution of (S1.3)

has exactly one non-zero entry equal to one at the position of the maximum

of µ̂. As observed in Brodie et al. (2009), the solution of (S1.3) tends to be

sparse already because of the simplex constraint. Sparsity can be further

enhanced with the help of the strategies discussed in this paper, treating

(S1.3) as the empirical risk. We here consider ’L2-ERM’, ’weighted L1’,

’Thres’ and ’IHT’ for a grid of values for the regularization parameter (’L2-

ERM’ and ’weighted L1’) respectively sparsity level (’L2-ERM’ and ’Thres’).

The solutions are evaluated by computing the Sharpe ratios (mean return

divided by the standard deviation) of the selected portfolios on the return

data of the last 56 weeks left out when computing µ̂ and Σ̂.

Results. Figure 5 displays the Sharpe ratios of the portfolios returned by

these approaches in dependency of the ℓ2-norms of the solutions correspond-
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Figure 5: Sharpe ratios of the portfolios selected by ’L2-ERM’, ’weighted L1’, ’Thres’ and

’IHT’ on the hold-out portion of the NASDAQ data set in dependency of different choices

for the regularization parameter/sparsity level (to allow for joint display, we use the ℓ2-

norm as measure of sparsity on the horizontal axis). Left panel: τ = 10−4, Right panel:

τ = 5 · 10−3, cf. (S1.3). The results of ’Thres’ and ’IHT’ are essentially indistinguishable

and are hence not plotted separately for better readability. Note that points that are

too far away from each other with respect to the horizontal axis are not connected by

lines.

ing to different choices of the regularization parameter respectively sparsity

level and two values of τ in (S1.3). One observes that promoting sparsity

is beneficial in general. The regularization-based methods ’L2-ERM’ and

’weighted L1’ differ from ’IHT’ and ’Thres’ (whose results are essentially not

distinguishable) in that the former two yield comparatively smooth curves.

’L2-ERM’ achieves the best Sharpe ratios for a wide range of ℓ2-norms for

both values of τ .
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S1.5 Quantum State Tomography

We now turn to the matrix case of §5. The setup of this subsection is based

on model (5.17), where the measurements {Xi}ni=1 are chosen uniformly at

random from the (orthogonal) Pauli basis of Hm (here, m = 2q for some

integer q ≥ 1). For q = 1, the Pauli basis of H2 is given by the following

four matrices:

P1,1 =









1 0

0 1









, P1,2 =









0 −
√
−1

√
−1 0









, P1,3 =









1 0

0 −1









, P1,4 =









0 1

1 0









.

For q > 1, the Pauli basis {Pq,1, . . . , Pq,m2} is constructed as the q-fold

tensor product of {P1,1, P1,2, P1,3, P1,4}. The set of measurements is then

given by {Pq,i, i ∈ I}, where I ⊆ {1, . . . , m2}, |I| = n, is chosen uniformly

at random. Pauli measurements are commonly used in quantum state to-

mography in order to recover the density matrix of a quantum state (see

§5). In Gross et al. (2010), it is shown that if B∗ is of low rank, it can

be estimated accurately from few such random measurements by using nu-

clear norm regularization; the constraint B∗ ∈ ∆m is not taken advantage

of. Proposition 6 asserts that this constraint alone is well-suited for recov-

ering matrices of low rank as long as the measurements satisfy a restricted

strong convexity condition (Condition 2). It is shown in Liu (2011) that

Pauli measurements satisfy the matrix RIP condition of Recht, Fazel, and

Parillo (2010) as long as n & mr log6(m). Since the matrix RIP condition

is stronger than Condition 2, Proposition 6 applies here. The requirement
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on n is near-optimal: up to a polylogarithmic factor, it equals the “degrees

of freedom” of the problem given by d = mr − r(r − 1)/2 & mr, which is

the dimension of the space T(B∗) ⊂ Hm (cf. Definition 1 in §S7 below).

Noiseless measurements

In the first numerical study, we work with noiseless measurements. We fix

m = 27 and let r ∈ {1, 2, 5, 10} vary. The target is generated randomly as

B∗ = AA⊤, where A is an m× r matrix, whose entries are drawn i.i.d. from

N(0, 1). The number of random Pauli measurements n are varied from 2d

to 5d in steps of 0.5d, where d equals the ’degrees of freedom’ as defined

above. For each possible combination of n and r, 50 trials are performed.

The following three approaches for recovering B∗ are compared.

’Feasible set’: counterpart to ERM in the noiseless case: finding a point in

D(0) = {B ∈ ∆m : X ⋆(X (B)−y) = 0} = {B ∈ ∆m : X (B) = y}, (S1.4)

where the second identity follows from the fact that the Pauli matrices are

unitary.

’L2’: counterpart to (4.3)/(4.4) in the noiseless case, which amounts to

maximizing the Schatten ℓ2-norm (i.e., Frobenius norm) over (S1.4). As

initial iterate for Algorithm 1, the output from ’feasible set’ is used.
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’IHT’: The matrix version of iterative hard thresholding under simplex con-

straints as proposed by Kyrillidis et al. (2013). Under the assumption

that the rank of the target is known, one tries to solve directly the rank-

constrained optimization problem minB∈∆m
0
(r) Rn(B) using projected gra-

dient descent. Projections onto ∆m
0 (r) can be efficiently computed using

partial eigenvalue decompositions. We use a constant step size as in Kyril-

lidis et al. (2013). The output of ’feasible set’ is used as initial iterate.

Results. Figure 6 shows a clear benefit of using ℓ2-norm maximization on

top of solving the feasibility problem. For ’L2’, 2.5d measurements suffice

to obtain highly accurate solutions, while ’feasible set’ requires 3.5d up to

5d measurements. The performance of IHT falls in between the two other

approaches even though the knowledge of r provides an extra advantage.

Noisy measurements

We maintain the setup of the previous paragraph, but the measurements

are now subject to additive Gaussian noise with standard deviation σ = 0.1.

In order to adjust for the increased difficulty of the problem, the range for

the number of measurements n is multiplied by the factor log(m/r). Our

comparison covers the following methods.

’ERM’: Empirical risk minimization, the counterpart to ’Feasible set’ above.
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Figure 6: Boxplots of the errors ‖Θ̂− B∗‖2 (50 trials) in recovering B∗ with respect to

the Frobenius norm (log10 scale) in dependence of the number of Pauli measurements

(d = ’degrees of freedom’). Here, Θ̂ is representative for any of the three estimators

under consideration.

’Thres’: ’ERM’ and eigenvalue thresholding, outlined below Proposition 6.

’L2-ERM’: Regularized ERM with negative ℓ2-regularization (5.4). A grid

search over 20 different values of the regularization parameter λ is per-

formed analogously to the vector case.

’weighted L1’: The approach in (5.3). The grid search for λ follows the

vector case.

’IHT’: As in the noiseless case.
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Figure 7: Bottom: Average estimation errors ‖Θ̂ − B∗‖2 over 50 trials (log10-scale) in

dependence of the number of measurements (d = ’degrees of freedom’). Top: Relative

frequency of rank detection, i.e., of the event {‖Θ̂‖0 = ‖B∗‖0}; for ’IHT’ this relative

frequency is always one, which is not shown in the plots. Here, Θ̂ is representative for

any of the estimators under consideration.

’L1’: In analogy to the counterpart (3.3) in the vector case, the unit

trace constraint is dropped, and a nuclear-norm regularized empirical risk

is minimized over the positive semidefinite cone. The result is then di-
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vided by its trace. The regularization parameter is fixed to a single value

λ0 = 2σ
√

log(m)/n according to the literature (Negahban and Wainwright,

2011; Koltchinskii, 2011).

For ’Thres’, ’L2-ERM’ and other methods for which multiple values of a

hyperparameter are considered, hyperparameter selection is done by mini-

mizing a RIC-type criterion. Specifically, for some estimate Θ̂λ of B∗, we

use

sel(λ) = Rn(Θ̂λ) +
Cσ2 log(m2)‖Θ̂λ‖0

n

The use of this criterion is justified in light of results in Klopp (2011) on

trace regression with rank penalization. We have experimented with differ-

ent choices of the constant C. Satisfactory results are achieved for C = 26,

which is the choice underlying the results displayed in Figure 7. Once λ has

been determined, the matrix of eigenvectors is fixed and the eigenvalues are

re-fitted via least squares similar to (5.3).

Results. For the sake of brevity, we only display the results for r = 2, 10

in Figures 7 and 8. ’IHT’ achieves best performance even though the error

curve of ’L2’ is essentially identical for r = 2. Figure 8 indicates that

’IHT’ is sensitive to the choice of r: over-specification by a factor of two
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can lead to a performance that is significantly worse than ’Thres’ and only

slightly better than ’ERM’. Both ’L2’ and ’Thres’ are adaptive to the rank

which is correctly recovered in almost all cases. In the matrix case, ’L2’

improves over ’Thres’ (as opposed to the vector case), possibly because for

’Thres’ the eigenvectors remain unchanged compared to ’ERM’, only the

eigenvalues are modified. The performance of ’L1’ clearly falls short of

all other competitors, which underpins the importance of the unit trace

constraint.
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Figure 8: Sensitivity of ’IHT’ w.r.t. the choice of r. The dashed-dotted and dashed lines

show the average estimation errors when ’IHT’ is run with 1.5r and 2r, respectively. The

results of ’Thres’ and ’ERM’ serve as reference.

S2 Proof of Proposition 1

By definition of β̂, we have

Rn(β̂) ≤ Rn(β
∗) =⇒ {Rn(β̂)−R(β̂)}+R(β̂) ≤ {Rn(β

∗)−R(β∗)}+R(β∗).
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The right hand side in turn implies that

R(β̂) ≤ R(β∗) + sup
β∈Bp

1
(‖β̂−β∗‖1;β∗)

| {Rn(β)− {Rn(β
∗)} − {R(β)− R(β∗)}︸ ︷︷ ︸
ψn(β)

|

= R(β∗) + Ψn(‖β̂ − β∗‖1)

≤ R(β∗) + Ψn(2),

where the last inequality follows from β̂ ∈ ∆p, β∗ ∈ ∆p and the triangle

inequality.

We now turn to β̃λ. Consider the curve (segment) γ(t) = β∗ + t(β̃λ − β∗)

for t ∈ [0, 1] and the function g(t) = Rn(β
∗ + t(β̃λ − β∗)). Then g =

Rn ◦γ is convex, as it is the composition of an affine and a convex function.

Consequently, the derivative

g′(t) = ∇Rn(β
∗ + t(β̃λ − β∗))⊤(β̃λ − β∗)

is non-decreasing. As a result, we have

Rn(β̃λ)−Rn(β
∗) =

∫ 1

0

∇Rn(β
∗ + t(β̃λ − β∗))⊤(β̃λ − β∗) dt

≤ ∇Rn(β̃λ)
⊤(β̃λ − β∗)

≤ ‖∇Rn(β̃λ)‖∞‖β̃λ − β∗‖1

≤ λ‖β̃λ − β∗‖1,

where the first inequality follows from the definition and monotonicity

property of g′, the second inequality is Hölder’s inequality and the last
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inequality follows from the definition of β̃λ. Given the above bound on

Rn(β̃λ)−Rn(β
∗), the proof can be completed by following the scheme used

for β̂.

S3 Proof of Proposition 2

Invoking the ∆-RSC condition, we have

Rn(β̂)−Rn(β
∗)−∇Rn(β

∗)⊤(β̂ − β∗) ≥ κ‖β̂ − β∗‖22,

On the other hand, by the definition of β̂

Rn(β̂)−Rn(β
∗)−∇Rn(β

∗)⊤(β̂ − β∗) ≤ −∇Rn(β
∗)⊤(β̂ − β∗)

≤ ‖∇Rn(β
∗)‖∞‖β̂ − β∗‖1.

Combining these two bounds, we obtain that

κ‖β̂ − β∗‖22 ≤ ‖∇Rn(β
∗)‖∞‖β̂ − β∗‖1.

This implies that

‖β̂ − β∗‖22 ≤
‖∇Rn(β

∗)‖2∞
κ2

(
‖β̂ − β∗‖1
‖β̂ − β∗‖2

)2

≤ 4sλ2
∗

κ2
,

‖β̂ − β∗‖1 ≤
‖∇Rn(β

∗)‖∞
κ

(
‖β̂ − β∗‖1
‖β̂ − β∗‖2

)2

≤ 4sλ∗

κ
,
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where λ∗ = ‖∇Rn(β
∗)‖∞. The rightmost inequalities follow from the fact

that β̂ − β∗ ∈ C∆(s) and hence ‖β̂S(β∗)c‖1 ≤ ‖β̂S(β∗) − β∗
S(β∗)‖1 so that

‖β̂ − β∗‖1 = ‖β̂S(β∗) − β∗
S(β∗)‖1 + ‖β̂S(β∗)c‖1

≤ 2‖β̂S(β∗) − β∗
S(β∗)‖1 ≤ 2

√
s‖β̂S(β∗) − β∗

S(β∗)‖2.

We now turn to β̃λ. Starting from

Rn(β̃λ)− Rn(β
∗)−∇Rn(β

∗)⊤(β̃λ − β∗) ≥ κ‖β̃λ − β∗‖22,

and using the upper bound on Rn(β̃λ)− Rn(β
∗) as derived in the proof of

Proposition 1, we obtain

κ‖β̃λ − β∗‖22 ≤ ‖∇Rn(β̃λ)‖∞‖β̃λ − β∗‖1 + ‖∇Rn(β
∗)‖∞‖β̃λ − β∗‖1

≤ (λ+ λ∗)‖β̃λ − β∗‖1,

Arguing similarly as for β̂, it follows that

‖β̃λ − β∗‖22 ≤
4s(λ+ λ∗)

2

κ2
, ‖β̃λ − β∗‖1 ≤

4s(λ+ λ∗)

κ
.

S4 Proof of Proposition 3

We fix notation first. We let S = S(β∗), Y = (Yi)
n
i=1 and ε = (εi)

n
i=1.

The matrix X ∈ Rn×p has the {Xi}ni=1 as it rows, and XS, XSc denote the

column submatrices corresponding to S respectively Sc. Accordingly, we let

ΣSS = 1
n
X

⊤
S XS, ΣScSc = 1

n
X

⊤
ScXSc and ΣScS = 1

n
X

⊤
ScXS . We recall that
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w = (wj)
p
j=1 with wj = 1/β̂j, j = 1, . . . , p, so that ‖wS‖∞ = 1/minj∈S β̂j .

Moreover, we define

φS = min
‖v‖2=1

v⊤ΣSSv, ιS = ‖ΣScSΣ
−1
SS‖∞, ̺S,w =

1⊤Σ−1
SS

wS

‖wS‖∞

1⊤Σ−1
SS1

, (S4.1)

where for a matrix M , ‖M‖∞ = max‖v‖∞≤1‖Mv‖∞. Consider the optimiza-

tion problems

(◦) min
β∈∆p

‖Y −Xβ‖22/(2n) + λ 〈w, β〉 ,

(•) min
β:1⊤βS=1, βSc=0

‖Y −Xβ‖22/(2n) + λ 〈w, β〉 .
(S4.2)

Let β̄ denote the minimizer of (•). In the sequel, it will be verified that

under the stated conditions β̄ also minimizes (◦). It follows from the KKT

conditions of (◦) that it suffices to show that

I) β̄S ≻ 0,

II)
1

n
X

⊤
Sc(XSβ̄S −Y) ≻ µ̄1− λwSc, µ̄ := −1⊤Σ−1

SSX
⊤
S ε/n

1⊤Σ−1
SS1︸ ︷︷ ︸

=:µ̄0

+λ‖wS‖∞̺S,w,

(S4.3)

where ≻,� etc. denote component-wise inequality and µ̄ is the optimal

value of the Lagrangian multiplier associated with the constraint 1⊤βS = 1

in (•). Direct calculations show that I) holds if

b∗min > Tε + λ‖wS‖∞‖Σ−1
SS‖∞(1 + ̺S,w),

Tε := ‖Σ−1
SSX

⊤
S ε/n‖∞ + ‖µ̄0Σ

−1
SS1‖∞.

(S4.4)
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Let P denote the projection onto the column space of XS. Re-arranging

II) in (S4.3) then yields

λwSc ≻ λΣScSΣ
−1

SSwS + λ‖wS‖∞̺S,w(1− ΣScSΣ
−1

SS1) + µ̄0(1−ΣScSΣ
−1

SS1) +X
⊤

Sc(I −P)ε/n.

By upper bounding the right hand side component-wise, we obtain that

II) in (S4.3) is implied by

λmin
j∈Sc

wj > 2λmax(̺S,w, 1)(1 + ιS)‖wS‖∞ + T ′
ε,

T ′
ε := ‖µ̄0(1− ΣScSΣ

−1
SS1) +X

⊤
Sc(I − P)ε/n‖∞,

(S4.5)

with ιS as in (S4.1). Consider now the event

E = {T ′
ε ≤ λmax(̺S,w, 1)(1 + ιS)‖wS‖∞}.

Note that

E ⊇ {T ′′
ε ≤ λ‖wS‖∞}, T ′′

ε := |µ̄0|+ ‖X⊤
Sc(I −P)ε/n‖∞. (S4.6)

Inserting λ = λ0‖wS‖∞ into (S4.4) and (S4.6) with λ0 still to be determined,

we obtain the events

{b∗min > Tε + λ0‖Σ−1
SS‖∞(1 + ̺S,w)}, {T ′′

ε ≤ λ0}. (S4.7)

(A) Regarding T ′′
ε , observe that from the definition of µ̄0 in (S4.3), we get

µ̄0 ∼ N(0, σ
2

n
{1⊤Σ−1

SS1}−1). Indeed, using that 1
n

∑n
i=1X

2
ij = 1 ∀j by as-

sumption, which implies that tr(ΣSS) = s, one shows that {1⊤Σ−1
SS1}−1 ≤

1
s
max‖v‖2≤1 v

⊤ΣSSv ≤ 1
s
tr(ΣSS) = 1. Likewise, we note that each com-

ponent of X⊤
Sc(I − P)ε/n is a Gaussian random variable with variance at
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most σ2/n. Applying a standard maximal inequality for finite collections

of Gaussian random variables (cf., e.g., Appendix A in Slawski and Hein

(2013)), choosing λ0 ≥ (1 + η)
√
2 log(p)/n for η ≥ 0 yields that the event

{T ′′
ε ≤ λ0} in (S4.7) holds with probability at least 1− 2p−η

2

.

(B) We now turn to the first event in (S4.7) which entails closer exam-

ination of Tε in (S4.4). First, each component of Σ−1
SSX

⊤
S ε/n is a Gaussian

random variable with variance at most φ−1
S σ2/n, where φS is given in (S4.1).

Second, using that ‖Σ−1
SS1‖∞ ≤ ‖Σ−1

SS1‖2 = (1⊤Σ−2
SS1)

1/2 and further that

(1⊤Σ−2
SS1/1

⊤Σ−1
SS1)

1/2 ≤ φ
−1/2
S , we obtain that the second term in Tε is

distributed as the absolute value of a Gaussian random variable with vari-

ance at most φ−1
S σ2/n. Invoking the maximal inequality as used in the

above paragraph (A), we conclude that the event {Tε ≤ φ
−1/2
S λ0} holds

with probability at least 1− 2p−η
2

. Combining this with (S4.7) and (S4.4),

we obtain that the event {β̄S ≻ 0} in (S4.3) holds with probability at least

1− 4p−η
2

if b∗min ≥ λ0(φ
−1/2
S + ‖Σ−1

SS‖∞(1 + ̺S,w)).

(C) Lastly, we inspect the condition in (S4.5) conditional on the event

E specified below (S4.5). Substituting ‖wS‖∞ = 1/minj∈S β̂j , minj∈Sc wj =

1/maxj∈Sc β̂j and re-arranging yields the condition

min
j∈S

β̂j > 3max(̺S,w, 1)(1 + ιS)max
j∈Sc

β̂j .

Combining paragraphs (A), (B) and (C), we conclude that under the stated
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conditions, I) and II) in (S4.3) hold so that S(β̂wλ ) = S(β̄) = S(β∗). This

completes the proof.

S5 Proof of Proposition 4

The optimization problem under consideration is equivalent to the following

one:

min
β∈∆n

(
1

n
− λ

)
‖β‖22 −

2

n
Z⊤β. (S5.1)

For λ ≥ 1/n, the objective becomes concave. If λ > 1/n, the objective is

strictly concave and the unique minimum is attained at one of the vertices

{ei}ni=1 of ∆
n. Specifically, the minimum is attained for any ei s.t. 〈Z, ei〉 =

zi = max1≤k≤n zk. Since we have assumed that z(1) > . . . > z(n), such vector

is unique. If λ = 1/n, we have

β̂ℓ2λ ∈ conv

{
ei : zi = max

1≤k≤n
zk

}
.

By the same argument as above, that convex hull equals the unique vector

ei s.t. zi = max1≤k≤n zk.

For 0 ≤ λ < 1/n, the problem becomes strictly convex. With γ = 1 − nλ,

(S5.1) is equivalent to

min
β∈∆n

γ‖β‖22 − 2Z⊤β.
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Re-arranging terms, this can be seen to be equivalent to

min
β∈∆n

‖β − Z/γ‖22,

i.e., β̂ℓ2λ = Π∆n(Z/γ), with Π∆n denoting the Euclidean projection onto ∆n.

Suppose that the realizations z = (zi)
n
i=1 are arranged such that

z1 = β∗
1+ε1 > z2 = β∗

2+ε2 > . . . > zs = β∗
s+εs > zs+1 = εs+1 > . . . > zp = εp.

Under the event {b∗min = mini∈S(β∗) |β∗
i | ≥ 2max1≤i≤n |εi|}, this can be

assumed without loss of generality. The projection of Z/γ onto ∆n can

then can be expressed as (cf. Kyrillidis et al. (2013))

(Π∆n(Z/γ))i = max{zi/γ − τ, 0}, where τ =
1

q

(
q∑

i=1

(zi/γ)− 1

)
,

and

q = max

{
k : (zk/γ) >

1

k

(
k∑

i=1

(zi/γ)− 1

)}
.

In order to establish that S(β̂ℓ2λ ) = S(β∗), it remains to be shown that under

the given conditions on b∗min and λ respectively γ, the following properties
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(a) and (b) hold true:

(a)
β∗
s + εs
γ

>
1

γ

β∗
1 + . . .+ β∗

s − γ

s
+

1

γ

ε1 + . . .+ εs
s

⇐⇒ β∗
s + εs
γ

>
1

s

1− γ

γ
+

1

γ

ε1 + . . .+ εs
s

⇐⇒ β∗
s >

1

s
({1− γ} − {ε1 + . . .+ εs − sεs}).

(b)
εs+1

γ
<

1

γ

1− γ

s+ 1
+

1

γ

ε1 + . . .+ εs + εs+1

s+ 1
.

Re-arranging (b), we find that

nλ = (1− γ) > sεs+1 − (ε1 + . . .+ εs),

which is implied by

nλ > 2s max
1≤i≤n

|εi|.

Likewise, the inequality in (a) holds as long as

β∗
s >

nλ

s
+ 2max

i
|εi|.

This concludes the proof.

S6 Proof of Proposition 5

We provide a proof for problem (4.3) restated in (S6.1) below; the proof for

problem (4.4) follows similarly. Consider the optimization problem

min
β∈∆p

Rn(β)− λ ‖β‖22 . (S6.1)
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The subproblem solved in each iteration in the case of (S6.1) is given by

min
β∈∆p

Rn(β)− 2λ〈βk, β − βk〉 (S6.2)

First note that the constraint sets of (S6.1) and (S6.2) are compact

and the objectives are continuous. Thus, by Weierstrass’ theorem, these

problems have a minimizer, and the minima are finite.

The current iterate βk is always feasible for (S6.2). Hence the optimal

value of (S6.2) is either Rn(β
k) (in which case the algorithm terminates) or

strictly smaller than Rn(β
k),

Rn(β
k+1)− 2λ〈βk, βk+1 − βk〉 < Rn(β

k). (S6.3)

On the other hand, by convexity of λ ‖β‖22, we have

f(βk+1) = Rn(β
k+1)− λ‖βk+1‖22 ≤ Rn(β

k+1)− λ‖βk‖22 − 2λ〈βk, βk+1 − βk〉
(S6.3)
< Rn(β

k)− λ‖βk‖22

= f(βk).

This establishes the strict monotonicity of the iterates in terms of the ob-

jective f of the original problem (S6.1) until convergence. It is clear that

all the elements of the sequence {βk} are feasible for (S6.1) and satisfy

f ∗ ≤ f(βk), k ≥ 0, where f ∗ is the global minimum of (S6.1). Since

{f(βk)} is a strictly decreasing sequence bounded below by a finite f ∗, the
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sequence converges to a limit

f̄ = lim
k→∞

f(βk).

Since all the elements of the sequence {βk} are contained in ∆p, a

compact set, there exists a subsequence {βki} converging to an element

β̄ ∈ ∆p. The sequence {f(βki)} is a subsequence of {f(βk)} that is shown

to converge to the limit f̄ ; hence the subsequence {f(βki)} also converges

to the same limit

lim
k→∞

f(βki) = f̄ .

Let us define φβ̄(β) = Rn(β) − 2λ
〈
β̄, β − β̄

〉
. We now argue that β̄ ∈

argminβ∈∆p φβ̄(β). To see this note that β̄ is feasible for this problem and

hence minβ∈∆p φβ̄(β) ≤ f(β̄) = f̄ . Assume for the sake of contradiction

that a minimizer β̌ of this problem has a strictly smaller objective,

φβ̄(β̌) = Rn(β̌)− 2λ
〈
β̄, β̌ − β̄

〉
< f̄.

Similar to the argument above regarding strict descent, we can show that

f(β̌) < f̄,

which contradicts the fact that the sequence {f(βk)} converges to the limit

f̄ . Thus, we must have,

β̄ ∈ argmin
β∈∆p

Rn(β)− 2λ
〈
β̄, β − β̄

〉
.



Ping Li, Syama Sundar Rangapuram, and Martin Slawski

The first-order optimality condition for β̄ then implies

−∇Rn(β̄) + 2λβ̄ ∈ N∆p(β̄),

where N∆p(β̄) is the normal cone of ∆p at β̄ (see, e.g., Rockafellar and Wets

(2004) for a definition). Note that this is exactly the first-order optimality

condition for the original problem (S6.1). Finally note that the argument

is true for any subsequence {βki} and hence each of such subsequences and

consequently the original sequence {βk} converge to the same limit β̄, which

has been shown to satisfy the required optimality condition.

S7 Proof of Proposition 6

Before providing a proof of Proposition 5, we first provide a precise defini-

tion of the linear spaces T(B), B ∈ B
m
0 (r) ⊂ Hm.

Definition 1. Let B ∈ B
m
0 (r) have the spectral decomposition B =

UΛUH , where

U =




U‖ U⊥

m× r m× (m − r)







Λr 0r×(m−r)

0(m−r)×r 0(m−r)×(m−r)




for Λr real and diagonal. We then define

T(B) = {M ∈ H
m : M = U‖Γ + ΓHUH

‖ , Γ ∈ C
r×m}.
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It is immediate from the definition of T(B) that its orthogonal comple-

ment is given by

T(B)⊥ = {M ∈ H
m : M = U⊥AU

H
⊥ , A ∈ H

m−r}.

We first show that Φ̂ = B̂ − B∗ ∈ K∆(r), where we recall that

K∆(r) = {Φ ∈ H
m : ∃B ∈ B

m
0 (r) s.t.

tr(ΠT(B)⊥(Φ)) = − tr(ΠT(B)Φ) and ΠT(B)⊥(Φ) � 0}.

Define the shortcuts Φ̂T = ΠT(B∗)Φ̂ and Φ̂T⊥ = ΠT(B∗)⊥Φ̂. Since B̂ is feasi-

ble, it must hold that tr(Φ̂) = 0 and thus tr(Φ̂T⊥) = − tr(Φ̂T). Since B̂ must

also be positive definite, it must hold that tr(B̂W ) ≥ 0 for all W ∈ T(B∗)⊥,

W � 0. We have

tr(B̂W ) = tr((B∗ + Φ̂)W ) = tr(Φ̂T⊥W ) ∀W ∈ T(B∗)⊥,

since B∗ ∈ T(B∗). We conclude that tr(Φ̂T⊥W ) ≥ 0 for all W ∈ T(B∗)⊥,

W � 0, and thus Φ̂T⊥ � 0. Altogether, we have shown that Φ̂ ∈ K∆(r).

Since B̂ is a minimizer, we have

1

n
‖Y − X (B̂)‖22 ≤

1

n
‖Y − X (B∗)‖22
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After re-arranging terms, we obtain

1

n
‖X (B∗ − B̂)‖22 ≤

2

n

〈
ε,X (B̂ − B∗)

〉

=
2

n

〈
X ⋆(ε), B̂ − B∗

〉

≤ 2‖X ⋆(ε)/n‖∞‖B̂ − B∗‖1

= λ∗‖B̂ − B∗‖1.

where X ⋆ is the adjoint of X . By ∆-RSC, we now have

1

n
‖X (B∗ − B̂)‖22 ≥ κ‖B∗ − B̂‖22.

Combining this with the preceding upper bound, we hence obtain

‖B̂ − B∗‖22 ≤
λ2
∗

κ2

(
‖B̂ − B∗‖1
‖B̂ − B∗‖2

)2

≤ 8rλ2
∗

κ2
,

‖B̂ − B∗‖1 ≤
λ∗

κ

(
‖B̂ − B∗‖1
‖B̂ − B∗‖2

)2

≤ 8rλ∗

κ
,

The rightmost inequalities follow from the fact that B̂ − B∗ = Φ̂ ∈ K∆(r)

and hence ‖Φ̂T⊥‖1 ≤ ‖Φ̂T‖1 so that

‖B̂ − B∗‖1 = ‖Φ̂‖1 = ‖Φ̂T‖1 + ‖Φ̂T⊥‖1

≤ 2‖Φ̂T‖1

≤ 2
√
2r‖Φ̂T‖2 ≤ 2

√
2r‖B̂ −B∗‖2,

where for the third inequality, we have used that ‖M‖0 ≤ 2r for all M ∈

T(B∗).



S8. PROOF OF PROPOSITION 7

The bound for B̃λ can be established by combining the proof scheme used

for β̃λ with the scheme used for B̂ and is thus omitted.

S8 Proof of Proposition 7

We start by expanding the objective function of the optimization problem

under consideration. Define Sm := Hm ∩ Rm×m which is a subspace of Hm

that is isometrically isomorphic (w.r.t. the standard inner product) to R
δm ,

δm = m(m+ 1)/2 under the isometry X (5.22). Therefore,

1

n
‖Y − X (B)‖22 =

1

n
‖X ⋆(Y)− B‖22

=
1

n
‖B∗ + E −B‖22, E := X ⋆(ε),

=
1

n
‖Υ−B‖22, Υ := B∗ + E. (S8.1)

It follows directly from the definition of X ⋆ that the symmetric random

matrix E = (εjk)1≤j,k≤m is distributed according to the Gaussian orthogonal

ensemble (GOE, see e.g. Tao (2012)), i.e., E ∼ GOE(m), where

GOE(m) = {X = (xjk)1≤j,k≤m, {xjj}mj=1
i.i.d.∼ N(0, 1/m),

{xjk = xkj}1≤j<k≤m i.i.d.∼ N(0, 1/2m)}.

In virtue of (S8.1), we have

min
B∈∆m

1

n
‖Y −X (B)‖22 = min

B∈∆m

{
(1/n− λ)‖B‖22 −

2

n
〈Υ, B〉

}
+

1

n
‖Υ‖22.
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At this point, the proof parallels the proof of Proposition 4. We see that

for λ ≥ 1/n, B̂ℓ2
λ = u1u

⊤
1 , where u1 is the eigenvector of Υ corresponding to

its largest eigenvalue. This follows from the duality of the Schatten ℓ1/ℓ∞

norms and the fact that for all feasible B, it holds that ‖B‖22 ≤ ‖B‖21 = 1

with equality if and only if B has rank one. Conversely, if 0 ≤ λ < 1/n,

we define γ := 1 − nλ > 0 and deduce that the optimization problem in

the previous display is equivalent to minB∈∆m‖Υ/γ − B‖22 with minimizer

B̂ℓ2
λ = Udiag({φ̂j}mj=1)U

⊤, where φ̂ = Π∆m(υ/γ) with υ = (υj)
m
j=1 denoting

the eigenvalues of Υ (in decreasing order) corresponding to the eigenvectors

in U . We now prove the last claim of the proposition, combining the proof

of Proposition 4 for the vector case with concentration results by Peng

(2012) for the spectrum of the random matrix Υ = B∗ +E, which are here

rephrased as follows. Define

φ̃∗
j =





φ∗
j +

σ2

φ∗j
if σ < φ∗

j ≤ 1

2σ if 0 ≤ φ∗
j ≤ σ, j = 1, . . . , m,

where we recall that the {φ∗
j}mj=1 denote the ordered eigenvalues of B∗ and

σ2 is the variance of the noise (up to a scaling factor of 1/m). We then

have

P(υj ≥ φ̃∗
j + t) ≤ C1 exp(−c1mt2/σ2), j = 1, . . . , m.
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Furthermore, let r0 denote the number of eigenvalues of B∗ that are larger

than σ. Then, there is a constant c0 > 0 so that if r ≤ c0m, it holds that

P(υj ≤ φ̃∗
j − t− 2σ) ≤ exp(−c2m/σ2) + C ′

2 exp(−c′2mt2/σ2), j = 1, . . . , r0,

where c1, c2, C1, C2, C
′
2 are positive constants.

It needs to be shown that for a suitable choice of λ and for φ∗
r large enough,

it holds that ‖B̂ℓ2
λ ‖0 = ‖B∗‖0 = r with high probability as specified in the

proposition. This is the case if and only if φ̂ = Π∆m(υ/γ) has precisely r

non-zero entries.

a) ‖φ̂‖0 ≥ r:

It follows from the proof in the vector case that a) is satisfied if

υr
γ

>
υ1 + . . .+ υr − γ

rγ

Write ξj = υj − φ̃∗
j , bj = φ̃∗

j − φ∗
j , j = 1, . . . , m, and ξ = max1≤j≤m ξj ,

ξ = min1≤j≤r0 ξj. Then the above condition can equivalently be expressed

as

υr >
1

r

{
r∑

j=1

(φ̃∗
j + ξj)− γ

}

=
1

r

{
r∑

j=1

(bj + ξj) + (1− γ)

}
, since

r∑

j=1

φ∗
j = 1

=
1

r

r∑

j=1

(bj + ξj) +
nλ

r
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As φ∗
j ≥ 5σ for j = 1, . . . , r by assumption, we have r = r0 and

1

r

r∑

j=1

(bj + ξj) ≤ σ + ξ.

Since υr ≥ φ∗
r + ξ, we obtain the sufficient condition

(A) φ∗
r > −ξ + σ + ξ +

nλ

r
.

b) ‖φ̂‖0 ≤ r

In analogy to a), we start with the condition

υr+1

γ
<

υ1 + . . .+ υr + υr+1 − γ

(r + 1)γ

After canceling γ on both sides, we lower bound the right hand side as

follows:

υ1 + . . .+ υr + υr+1 − γ

r + 1
≥

(1− γ) + υr+1 + rξ

r + 1
.

Back-subtituting this lower bound, we obtain the following sufficient con-

dition

(B) λ >
r

n
(υr+1 − ξ).

Consider the following two events:

E1 : {ξ > σ}, E2 : {ξ < −3σ}

The concentration results stated above yield that P(E1∪E2) ≤ C exp(−cm)

for constants c, C > 0. Note that conditional on the complement of E1∪E2,
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υr+1 ≤ 3σ so that condition (B) is fulfilled as long as λ > 6σr/n. Likewise,

condition (A) is fulfilled as long as φ∗
r > 5σ + nλ/r.
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