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Abstract: This study introduces a penalized nonparametric maximum likelihood

estimation of the log-hazard function for analyzing right-censored data. Smoothing

splines are employed for a smooth estimation. Our main discovery is a functional

Bahadur representation, which serves as a key tool for nonparametric inferences of

an unknown function. The asymptotic properties of the resulting smoothing-spline

estimator of the unknown log-hazard function are established under regularity con-

ditions. Moreover, we provide a local confidence interval for this function, as well

as local and global likelihood ratio tests. We also discuss the asymptotic efficiency

of the estimator. The theoretical results are validated using extensive simulation

studies. Lastly, we demonstrate the estimator by applying it to a real data set.
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1. Introduction

In a survival analysis, the outcome variable of interest is the time till the

occurrence of an event, such as the occurrence of a disease, death, divorce, and

so on. The time to the event, or survival time, is usually measured in days, weeks

or years, and is typically positive. Censored observations, for which the survival

time is incomplete, are common in medical studies, reliability, and many other

fields related to survival analyses. The most common case is right censoring. To

accommodate censoring, several statistical models and methodologies have been

developed, including parametric, semiparametric, and nonparametric methods,

see Kalbfleisch and Prentice (2011) for an overview.

Parametric approaches assume that the underlying distributions of the times

to an event are known. For example, the exponential, lognormal, and Weibull dis-

tributions are among those commonly used. Parametric methods are appealing to
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practitioners owing to their convenience and ease of interpretation (Johnson and

Kotz (1970); Mann, Schafer and Singpurwalla (1974); Lawless (1982); Kalbfleisch

and Prentice (2011)). The most extensively used semiparametric model for the

analysis of survival data is Cox’s proportional-hazards model. This model as-

sumes that the hazard function of the survival time is multiplicatively related

to an unknown baseline function and the covariates; see Cox (1972, 1975), Cox

and Oakes (1984), Lin and Wei (1989), Lin and Ying (1994), Chen (2004), and

Chen et al. (2010). In contrast to parametric models, Cox’s model makes no

assumption on the shape of the baseline hazard function, and provides easy-

to-interpret information on the relationship between the hazard function of the

survival time and the covariates. The parameter for the covariate effect in Cox’s

model is usually estimated by maximizing the partial likelihood, and its large-

sample properties are justified well by the martingale theory; see Andersen and

Gill (1982), Kosorok (2008), and Fleming and Harrington (2011). In analyses of

survival data, important alternative semiparametric models to Cox’s model are

the accelerated failure time (AFT) model and the transformation models. These

models assume the logarithm of the survival time or an unknown, but mono-

tonic transformation of the survival time is linearly related to the covariates; see

Kalbfleisch and Prentice (2011), Cox and Oakes (1984), Wei (1992), Chen, Jin

and Ying (2002), and Zeng and Lin (2007a,b). Inference methods for the AFT

model and transformation models have been studied thoroughly in the literature;

see Buckley and James (1979), Prentice (1978), Ritov (1990), Tsiatis (1990), Wei,

Ying and Lin (1990), Lai and Ying (1991a,b), Lin, Wei and Ying (1993), Lin and

Chen (2013), and Zeng, Chen and Ibrahim (2009). The additive hazards model

has also been found to be useful in modeling survival data; see Breslow and Day

(1987), Lin and Ying (1994), and Jiang and Zhou (2007).

Parametric and semiparametric methods rely on distributional or model as-

sumptions. However, the underlying distribution or model is often unknown. As

a result, inferences based on parametric and semiparametric models may suf-

fer from mis-specification. In contrast, the nonparametric inferences proposed

in the literature do not make assumptions about the unknown distribution or

an actual model form, see Cox (2018) for an overview. Such inferences focus

on the hazard rate, survival function, or density function. Furthermore, the

hazard function has a direct relationship with a survival function or a density

function. The well-known Kaplan-Meier estimator (Kaplan and Meier (1958)) is

a nonparametric maximum likelihood estimator (MLE) of an unknown survival

function, and is characterized by self-consistency and asymptotic normality; see
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also Efron (1967), Breslow and Crowley (1974), Lo and Singh (1986), and Chen

and Lo (1997), among many others. Note that some Bahadur-type independent

and identically (i.i.d) representations of the product-limit estimator with right-

censored data can be found in Lo and Singh (1986). However, the discontinuous

nature of the Kaplan-Meier estimator makes inferences complicated. Therefore,

we develop smoothed estimators of the hazard or density function. For cen-

sored data, kernel smoothing and nearest-neighbor smoothing on the time axis

are popular approaches to estimating the density function or hazard function;

see Beran (1981), Tanner and Wong (1983), Dabrowska (1987), Lo, Mack and

Wang (1989), Gray (1992), and Müller and Wang (1994). Penalized likelihood

methods based on smoothing splines have also been proposed in the literature;

see Anderson and Senthilselvan (1980), O’Sullivan (1988), and Rosenberg (1995).

It is known that kernel estimates reflect mostly the local structure of the data,

whereas an estimator of a density or hazard function based on smoothing splines

with a global smoothing parameter enjoys certain global properties (O’Sullivan,

Yandell and Raynor (1986)).

However, to the best of our knowledge, with the exception of some con-

sistency results for the smoothing splines hazard estimate (Cox and O’Sullivan

(1990)), few studies examine the asymptotic properties of the smoothing-spline

estimator of the hazard function. In addition, the existing asymptotic repre-

sentations of the product-limit estimator (Lo and Singh (1986)) or the kernel-

smoothing estimator of the hazard function (Tanner and Wong (1983)) are not

directly applicable to the smoothing-spline estimator. Moreover, nonparamet-

ric inferences for the hazard function are subject to a positive constraint, which

makes the computation complicated. Recently, Shang and Cheng (2013) intro-

duced a novel unified asymptotic framework for inferences of smoothing-spline

estimations, which has broad applications for statistical inferences. In this study,

similarly to Kooperberg, Stone and Truong (1995), we focus on the log-hazard

rate in a nonparametric framework and provide a penalized likelihood estimate

based on smoothing splines. Our major contribution is to establish the asymp-

totic properties of the proposed log-hazard estimator with right-censored data.

The rest of the paper is organized as follows. Some background and pre-

liminaries are given in Section 2. In Section 3, we establish a new functional

Bahadur representation (FBR) in the Sobolev space and study the asymptotic

properties of the resulting smoothing-spline estimator of the log-hazard function.

We discuss the hypothesis test in Section 4 and present our simulation results in

Section 5. The proposed method is applied to a non-Hodgkin’s lymphoma data
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set in Section 6. All technical proofs are deferred to the Supplementary Material.

2. Preliminaries

2.1. Notation and methodology

Here, we introduce the notation that will be used throughout this paper.

Let T be the survival time, C be the censoring time, and τ be the end of the

study. We define the observed time Y = min(T,C) and the censoring indicator

∆ = I(T ≤ C), where I(·) is the indicator function. Moreover, denote λ(t) as

the hazard-rate function of the survival time and g0(t) = log{λ(t)}. The hazard

function λ(t) : [0, τ ] 7→ R is bounded away from 0 and infinity. Without loss

of generality, we consider I .
= [0, τ ] = [0, 1]. Suppose that the observed data

(Yi,∆i), i = 1, . . . , n, are i.i.d copies of (Y,∆). Then, the log-likelihood of g is

ln(g) = −
∫
I
exp{g(t)}Sn(t) dt+

1

n

n∑
i=1

∆ig(Yi),

where Sn(t) = n−1
∑n

i=1 I(Yi ≥ t) is the empirical survival function of Y ; see

O’Sullivan (1988). Let l(g) ≡ E{ln(g)}. A direct calculation yields

l(g) = −
∫
I
exp{g(t)}S(t) dt+

∫
I
exp{g0(t)}g(t)S(t) dt,

where S(t) = Pr(Y ≥ t). Throughout this paper, we suppose the true target

function g0(t) belongs to the mth-order Sobolev space Hm(I), which we abbrevi-

ate to Hm:

Hm(I) = {g : I 7→ R|g(j) is absolutely continuous for j = 0, 1, . . . ,m− 1,

g(m) ∈ L2(I)},

where the constant m > 1/2 and is assumed to be known, g(j) is the j derivative

of g, and L2(I) is the L2 space defined in I. Define J(g, g̃) =
∫
I g

(m)(t)g̃(m)(t) dt.

The penalized likelihood of g(·) is defined as

ln,λ(g) = ln(g)− λ

2
J(g, g),

where J(g, g) is the roughness penalty and λ is the smoothing parameter, which

converges to zero as n→∞.

For the inference of g0(t), we propose using B-splines to approximate g in

ln,λ(g). For the finite closed interval I, we define a partition of I:

0 = t1 = · · · = tm < tm+1 < · · · < tmn+m < tmn+m+1 = · · · = tmn+2m = 1,

which is used to partition the interval [0, 1] into mn + 1 subintervals with knots
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set at I ≡ {ti}mn+2m, and mn = o(nv) for 0 < v < 1/2. Let {Bi,m, 1 ≤ i ≤ qn}
denote the B-spline basis functions, with qn = mn +m. Let Ψm,I (with order m

and knots I) be the linear space spanned by the B-spline functions; that is,

Ψm,I =

{
qn∑
i=1

θiBi,m : θi ∈ R, i = 1, . . . , qn

}
.

It follows from Schumaker (1981) that there exists a smoothing spline gn(t) ∈
Ψm,I such that ‖gn(t)− g0(t)‖∞ = O(n−vm) and ‖g(t)‖∞ ≡ supt∈I |g(t)|. Hence,

we define

ĝn,λ ≡ arg max
g∈Ψm,I

ln,λ(g)

= arg max
g∈Ψm,I

{
ln(g)− λ

2
J(g, g)

}
as the estimator of g0(t). A numerical solution to the above objective function

is available in O’Sullivan (1988) with a fast computation algorithm. Moreover,

a data-driven method based on the AIC is suggested to select the smoothing

parameter λ.

2.2. Reproducing kernel Hilbert space

We now present several useful properties of the reproducing kernel Hilbert

space (RKHS); see Shang and Cheng (2013). Under conditions (C1) and (C3) in

the Appendix, Hm is an RKHS with an inner product

< g, g̃ >λ=

∫
I
g(t)g̃(t) exp{g0(t)}S(t) dt+ λJ(g, g̃),

and norm ‖g‖2λ =< g, g >λ. Furthermore, there exists a positive-definite self-

adjoint operator Wλ : Hm 7→ Hm that satisfies < Wλg, g̃ >λ= λJ(g, g̃) for

any g, g̃ ∈ Hm. Denote V (g, g̃) =
∫
I g(t)g̃(t) exp{g0(t)}S(t) dt. Then, it follows

directly that

< g, g̃ >λ= V (g, g̃)+ < Wλg, g̃ >λ .

Let K(·, ·) be the reproducing kernel of Hm defined on I× I, which is known to

possess the following properties:

(P1) Kt(·) = K(t, ·) and < Kt, g >λ= g(t) for any g in Hm and any t in I.
(P2) There exists a constant cm depending only on m, such that ‖Kt‖λ ≤

cmh
−1/2 for any t ∈ I and h = λ1/(2m). Hence, we have ‖g(t)‖∞ ≤

cmh
−1/2‖g‖λ for any g ∈ Hm.

We denote two positive sequences an and bn as an � bn if limn→∞(an/bn) = c > 0.
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There exists a sequence of eigenfunctions hj ∈ Hm and eigenvalues γj satisfying

the following properties:

(P3) supj∈N ‖hj‖∞ <∞, γj � j2m, where N = {0, 1, . . . }.
(P4) V (hi, hj) = δij , J(hi, hj) = rjδij , where δij is a Kronecker delta; that is,

δij = 1 when i = j, and δij = 0 otherwise.

(P5) For any g ∈ Hm, we have g =
∑∞

j=0 V (g, hj)hj , with convergence in the

‖ · ‖λ-norm.

(P6) For any g ∈ Hm and t ∈ I, we have ‖g‖2λ =
∑∞

j=0 V (g, hj)
2(1 + λγj),

Kt(·) =
∑∞

j=0 hj(t)hj(·)/(1 + λγj), and (Wλhj)(·) = (λγj)/(1 + λγj)hj(·).

Following the arguments in Shang and Cheng (2013, p. 2,613), the eigenvalues

and eigenfunctions can be solved using the following ordinary differential equa-

tions (ODEs):

(−1)mh
(2m)
j (·) = γj exp{g0(·)}S(·)hj(·),

h
(k)
j (0) = h

(k)
j (1) = 0, k = m,m+ 1, . . . , 2m− 1. (2.1)

For ease of presentation, we introduce additional notation related to Fréchet

derivatives. Let Sn(g) and Sn,λ(g) be the Fréchet derivatives of ln(g) and ln,λ(g),

respectively. Similarly, let S(g) and Sλ(g) be the Fréchet derivatives of l(g) and

lλ(g), respectively. Let D be the Fréchet derivative operator and g1, g2, g3 ∈ Hm

be any direction. Then, we have

Dln,λ(g)g1 = −
∫
I
exp{g(t)}g1(t)Sn(t) dt+

1

n

n∑
i=1

∆ig1(Yi)− < Wλg, g1 >λ

=< Sn(g), g1 >λ − < Wλg, g1 >λ

=< Sn,λ(g), g1 >λ,

where Sn(g) = −
∫
I exp{g(t)}KtSn(t) dt+n−1

∑n
i=1 ∆iKYi and Sn,λ(g) = Sn(g)−

Wλg. Moreover,

D2ln,λ(g)g1g2 = −
∫
I
exp{g(t)}g1(t)g2(t)Sn(t) dt− < Wλg1, g2 >λ,

D3ln,λ(g)g1g2g3 = −
∫
I
exp{g(t)}g1(t)g2(t)g3(t)Sn(t) dt.

Furthermore, a direct calculation yields

S(g) = Dl(g) = −
∫
I
exp{g(t)}KtS(t) dt+

∫
I
exp{g0(t)}KtS(t) dt = E{Sn(g)},

as well as Sλ(g) = S(g)−Wλg. In addition,
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D{S(g)g1}g2 = D2l(g)g1g2 = −
∫
I
exp{g(t)}g1(t)g2(t)S(t) dt.

Hence, we obtain the following result:

< DSλ(g0)f, g >λ = < D{S(g0)−Wλg0}f, g >λ
= < DS(g0)f, g >λ − < Wλf, g >λ

= < −
∫
I
exp{g0(t)}f(t)KtS(t) dt, g >λ − < Wλf, g >λ

= −
∫
I
g(t)f(t) exp{g0(t)}S(t) dt− λJ(g, f)

= − < f, g >λ .

Proposition 1. DSλ(g0) = −id, where id is the identity operator in Hm.

This proposition plays an important role in deriving an FBR of the proposed

estimator.

3. The FBR

In this section, we derive and present our key technical tool, namely the FBR,

which provides a theoretical foundation for the statistical inference procedures

in later sections. With the help of the FBR, we establish the asymptotic normal-

ity of the proposed smoothing-spline estimate. The likelihood ratio test (LRT)

procedure is also justified rigorously. To begin with, we present a lemma on

the consistency of the proposed estimate for obtaining the FBR. All theoretical

conditions and proofs are deferred to the Appendix.

Lemma 1 (Consistency). Suppose conditions (C1)-(C3) given in the Appendix

hold. If λ(n(1−v)/2 + nvm) → 0 as n → ∞ for 0 < v < 1/2, then for sufficiently

large n,

‖ĝn,λ − g0‖∞ = op(1),

J(ĝn,λ − g0, ĝn,λ − g0) < C̃,

where C̃ is a constant greater than one.

In fact, the consistency of the estimator with the infinity norm can be derived

along the lines of Cox and O’Sullivan (1990). However, the second result in

Lemma 1 is our own.

To obtain the rate of convergence of the proposed estimator, we next derive

a concentration inequality for a certain empirical process. Define G = {g ∈ Hm :

‖g‖∞ ≤ 1, J(g, g) ≤ C̃}, with C̃ specified as in Lemma 1. We next define
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Zn(g) ≡ 1√
n

n∑
i=1

[ϕn(Yi, g)− E{ϕn(Yi, g)}],

where ϕn(Yi, g) is a real-valued function in Hm.

Lemma 2. Suppose that ϕn(Y, g) satisfies the following condition:

‖ϕn(Y, f)− ϕn(Y, g)‖λ ≤ ‖f − g‖∞, for any f, g ∈ G. (3.1)

Then,

lim
n→∞

P

[
sup
g∈G

‖Zn(g)‖λ
‖g‖1−1/(2m)
∞ + n−1/2

≤ {5 log log(n)}1/2
]

= 1.

By Lemmas 1 and 2, we obtain the convergence rate of our estimate, which

is presented in the following theorem:

Theorem 1 (Convergence Rate). Assume conditions (C1)-(C3) hold. Then,

when log{log(n)}/(nh2)→ 0 and λ{n(1−v)/2 + nvm} → 0 as n→∞,

‖ĝn,λ − g0‖λ = Op
(
(nh)−1/2 + hm

)
.

Remark 1. When h � n−1/(2m+1), Theorem 1 suggests that ĝn,λ achieves an

optimal rate of convergence when we estimate g0 ∈ Hm, that is, Op(n
−m/(2m+1)).

This result is in accordance with that of Gu (1991).

Using Theorem 1, we are ready to present the key technical tool of this

study, namely, a new version of the FBR of Shang and Cheng (2013). Define

Mi(t) ≡ Ni(t)−
∫ t

0 I(Yi ≥ s) exp{g0(s)} ds, which is a martingale.

Theorem 2 (FBR). Assume conditions (C1)-(C3) hold. If log{log(n)}/(nh2)

→ 0, λ(n(1−v)/2 + nvm)→ 0 as n→∞, we have

‖ĝn,λ − g0 − Sn,λ(g0)‖λ = Op(αn),

where

Sn,λ(g0) =
1

n

n∑
i=1

∫
I
Kt dMi(t)−Wλg0,

and

αn = n−1/2−vm + n−vm{(nh)−1/2 + hm}+ h−1/2{(nh)−1 + h2m}
+ h−(6m−1)/(4m)n−1/2{log log(n)}1/2{(nh)−1/2 + hm}.

In fact, Proposition 1 is crucial to deriving the FBR in Theorem 2; see

the Appendix for the proof of the theorem. Moreover, Theorem 2 reveals that

the “bias” of our estimate ĝn,λ can be approximated by Sn,λ(g0), the sum of a
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martingale integral. Applying this result, we immediately obtain the asymptotic

normality.

Theorem 3. Assume conditions (C1)-(C3) hold. For m > 3/4 +
√

5/4 and

1/(4m) ≤ v ≤ 1/(2m), suppose nh4m−1 → 0 and nh3 → ∞ as n → ∞. Then,

for any t0 ∈ I,
√
nh{ĝn,λ(t0)− g(t0) + (Wλg0)(t0)} d−−→ N(0, σ2

t0),

where σ2
t0 ≡ limh→0 h

∑∞
j=0 h

2
j (t0)/(1 + λγj)

2 and
d−−→ means convergence in dis-

tribution.

Corollary 1. Assume conditions (C1)-(C3) hold. For m > 3/2 and 1/(4m) ≤
v ≤ 1/(2m), suppose nh2m → 0 and nh3 →∞ as n→∞. Then, for any t0 ∈ I,

√
nh{ĝn,λ(t0)− g0(t0)} d−−→ N(0, σ2

t0),

where σ2
t0 is defined as in Theorem 3.

Remark 2. Corollary 1 implies that, under certain under-smoothing conditions,

the asymptotic bias for the estimation of g0(t0) vanishes. Hence, Corollary 1,

together with the so-called Delta method, immediately gives the pointwise con-

fidence interval (CI) for some real-valued smooth function of g0(t) at any fixed

point t0 ∈ I, denoted by ρ
{
g0(t0)

}
. Let ρ̇(·) be the first derivative of ρ(·). By

Corollary 1, for any fixed point t0 ∈ I and ρ̇
{
g0(t0)

}
6= 0, we have

P

(
ρ
{
g0(t0)

}
∈

[
ρ
{
ĝn,λ(t0)

}
± Φα/2

ρ̇
{
g0(t0)

}
σt0√

nh

])
→ 1− α

as n → ∞, where Φ(·) is the standard normal cumulative distribution function

and Φα is the lower α-th quantitle of Φ(·); that is Φ(Φα) = 1− α.

4. The LRT

With the help of the FBR, we consider further inferences of g0(·) by testing

local and global hypotheses. In this section, we use LRTs to test g0(·).

4.1. Local LRT

We consider the following hypothesis for some pre-specified (t0, ω0):

H0 : g(t0) = ω0 versus H1 : g(t0) 6= ω0.

The penalized log-likelihood underH0, or the “constrained” penalized log-likelihood

of Shang and Cheng (2013), is defined as:
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Ln,λ(g) = −
∫
I
exp{g(t) + ω0}Sn(t) dt+

1

n

n∑
i=1

∆i{g(Yi) + ω0} −
λ

2
J(g, g),

where g ∈ H0 = {g ∈ Hm : g(t0) = 0}. We consider the following LRT statistic:

LRTn,λ = Ln,λ(ω0 + ĝ0
n,λ)− Ln,λ(ĝn,λ),

where ĝ0
n,λ ≡ arg maxg∈Ψ0

m,I
Ln,λ(g) is the MLE of g in

Ψ0
m,I =

{
qn∑
i=1

θiBi,m,

qn∑
i=1

θiBi,m(t0) = 0

}
.

Clearly, H0 is a closed subset in Hm, and hence it is a Hilbert space endowed

with the norm ‖ · ‖λ.

The following proposition states the reproducing kernel and penalty operator

of H0 inherited from Hm (without proofs).

Proposition 2. The reproducing kernel and penalty operator of H0 inherited

from Hm satisfy the following properties:

(a) Recall that K(t1, t2) is the reproducing kernel for Hm under < ·, · >λ. Then,

the bivariate function

K∗(t1, t2) = K(t1, t2)− K(t0, t1)K(t0, t2)

K(t0, t0)

is a reproducing kernel for (H0, < ·, · >λ). That is, for any t ∈ I and

g ∈ H0, we have K∗t ≡ K∗(t, ·) ∈ H0 and < K∗t , g >λ= g(t). Moreover, we

have ‖K∗‖λ ≤
√

2cmh
−1/2, where cm is defined as in P2.

(b) The operator W ∗λ , defined as W ∗λg ≡Wλg−Wλg(t0)Kt0/K(t0, t0), is bounded

linear from H0 to H0 and satisfies < W ∗λg, g̃ >= λJ(g, g̃), for any g, g̃ ∈
H0.

Based on Proposition 2, we can now derive the FBR for ĝ0
n,λ under the null

hypothesis, the so-called “restricted” FBR for ĝ0
n,λ, which will be used to obtain

the limiting distribution under the null. A direct calculation yields the Fréchet

derivatives of Ln,λ (along directions in H0). Consider g1, g2, g3 ∈ H0. The first-

order Fréchet derivative of Ln,λ, denoted by S0
n,λ, can be calculated as follows:

DLn,λ(g)g1

= −
∫ 1

0
exp{g(t) + ω0}Sn(t)g1(t) dt+

1

n

n∑
i=1

∆ig1(Yi)− < W ∗λg, g1 >λ

= −
∫ 1

0
exp{g(t) + ω0}Sn(t) < K∗t , g1 >λ dt+

1

n

n∑
i=1

∆i < K∗Yi , g1 >λ
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− < W ∗λg, g1 >λ

=< −
∫ 1

0
exp{g(t) + ω0}Sn(t)K∗t dt, g1 >λ +

1

n

n∑
i=1

∆i < K∗Yi , g1 >λ

− < W ∗λg, g1 >λ

=< S0
n(g), g1 >λ − < W ∗λg, g1 >λ

=< S0
n,λ(g), g1 >λ,

where S0
n(g) = −

∫ 1
0 exp{g(t) + ω0}Sn(t)K∗t dt + n−1

∑n
i=1 ∆iK

∗
Yi

and S0
n,λ(g) =

S0
n(g)−W ∗λg. Define S0(g) ≡ E{S0

n(g)} and S0
λ(g) ≡ S0(g)−W ∗λg. Next, we de-

note the second- and third-order Fréchet derivatives of Ln,λ(g) as D2Ln,λ(g)g1g2,

and D3Ln,λ(g)g1g2g3, respectively. Further calculations yield

D2Ln,λ(g)g1g2 = −
∫ 1

0
exp{g(t) + ω0}Sn(t)g1(t)g2(t) dt− < W ∗λg2, g1 >λ

and

D3Ln,λ(g)g1g2g3 = −
∫ 1

0
exp{g(t) + ω0}Sn(t)g1(t)g2(t)g3(t) dt.

We consider the derivative of S0
λ(g), obtaining

DS0
λ(g)g1g2 = −

∫ 1

0
exp{g(t) + ω0}S(t)g1(t)g2(t) dt− < W ∗λg2, g1 >λ .

Then, by defining g0
0(t) = g0(t)− ω0, we have the following important equation:

< DS0
λ(g0

0)f, g >λ =< D{S0(g0
0)}f, g >λ − < W ∗λf, g >

= −
∫ 1

0
exp{g0

0(t) + ω0}S(t)f(t)g(t) dt− < W ∗λf, g >λ

= − < f, g > .

We state this result as the next proposition.

Proposition 3. DS0
λ(g0

0) = −id, where id is the identity operator.

Similarly to Theorem 1 in Section 3, we need to prove the rate of convergence

of the resulting estimator in order to obtain the FBR.

Proposition 4 (Convergence Rate). Assume conditions (C1)-(C3) hold. Under

H0, if log{log(n)}/(nh2)→ 0 and λ(n(1−v)/2 + nvm)→ 0 as n→∞, we have

‖ĝ0
n,λ − g0

0‖λ = Op
(
(nh)−1/2 + hm

)
.

The proof of Proposition 4 is similar to that of Theorem 1 and, thus is

omitted. The next theorem follows directly from Propositions 2–4.
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Theorem 4 (Restricted FBR). Assume conditions (C1)-(C3) hold. In addition,

we assume that under H0, log{log(n)}/(nh2)→ 0 and λ(n(1−v)/2 + nvm)→ 0 as

n→∞. Then,

‖ĝ0
n,λ − g0

0 − S0
n,λ(g0

0)‖λ = Op(αn),

where αn is defined as in Theorem 2.

Our main result on the local LRT follows immediately from Theorem 4, and

is presented below.

Theorem 5 (Local LRT). Assume conditions (C1)-(C3) hold. For m > (5 +√
21)/4 and 1/(4m) ≤ v ≤ 1/(2m), suppose that nh2m → 0 and nh4 →∞ as n→
∞. Furthermore, for any t0 ∈ I, if σt0 6= 0, let ct0 = limh→0 V (Kt0 ,Kt0)/‖Kt0‖2λ ∈
(0, 1]. Then, under H0,

(i) ‖ĝn,λ − ĝ0
n,λ − ω0‖λ = Op(n

−1/2);

(ii) −2nLRTn,λ = n‖ĝn,λ − ĝ0
n,λ − ω0‖2λ + op(1);

(iii) −2nLRTn,λ
d−−→ ct0χ

2
1.

Remark 3. The central Chi-square limiting distribution in part (iii) of the the-

orem is established under the under-smoothing assumptions in Theorem 5. Re-

laxing those conditions for h yields a noncentral Chi-square limiting distribution.

Note that the convergence rate stated in Theorem 5 is reasonable under a local

restriction.

4.2. Global LRT

It is important that we study the global behavior of a smooth function. In

this section, we consider the following “global” hypothesis:

Hglobal
0 : g = g0 versus H1 : g 6= g0,

where g0 ∈ Hm can be either known or unknown. The penalized likelihood ratio

rest (PLRT) statistic is defined as

PLRTn,λ ≡ ln,λ(g0)− ln,λ(ĝn,λ).

We next derive the null limiting distribution of PLRTn,λ.

Theorem 6. Assume conditions (C1)-(C3) hold. For m > (3 +
√

5)/4 and

1/(4m) ≤ v ≤ 1/(2m), suppose that nh2m+1 = O(1) and nh3 → ∞ as n → ∞.

Define σ2
λ ≡

∑∞
j=0 h/(1 + λγj), ρ

2
λ ≡

∑∞
j=0 h/(1 + λγj)

2, γλ ≡ σ2
λ/ρ

2
λ, and
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νλ ≡ h−1σ4
λ/ρ

2
λ. Then, under Hglobal

0 ,

(2νλ)−1/2(−2nγλPLRTn,λ − nγλ‖(Wλg0)(t)‖2λ − νλ)
d−−→ N(0, 1).

Note that this null limiting distribution remains unchanged even when g0 in

the null hypothesis is unknown. Moreover, it can be easily verified that h � n−d,
with 1/(2m + 1) ≤ d < 1/3, satisfies the conditions in Theorem 6. We can also

show that n‖Wλg0‖2 = o(h−1) = o(νλ). Thus, −2nγλPLRTn,λ is asymptotical

N(νλ, 2νλ), which approaches χ2
νλ as n goes to infinity. In other words, we have

−2nγλPLRTn,λ
d−−→ χ2

νλ ,

suggesting that the Wilks phenomenon holds for the PLRT.

Lastly, to conclude this section, we show that the PLRT achieves the optimal

minimax rate of testing given by Ingster (1993), based on the uniform version

of the FBR. To this end, we consider the alternative hypothesis H1n : g = gn0
,

where gn0
= g0 + gn, g0 ∈ Hm and gn belongs to the alternative value set

A = {g ∈ Hm, exp{gn(t)} ≤ ζ, J(g, g) ≤ ζ}, for some constant ζ > 0.

Theorem 7. Assume that conditions (C1)-(C3) hold. For m > (3 +
√

5)/4 and

1/(4m) ≤ v ≤ 1/(2m), suppose that h � n−d for 1/(2m + 1) ≤ d < 1/3 and

uniformly over gn ∈ A, and that ‖ĝn,λ− gn0
‖λ = Op

(
(nh)−1/2 +hm

)
holds under

H1n : g = gn0
. Then, for any δ ∈ (0, 1), there always exist positive constants b0

and N , such that

inf
n≥N

inf
gn∈A,‖gn‖λ≥b0ηn

P (reject Hglobal
0 |H1n is true) ≥ 1− δ,

where ηn ≥
√
h2m + (nh1/2)−1. Moreover, the minimal lower bound of ηn is

n−2m/(4m+1), which is achieved when h = h∗∗ = n−2/(4m+1).

Importantly, when h = h∗∗ = n−2/(4m+1), Theorem 7 suggests that the

PLRT can detect any local alternatives with a separation rate no faster than

n−2m/(4m+1), which is exactly the minimax rate of hypothesis testing stated in

Ingster (1993).

5. Simulation Studies

To evaluate the theoretical results, we present several simulation results. In

the simulation studies, we set v = 1/5 and the number of knots to [3× n1/5] for

the spline approximation, where [x] is the largest positive integer part of x. Fore
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ease of presentation, additional notation is needed. We define

H ≡
∫ 1

0
exp{g(t)}B(s)B(s)>Sn(s) ds,

Ωlk ≡
∫ 1

0
B̈k,m(s)B̈l,m(s) ds, k, l = 1, 2, . . . , qn,

where Ω ≡ (Ωlk) is a matrix with the (l, k)-element being Ωlk, and B̈l,m(s) is the

second derivative of Bl,m(s). The following AIC proposed by O’Sullivan (1988)

is used to select the smoothing parameter λ:

AIC(λ) = −ln(ĝn,λ) +
trace[(Ĥ + λΩ)−1Ĥ]

n
.

In linear algebra, the trace of an n-by-n square matrix A is defined to be the

sum of the elements on the main diagonal (the diagonal from the upper left to

the lower right) of A.

To examine the performance of the pointwise CI given in Section 3, we

compare our results with the average length of the Bayesian CI proposed by

Wahba (1983), denoted by LBCI. The Bayesian coverage probability is denoted

by BCP. We refer to the average length of our proposed pointwise (local) CI and

its coverage probability as LLCI and LCP, respectively.

To generate data, we suppose that the failure time follows a truncated

Weibull distribution on [1,∞), with density function

f(t) ∝
(
t

τ

)k−1

exp

{
−
(
t

τ

)k}
, t ∈ [1,∞),

with k = 1.5 and τ = 1.2. We generate the censoring time from a truncated

Weibull distribution on [1, 2] with τ = 3; k is chosen to yield a 30% and a 40%

censoring rate, respectively. For the estimate of g0, we compared our estimator

to the kernel-smoothed Nelson estimator (Müller and Wang (1994)), denoted as

Smoothed NE. The results show that the spline estimate is more stable than

the kernel method is, especially at the boundary region. Here, we set m = 2.

Similarly to Shang and Cheng (2013), we obtain the eigenvalues and eigenfunc-

tions using the ODE function in (2.1), and then substitute in the formula for

the definition of σt0 . The simulation results are presented in Figures 1–2. We

observe that the average length of our proposed LLCI is shorter than that of

Wahba (1983). The LCP is close to 95% for t ∈ [1.2, 1.7] and t ∈ [1.2, 1.6], with

censoring rates of 30% and 40%, respectively. The BCP is almost one, owing to

over-estimation in the variance.

To assess the performance of the global LRT given in Section 4, we compute



NONPARAMETRIC INFERENCE FOR RIGHT-CENSORED DATA 167

Figure 1. Simulation results with a 30% censoring rate. CP: coverage probablity; LCI:
average length of confidence interval.

Figure 2. Simulation results with a 40% censoring rate. CP: coverage probablity; LCI:
average length of confidence interval.

the size and power of the test based on simulated data for different situations. For

this purpose, we consider the null hypothesis Hglobal
0 : g = g0 against H1 : g 6= g0,

where g0(t) = log(k) + (k − 1) log(t)− k log(τ), with k = 1.5 and τ = 1.2. Take
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Figure 3. Analysis results of the real data. The left panel displays the cumulative
hazard estimation and the right panel presents the log-hazard estimation and its CI
using different methods.

Table 1. The estimated size and power of the PLRT.

Censoring rate n c = 0 c = 0.5 c = 1 c = 1.5
30% 250 0.056 0.984 1.000 1.000

500 0.048 1.000 1.000 1.000
40% 250 0.068 0.962 1.000 1.000

500 0.052 0.998 1.000 1.000

g1(t) = log(k) + (k − 1) log(t) − k log(τ) + c{log(t) − log(τ)} + log(1 + c/k),

with c = 0, 0.5, 1, 1.5. To perform the test, we generate the failure time from a

truncated Weibull distribution on [1,∞) with log-hazard g1, and the censoring

time from a Weibull distribution on [1, 2] with λ = 5; k is chosen to yield a 30%

and a 40% censoring rate, respectively. Again, by solving the ODE in (2.1), we

obtain the eigenvalues of g0 as γj ≈ (αj)2m, with α = 1.8852 or 1.8920 for the 30%

censoring rate, with n = 250 or 500, respectively. For the 40% censoring rate,

we obtain α = 1.9944 or 2.0126, with n = 250 or 500, respectively. Substituting

in the value of α and using Lemma 6.1 in Shang and Cheng (2013), we obtain

γλ = 1.333, and hνλ = 0.7856 or 0.7828 for the 30% censoring rate, with n = 250

or 500, respectively, and hνλ = 0.7426 or 0.7359 for the 40% censoring rate, with

n = 250 or 500, respectively. The results of the global LRTs are reported in

Table 1. The estimated size is around 5% for c = 0, and the estimated power

approaches one as the sample size or c increases, showing that the test has good

power.
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6. Application

To illustrate our method, we apply it to analyze the study of non-Hodgkin’s

lymphoma (Dave et al. (2004)). The goal of the experiment is to detect the effect

of a follicular lymphoma on a patient’s survival time. The data were obtained

from seven institutions, covering the period 1974 to 2001. The samples are from

191 patients with untreated follicular lymphoma who were diagnosed between

the ages of 23 and 81 years (median 51). The follow-up times range from 1.0

to 28.2 years (median 6.6). After removing four samples with missing censoring

indicators and observation times, we have n = 187 samples and around a 50%

censoring rate. As suggested by Iglewicz and Hoaglin (1993), we also calculate

an outlier statistic: Zi = 0.6745|Yi −median(Y )|/mad(Y ), where i refers to the

ith subject, and median(Y ) and mad(Y ) are the median and median absolute

deviation, respectively, of the 187 observation times. According to Iglewicz and

Hoaglin (1993), an observation is an outlier if Z > 3.5. In this analysis, we ob-

serve that the 170th subject is an outlier, and so we omit it from the sample. We

standardize the survival times to range from 0 to 1. The results are summarized

in Figure 3.

For comparison, we also compute the Kaplan-Meier estimate (KME), the

smoothed Kaplan-Meier estimate (Smoothed KME), and our proposed estimate

of the cumulative hazard function Λ(t). The results are presented in the left

panel of Figure 3. Our approach provides similar estimates to those of the other

methods. The right panel in Figure 3 presents the estimation results for the log-

hazard of our proposed method, the LCI, and the BCI. It can be seen that the

pointwise interval of our proposal is shorter than that of Wahba (1983), which is

accordance with the simulation results.

7. Conclusion

This study focuses on nonparametric inferences of the log-hazard function

for right-censored data. The major advantage of doing so is that there is no con-

straint on the target function, which simplifies the computation. It is well known

that the penalized nonparametric MLE is useful for balancing the smoothness

and goodness-of-fit of the resulting estimator. Therefore, we adopt this approach

to estimate the log-hazard function in the presence of right censoring. On the

other hand, smoothing B-splines have been used in the literature for a smooth es-

timation; see, for example, Schumaker (1981). Our main contribution is an FBR

established in the Sobolev space Hm with a proper inner product, which serves



170 HAO, LIN AND ZHAO

as a key tool for nonparametric inferences of an unknown parameter/function.

The asymptotic properties of the resulting estimate of the unknown log-hazard

function are justified rigorously. The local CI of the unknown log-hazard func-

tion is provided, as well as the local and global LRTs. Note that the penalized

global LRT is able to detect any local alternatives with a minimax separation

rate, in the sense of Ingster (1993), which is closely related to the asymptotic

efficiency. As suggested by one anonymous reviewer, we can extend our method

to inferences of a survival function of the form ST (t) = exp{−
∫ t

0 λ(s)ds}. The

inference procedures described in Sections 3–4 can be modified accordingly.

We do not consider the penalization on the coefficient of the B-spline func-

tion. Hence, we cannot provide a constant estimate, even when the true function

takes a constant value. The proposed inference approach can also be extended

to handle other complicated data, for example, interval-censored data. Although

this extension seems to be conceptually straightforward, much more effort is

needed to establish the theoretical properties of the estimators. In particular,

it is a nontrivial task to develop an appropriate inner product for the Sobolev

space. This problem is under investigation and is beyond the scope of this study.

Supplementary Material

The Supplementary Material includes all technical proofs.
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