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Abstract: This study considers the problem of estimating a time-dependent quantile

at each time point t ∈ [0, 1], given independent samples of a stochastic process at

discrete time points in [0, 1]. It is assumed that the quantiles depend smoothly

on t. Here we present the rate of convergence of quantile estimates based on a

local average estimate of the time-dependent cumulative distribution functions.

Then we apply importance sampling in a simulation model to construct estimates

that achieve better rates of convergence. Lastly, we demonstrate the finite-sample

performance of our estimates by applying them to simulated data.
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rate of convergence.

1. Introduction

Let (Yt)t∈[0,1] be an R-valued stochastic process. For equidistant time points

t1, . . . , tn ∈ [0, 1], we assume that we have the data set

Dn =
{
Y

(t1)
1 , . . . , Y (tn)

n

}
, (1.1)

where Y
(t1)
1 , . . . , Y

(tn)
n are independent and

P
Y

(tk)

k

= PYtk
.

Let GYt(y) = P(Yt ≤ y) be the cumulative distribution function (cdf) of Yt. In

addition for α ∈ (0, 1), let

qYt,α = inf{y ∈ R : GYt(y) ≥ α}

be the α-quantile of Yt for t ∈ [0, 1]. Given the data set Dn, we are interested

in constructing estimates q̂Yt,α = q̂Yt,α(Dn) of qYt,α such that we have a “small”

error,

sup
t∈[0,1]

|q̂Yt,α − qYt,α|. (1.2)

Before we describe the construction of estimates for the above estimation prob-

lem, we illustrate the practical relevance of this problem using an example. Here
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Figure 1. The suspension strut demonstrator of CRC 805.

Figure 2. Picture of the experimental setup (picture taken from Mallapur and Platz
(2017)).

we consider a problem that occured in the Collaborative Research Centre 805.

The German CRC 805 examines ways in which uncertainty can be controlled in

load-carrying structures in mechanical engineering. To test such approaches, the

CRC 805 has designed a demonstrator model, which is shown in Figure 1.

This demonstrator model shows an example of a suspension strut, such as

an aircraft’s landing gear. It is designed in two versions: a virtual computer

experiment and a real experimental setup. Figure 2 shows a photo of the real

experimental setup. In the experiments, a modular spring damper system is
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suspended on a frame and falls onto the base of the frame. Then sensors measure

various parameters, such as acceleration, the absolute position of the modular

spring damper system, and the force at the point of impact. Predicting this force

is important when calculating the stress and its deviation in order to determine

the correct load capacity for the usage phase of a product that is already in its

development phase. If one component of a suspension strut is time-dependent and

uncertain, this force is affected and thus should be investigated before building

a prototype. In this context, mechanical engineers need information about a

complete time interval to, for example, guarantee the operational stability of the

suspension strut. Here, a time-dependent quantile estimation can be used to

estimate the α-quantiles for arbitrary time points in the considered interval.

We investigate the impact of an aging spring (i.e., the spring stiffness Xt

decreases over time) on the force at the point of impact Yt = m(t,Xt). To do

so, we use simulated data generated by the virtual demonstrator. Because we

are describing how to support mechanical engineers in the product-development

process, we assume there are no measured input data for an aging spring in

this system. In a time-invariant system, the spring stiffness is assumed to be

normally distributed with expectation µ = 35,000 [N/m] and standard deviation

σ = 1,166.67 [N/m] (cf., Schuëller (2007)). It seems reasonable that the spring

will weaken over time with continuous use. Therefore, we assume that the spring

constant deteriorates over time exponentially, as in Zill and Wright (2009) in

Chapter 3.8.1. More precisely, we assume that the spring stiffness Xt is normally

distributed with expectation µt = 35,000 ∗ exp(−0.5 ∗ t) [N/m] and standard

deviation σt = 1,166.67 [N/m].

For a given spring stiffness, we can use physical principles to model the force

at the point of impact over time using partial differential equations which can

be solved numerically. We do this implicitely using the routine RecurDyn of

the software package Siemens NX. As such, we can compute the force at the

point of impact Yt for various (randomly) chosen values for the spring stiffness

(chosen according to the distribution described above) and various time points

t. In Subsection 4.2, we generate n = 300 values for the force at the point of

impact Yt in this way. Then, we use these values to estimate the time-dependent

0.95-quantile qt of the force at the point of impact continuously over time t.

To compute a single value of Yt, we repeat the computation of the force

using independent data. This ensures that the data set (1.1) is independent

in our example. Furthermore, because we can choose the time points for our

simulation, the choice of equidistant time points does not pose any problems in
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this practical application. Finally, we need to consider the estimation error (1.2),

because this allows us to make statistical inferences about the force at the point

of impact for the overall time interval.

1.1. Main results

In our first result, we use plug-in estimators of qYt,α based on local averaging

estimators of GYt to define our quantile estimates. In particular, let K : R→ R
be a non-negative kernel function (e.g., the uniform kernel K(z) = 1/2 ·1[−1,1](z)

or the Epanechnikov kernel K(z) = 3/4 · (1 − z2) · 1[−1,1](z)). We estimate the

cdf of Yt,

GYt(y) = P(Yt ≤ y) = E{1(−∞,y](Yt)},

using the local average estimator

ĜYt(y) =

∑n
i=1 1(−∞,y](Y

(ti)
i ) ·K ((t− ti)/hn)∑n

j=1K ((t− tj)/hn)
. (1.3)

Then we use the following plug-in estimator of qYt,α:

q̂Yt,α = inf{y ∈ R : ĜYt(y) ≥ α}. (1.4)

Here, we assume that GYt(y) is Hölder smooth with exponent p ∈ (0, 1] (as a

function of t ∈ [0, 1]), and that a density of Yt exists that is bounded away from

zero and infinity in a neighborhood of qYt,α. Then, we show that for a suitably

chosen bandwidth hn and kernel K : R→ R, the supremum norm error (1.2) of

this estimate converges to zero in probability with rate (log(n)/n)p/(2p+1).

In our second result, we use a simulation model to show that this rate of

convergence can be improved using importance sampling. Here, we assume that

Yt is given by

Yt = m(t,Xt),

where Xt is an Rd-valued random variable with density f(t, ·) : Rd → R and the

function m : [0, 1]× Rd → R is a blackbox function that is costly to evaluate. In

this framework, we construct an importance-sampling variant of the above plug-

in quantile estimator. This variant is based on an initial quantile estimator and

a suitably chosen estimator (surrogate) mn of m. Our main result is that, under

suitable assumptions on f and m, for Hölder smooth GYt(y) (with exponent

p ∈ (0, 1] and as a function of t ∈ [0, 1]), we can achieve the rate of convergence

(log(n)/n)p·(4p+1)/(2p+1)2 . This rate of convergence is achievable for an estimate

based on at most n evaluations of m (as in (1.4)). We demonstrate the finite-

sample performance of our estimates by applying them to simulated data.
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1.2. Discussion of related results

A time-dependent quantile estimation can be regarded as a conditional quan-

tile estimation for a fixed design, where we condition on the time t. A short in-

troduction to conditional quantile estimations is presented in Yu, Lu and Stander

(2003). Several studies have considered plug-in conditional quantile estimators.

For example, Stone (1977) showed their consistency in probability, Stute (1986)

proved their asymptotic normality, and Bhattacharya and Gangopadhya (1990)

used a Bahadur-type representation, following Bahadur (1966), to show their

asymptotic normality. A double-kernel approach was presented by Yu and Jones

(1998), who analyzed the mean squared error of their estimator.

Other conditional quantile estimation approaches include those of Koenker

and Bassett (1978), who proposed a quantile regression estimator, and Mehra,

Rao and Upadrasta (1991), who presented a smooth conditional quantile esti-

mator, showing its asymptotic normality and analyzing its pointwise almost sure

rate of convergence. Xiang (1996) also proposed a new kernel estimator for a

conditional quantile and derived the same pointwise almost sure rate of conver-

gence as that shown in Mehra, Rao and Upadrasta (1991), but under weaker

assumptions. Additional results on quantile regression estimators can be found

in in Chaudhuri (1991), Fan, Yao and Tong (1996), Yu and Jones (1998), Li, Liu

and Zhu (2007), and Plumlee and Tuo (2014), and in the literature cited therein.

In contrast to the aforementioned works, we analyze the rate of convergence in

probability of the supremum norm error of our quantile estimates.

As an estimate mn of m, any kind of nonparametric regression estimate can

be chosen; see, for example, Györfi et al. (2002).

Importance sampling is a well-known variance-reduction technique that was

originally introduced to improve the rate of convergence of estimates of expec-

tations; see, for example, Glasserman (2004). The main idea in our setting is

as follows. Instead of Yt, we consider a real-valued random variable Zt, where

the distribution of Zt is chosen such that Zt is concentrated in a region of the

sample space, which has a strong effect on the estimation of qYt,α. Quantile

estimations based on importance sampling have been studied by Cannamela,

Garnier, and Ioos (2008), Egloff and Leippold (2010), and Morio (2012). Of

these works only Egloff and Leippold (2010) derived the theoretical properties

for their estimate, such as consistency. However, they did not analyze the rate

of convergence of their estimate. Kohler et al. (2018) studied the rates of con-

vergence of importance-sampling quantile estimators based on surrogate models.
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However, they did not consider a time-dependent setting for a conditional quan-

tile estimation.

1.3. Outline

In Section 2, we present the rate of convergence of the first estimate. In

Section 3, we consider a time-dependent simulation model and construct a time-

dependent importance-sampling quantile estimate. Here, we also analyze the

rate of convergence of the estimate. Section 4 illustrates the finite-sample per-

formance of the two estimates by applying them to simulated data and to the

application discussed in the introduction.

2. Estimation of Time-Dependent Quantiles

In this section, we analyze the rate of convergence of our local averaging plug-

in quantile estimate. It is well known that the derivation of any nontrivial rate

of convergence result in nonparametric curve estimations requires that various

regularity conditions on the data hold.

As a result, we make the following assumptions on the data used to estimate

the quantile.

(A1) Let (Yt)t∈[0,1] be an R-valued stochastic process, let t1, . . . , tn ∈ [0, 1] be

equidistant, and set

Dn =
{
Y

(t1)
1 , . . . , Y (tn)

n

}
,

where Y
(t1)
1 , . . . , Y

(tn)
n are independent and

P
Y

(tk)

k

= PYtk
.

(A2) Assume that Yt has density g(t, ·) : R → R with respect to the Lebesgue–

Borel measure, which is uniformly bounded away from zero in a neighbor-

hood of qYt,α: that is, for some ε > 0, there exists a constant c1 > 0 such

that

inf
t∈[0,1]

inf
u∈(qYt,α−ε,qYt,α+ε)

g(t, u) ≥ c1. (2.1)

(A3) Assume that the function t 7→ GYt(y) is Hölder continuous with Hölder

constant C > 0 and Hölder exponent p ∈ (0, 1] for y ∈ R: that is assume

|GYs(y)−GYt(y)| ≤ C|s− t|p for all s, t ∈ [0, 1] and y ∈ R. (2.2)

Here (A3) is the standard smoothness assumption, which is necessary for the

derivation of a nontrivial result on the rate of convergence. Assumption (A2) is
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needed because we want to analyze the error of our estimate in the supremum

norm. Assumption (A1) is used to simplify our proofs. As explained in the

introduction, we can ensure that this condition holds by generating our data in

a proper way.

Next we describe the assumptions needed for the parameters of our estimate,

that is, the assumptions on the kernel and the bandwidth.

(EST1) Let K be a non-negative kernel function K : R → R that is left-

continuous on R+, monotonically decreasing on R+, and satisfies

K(z) = K(−z) (z ∈ R), (2.3)

c2 · 1[−α,α](z) ≤ K(z) ≤ c3 · 1[−β,β](z) (z ∈ R) (2.4)

for some constants α, β, c2, c3 ∈ R+\{0}.

(EST2) Let hn > 0 be such that

hn → 0 (n→∞), (2.5)

n · hn
log (n)

→∞ (n→∞). (2.6)

Theorem 1. Let α ∈ (0, 1). Let (Yt)t∈[0,1] be an R-valued stochastic process and

let GYt be the cdf of Yt for t ∈ [0, 1]. Let qYt,α be the α-quantile of Yt. Let n ∈ N
and set tk = k/n (k = 1, . . . , n). Assume that (A1), (A2), and (A3) hold. Let the

estimator q̂Yt,α be defined by (1.3) and (1.4), where the kernel and the bandwidth

satisfy (EST1) and (EST2), respectively. Then, for a constant c4 > 0, we have

P

 sup
t∈[0,1]

|q̂Yt,α − qYt,α| > c4 ·

√ log (n)

n · hn
+ hpn

→ 0 for n→∞.

In particular, if we set hn = c5 · (log(n)/n)1/(2p+1) for a constant c5 > 0, there

exists a constant c6 > 0, such that

P

(
sup
t∈[0,1]

|q̂Yt,α − qYt,α| > c6 ·
(

log(n)

n

)p/(2p+1)
)
→ 0 for n→∞.

Remark 1. To derive a nontrivial statement about the rate of convergence,

smoothness assumptions, such as (2.2), are required (cf. Devroye (1982)). In

Theorem 1, we have shown the same rate of convergence as the optimal minimax

rate of convergence for the estimation of a Hölder continuous function (with

exponent p ∈ (0, 1]) on a compact subset of R in the supremum norm derived in

Stone (1982).
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Remark 2. To apply the time-dependent quantile estimator in practice, the

bandwidth hn has to be selected in a data-driven way. We suggest choosing hn
in an optimal way for the estimation of the time-dependent cdf GYt by ĜYt using

a version of the well-known splitting-the-sample technique (cf., e.g., Chapter 7

in Györfi et al. (2002)). Assume that for each of the equidistant time points tk
(k = 1, . . . , n), we have an additional random variable Y

(tk)
k,2 , such that Y

(tk)
k,1 and

Y
(tk)
k,2 are independent and identically distributed (i.i.d.) Let y be the α-quantile of

the empirical cdf corresponding to the data Y
(t1)
1,1 , . . . , Y

(tn)
n,1 , and define ĜYtk (y) by

(1.3) using the data Y
(t1)
1,1 , . . . , Y

(tn)
n,1 and a bandwidth hn for k = 1, . . . , n. Then,

we choose the optimal bandwidth h?n from a finite set of possible bandwidths Hn

by minimizing

∆hn =
1

n

∑n

k=1

∣∣1{Y (tk)

k,2 ≤y}
− ĜYtk (y)

∣∣2.
Remark 3. It follows from the proof of Theorem 1 that the result also holds

when tk ∈ [0, 1] are chosen such that

c7
n
≤
∣∣∣∣tk − k

n

∣∣∣∣ ≤ c8
n

for some constants c7 > 0 and c8 > 0.

3. Application of Importance Sampling in a Simulation Model

In this section, we use additional assumptions on the given data and impor-

tance-sampling to construct an estimate that achieves (for essential the same

smoothness of the underlying cdf) a better rate of convergence than that in

Theorem 1. Here, we assume (as in our application in the introduction) that

Yt is given by some m(t,Xt), where we know the distribution of Xt and can

observe Xt and m(t,Xt). Then, we change the density of Xt in such a way that

it is concentrated on a set (with a small measure), which is important for the

estimation of the quantile of m(t,Xt) (cf., the density h(t, x), defined below).

More precisely, let (Xt)t∈[0,1] be an Rd-valued stochastic process and assume

that Xt has density f(t, ·) : Rd → R with respect to the Lebesgue–Borel measure.

Let m : [0, 1]×Rd → R be a function that is costly to compute, and define Yt by

Yt = m(t,Xt).

In the following we assume we have independent data sets Dn,1 and Dn,2 of the

form

Dn,1 =
{(
t1, X

(t1)
1,1 , Y

(t1)
1,1

)
, . . . ,

(
tn, X

(tn)
n,1 , Y

(tn)
n,1

)}
,
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Dn,2 =
{(
t1, X

(t1)
1,2 , Y

(t1)
1,2

)
, . . . ,

(
tn, X

(tn)
n,2 , Y

(tn)
n,2

)}
, (3.1)

where tk = k/n (k = 1, . . . , n) and

P(
X

(tk)

k,i ,Y
(tk)

k,i

) = P(Xtk ,Ytk)
,

for i = 1, 2, k = 1, . . . , n, and where(
X

(t1)
1,1 , Y

(t1)
1,1

)
, . . . ,

(
X

(tn)
n,1 , Y

(tn)
n,1

)
,
(
X

(t1)
1,2 , Y

(t1)
1,2

)
, . . . ,

(
X

(tn)
n,2 , Y

(tn)
n,2

)
(3.2)

are independent. That is, we have two independent samples of (Xtk , Ytk) at each

time point tk (k = 1, . . . , n). As stated previously this independence assumption

can be justified in our application by generating the data properly.

Furthermore, we assume we have independent random variables X
(tk)
k,3 , X

(tk)
k,4 ,

. . . , distributed as Xtk for k = 1, . . . , n, and that we are allowed to evaluate m

at n additional time points. Let mn be an estimate of m depending on the data

set Dn,2 and satisfying

P

(
sup

t∈[0,1], x∈Kn
|mn(t, x)−m(t, x)| ≥ βn

)
→ 0 (n→∞) (3.3)

for some sequence (βn)n∈N ∈ R+ and some Kn ⊆ Rd. Let q̂Yt,α be an estimate of

qYt,α depending on the data set Dn,1 and satisfying

P

(
sup
t∈[0,1]

|q̂Yt,α − qYt,α| ≥ ηn

)
→ 0 (n→∞), (3.4)

for some sequence (ηn)n∈N ∈ R+, which converges to zero as n tends to infinity,

for example the estimator q̂Yt,α defined in (1.4) and ηn = 2 · c6 · (log(n)/n)p/(2p+1)

(cf., Theorem 1). Assume that

P (∃t ∈ [0, 1] : Xt /∈ Kn) = O (βn + ηn) . (3.5)

Set

h(t, x) =
1

ct
·
(
1{x∈Kn : q̂Yt,α−3βn−3ηn≤mn(t,x)≤q̂Yt,α+3βn+3ηn} + 1{x/∈Kn}

)
· f(t, x),

where

ct =

∫
Rd

(
1{x∈Kn : q̂Yt,α−3βn−3ηn≤mn(t,x)≤q̂Yt,α+3βn+3ηn} + 1{x/∈Kn}

)
· f(t, x) dx.

Set tk = k/n for k = 1, . . . , n. Let Zt be a random variable with density

h(t, ·), and let Z
(t1)
1 , . . . , Z

(tn)
n be independent random variables such that

P
Z

(tk)

k

= PZtk

for k = 1, . . . , n. Define (for some hn,1 > 0)
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Ĝ
(IS)
Yt

(y) =

∑n
i=1

(
cti · 1{m(ti,Zti )≤y} + bti

)
·K ((t− ti)/hn,1)∑n

j=1K ((t− tj)/hn,1)
, (3.6)

where

bt =

∫
Rd
1{x∈Kn: mn(t,x)<q̂Yt,α−3βn−3ηn} · f(t, x)dx

for t ∈ [0, 1], and define the plug-in importance-sampling estimate of qYt,α by

q̂
(IS)
Yt,α

= inf{y ∈ R : Ĝ
(IS)
Yt

(y) ≥ α}. (3.7)

In order to analyze the rate of convergence of this estimate, we assume (A3),

as well as the following.

(A4) Assume that Yt has density g(t, ·) : R→ R that is continuous and uniformly

bounded away from zero in a neighborhood of qYt,α, and that is uniformly

bounded from above. That is, we assume that (2.1) holds and that there

exists a constant c9 > 0 such that

sup
t∈[0,1]

sup
u∈R

g(t, u) ≤ c9. (3.8)

(A5) For α ∈ (0, 1), let qYt,α be the α-quantile of Yt for t ∈ [0, 1], and assume that

the function t 7→ qYt,α is Hölder continuous with Hölder constant C1 > 0

and Hölder exponent q ∈ (0, 1], that is

|qYt1 ,α − qYt2 ,α| ≤ C1 · |t1 − t2|q.

Here, (A4) is a slightly stronger version of (A2), and (A5) is an additional smooth-

ness assumption on the quantiles.

With regard to the parameters of our estimate, that is, the kernel, the band-

width, the estimate of m, and the original quantile estimate, we assume (EST1),

as well as the following.

(EST3) The estimate mn of m satisfies (3.3) for some βn > 0, where

βn → 0 for n→∞. (3.9)

(EST4) The estimate q̂Yt,α of qYt,α satisfies (3.4) for some ηn ∈ R+, where

ηn → 0 for n→∞. (3.10)

(EST5)

hn,1 → 0 for n→∞, (3.11)

and
n · hn,1
log(n)

→∞ for n→∞ (3.12)
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(EST6) For r = min{p, q}, we have

hrn,1
βn + ηn

→ 0 for n→∞. (3.13)

Here, (EST3) and (EST4) mean that the errors of the estimate of m and our

initial quantile estimate must vanish asymptotically, and (EST6) requires that

the bandwidth hn,1 is not too small in comparison with these errors. These

assumptions require rates of convergence for the estimate of m and our initial

quantile estimate. For the latter estimate, the result is given by Theorem 1. For

the estimate of m, the result requires a smoothness assumption on m (see, e.g.,

Györfi et al. (2002) for related rates of convergence for various estimates).

Theorem 2. Assume that (Xt)t∈[0,1] is an Rd-valued stochastic process such that

Xt has density f(t, ·) : Rd→ R with respect to the Lebesgue–Borel measure. Let

m : [0, 1] × Rd → R be a measurable function and assume that Yt is given by

Yt = m(t,Xt). Let α ∈ (0, 1), let qYt,α be the α-quantile of Yt for t ∈ [0, 1],

and assume that (A3), (A4), and (A5) hold. Let n ∈ N and set tk = k/n

(k = 1, . . . , n). Assume that the kernel K satisfies (EST1). Let the estimator

q̂
(IS)
Yt,α

be defined by (3.6) and (3.7) with hn,1 > 0, and assume that (EST3),

(EST4), (EST5), and (EST6) hold. Furthermore, assume that (3.5) is satisfied.

Then, there exists a constant c10 > 0 such that

P

(
sup
t∈[0,1]

|q̂(IS)Yt,α
− qYt,α| > c10 ·

(
(βn + ηn) ·

√
log(n)

n · hn,1
+ hpn,1

))
→ 0

for n→∞.

In particular, if we set hn,1 = c11 · (βn + ηn)2/(2p+1) ·
(
log(n)/n

)1/(2p+1)
for some

constant c11 > 0, there exists a constant c12 > 0 such that

P

(
sup
t∈[0,1]

|q̂(IS)Yt,α
− qYt,α| > c12 · (βn + ηn)2p/(2p+1) ·

(
log(n)

n

)p/(2p+1)
)
→ 0

for n→∞.

Remark 4. If ηn = 2·c6 ·(log(n)/n)(p/2p+1), as in Theorem 1, and βn ≤ ηn is sat-

isfied, we get (log(n)/n)p·(4p+1)/(2p+1)2 as the rate of convergence in Theorem 2.

Hence, in this case, the rate of convergence in Theorem 2 is better than that in

Theorem 1, although it requires stronger conditions than those in Theorem 1.

However, the basic smoothness assumption on the cdf (in particular, the value

of p) is the same in both theorems.

Remark 5. Observations of Z
(tk)
k for k = 1, . . . , n can be generated using the
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rejection method. Here, we use several observations of (tk, X
(tk)
k ) for each k =

1, . . . , n, and then select the first observation that satisfies either

X
(tk)
k ∈ Kn and (|mn(tk, X

(tk)
k )− q̂Ytk ,α| ≤ 3βn + 3ηn) or (X

(tk)
k /∈ Kn).

Remark 6. Because the smoothness of the system m is unknown in practice, the

approximation error βn of the surrogate model mn and the estimation error ηn
of the initial quantile estimate are unknown. A data-driven method for selecting

βn and ηn is presented in Section 4.

Remark 7. As for the first time-dependent estimator, a bandwidth hn,1 has

to be selected in a data-driven way to apply the importance-sampling quantile

estimator. To do this, we suggest proceeding as in Remark 2, except that we use

the importance-sampling random variables. In particular, assume that for each

of the equidistant time points tk (k = 1, . . . , n), a random variable Z
(tk)
k,2 , such

that Z
(tk)
k,1 and Z

(tk)
k,2 are i.i.d., and observations m(tk, Z

(tk)
k,2 ) for k = 1, . . . , n are

available. Analogously to Remark 2, the bandwidth hn,1 can be selected from a

set of possible bandwidths Hn,1 by minimizing

∆hn,1 =
1

n

∑n

k=1

∣∣1{m(tk,Z
(tk)

k,2 )≤y} − Ĝ
(IS)
Ytk

(y)
∣∣2

over all hn,1 ∈ Hn,1, where y is chosen as the α-quantile of the empirical cdf

corresponding to the data mn(t1, Z
(t1)
1,1 ), . . . ,mn(tn, Z

(tn)
n,1 ).

Remark 8. In Section 4, we use a Monte Carlo simulation and additional data

(tk, X
(tk)
k,3 ), . . . , (tk, X

(tk)
k,N+2), for k = 1, . . . , n and some N ∈ N sufficiently large

(e.g. N = 10, 000), to approximate the integrals in ctk and btk for k = 1, . . . , n

by

ĉtk =
1

N

N+2∑
i=3

(
1{u∈Kn: q̂Ytk ,α−3βn−3ηn≤mn(tk,u)≤q̂Ytk ,α+3βn+3ηn}

(
X

(tk)
k,i

)
+1{u/∈Kn}

(
X

(tk)
k,i

))
,

b̂tk =
1

N

N+2∑
i=3

1{u∈Kn: mn(tk,u)<q̂Ytk ,α
−3βn−3ηn}

(
X

(tk)
k,i

)
.

4. The Finite-sample Performance of the Estimates

4.1. Application to simulated data

Next, we examine the finite-sample performance of the local average-based

time-dependent quantile estimator q̂Yt,α defined in (1.4) and the importance-
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sampling time-dependent quantile estimator q̂
(IS)
Yt,α

defined in (3.7) by applying

them to the simulated data. Both estimators use the same number 3n of evalua-

tions of m. For the local average-based quantile estimator q̂Yt,α, we derive these

using three independent copies of Ytk for each time point tk = k/n (k = 1, . . . , n).

Here,

D̃n,1 = {Y (t1)
1,1 , Y

(t1)
1,2 , . . . , Y

(tn)
n,1 , Y

(tn)
n,2 }

is used for the main quantile estimation, and

D̃n,2 = {Y (t1)
1,3 , . . . , Y

(tn)
n,3 }

is used as test data for the data-driven bandwidth selection method described in

Remark 4, where for each k = 1, . . . , n, we compare Y
(tk)
k,1 and Y

(tk)
k,2 with Y

(tk)
k,3 .

For the importance-sampling estimator, we also use three evaluations of the

function m at each time point tk = k/n (k = 1, . . . , n), as well as additional

copies X
(tk)
k,3 , X

(tk)
k,4 , . . . of Xtk . These copies are used for the generation of Z

(tk)
k,1

and Z
(tk)
k,2 for k = 1, . . . , n and for the integral approximation by the Monte

Carlo simulation in the estimation of ctk and btk (cf., Remark 8) for k = 1, . . . , n

and N = 10, 000. To generate observations of Z
(tk)
k,1 and Z

(tk)
k,2 for k = 1, . . . , n

by applying the rejection method presented in Remark 5, we need a surrogate

model mn of m and its approximation error βn (see (3.3)), and an initial quantile

estimation and its estimation error ηn (see (3.4)). The local average-based time-

dependent quantile estimator q̂Ytk ,α described in Section 2 is used for the initial

quantile estimation. Here, ηn is unknown, because the Hölder exponent p of the

smoothness condition in Theorem 1 is unknown.

A data set Dn,1, as described in (3.1), is used to generate an initial quantile

estimation by the local average-based time-dependent quantile estimator q̂Yt,α.

To determine ηn in a data-driven way, we suggest using a bootstrap method and

the data sets Dn,1 and Dn,2. For each time point tk (k = 1, . . . , n), we choose

(tk, Y
(tk)
k,1 ) or (tk, Y

(tk)
k,2 ) randomly from Dn,1 or Dn,2 as learning or test data sets.

We repeat the procedure 30 times to obtain multiple learning and test data sets

and to estimate qYtk ,α by q̂Ytk ,α k = 1, . . . , n times. For each time point tk
(k = 1, . . . , n), we estimate the interquartile range and choose ηn as the median

of the interquartile ranges over all time points.

Next, a surrogate model mn of m can be estimated using a smoothing spline

estimator (here we use the routine Tps() in the statistics package R) on the data

set Dn,2. To estimate βn in a data-driven way, we suggest employing a cross-

validation method. First, we split Dn,2 into five parts. Then, for j = 1, . . . , 5,
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Table 1. Results for the 0.95-quantile estimation by q̂Yt,α and q̂
(IS)
Yt,α

. The values are the
maximal absolute errors, with the relative errors shown in paratheses.

Model 1 Model 2 Model 3
H 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5 0.3, 0.4, 0.5, 0.6, 0.7
ĉ 0.7 0.7 0.25
n1 = 50 0.65255 (0.51553) 0.42933 (0.25265) 0.13462 (0.13462)

q̂Yt,α n2 = 100 0.62070 (0.49037) 0.33727 (0.19845) 0.12204 (0.12204)
n3 = 200 0.61024 (0.48209) 0.29215 (0.17190) 0.11215 (0.11215)

q̂
(IS)
Yt,α

n1 = 50 0.63547 (0.50204) 0.46357 (0.27280) 0.14755 (0.14755)
n2 = 100 0.54891 (0.43366) 0.30981 (0.18229) 0.09100 (0.09100)
n3 = 200 0.45842 (0.36215) 0.24536 (0.14437) 0.07598 (0.07598)

we approximate m
(j)
n of m using the data Dn,2 without the jth part, and use the

jth part as test data to compute the absolute error of m
(j)
n for each time point

tk (k = 1, . . . , n). Finally, we determine the maximal absolute error of m
(j)
n for

each time point and choose βn as the mean of these maximal errors.

Now, Z
(t1)
1,1 , . . . , Z

(tn)
n,1 and Z

(t1)
1,2 , . . . , Z

(tn)
n,2 can be generated according to Re-

mark 5 for some Kn, where we suggest using Kn = [−ĉ · log(n), ĉ · log(n)] for

some constant ĉ>0 (cf., Table 1).

We compare the two time-dependent quantile estimators for three different

models. In all three models, we consider n1 = 50, n2 = 100, and n3 = 200

equidistant time points in the time interval [0, 1] (i.e., 150, 300 or 600 evalua-

tions of the function m, overall) and estimate the time-dependent 0.95-quantiles.

Because it is not possible to compare the errors in the supremum norm (1.2), we

compare the maximal absolute errors

max
t∈{t1,...,tn}

|q̂Yt,α − qYt,α | to max
t∈{t1,...,tn}

|q̂(IS)Yt,α
− qYt,α |. (4.1)

We repeat the estimation 100 times and compare the means of these errors.

In our first model, Xt follows the distribution N (0, (1/2 · t− t2 + 1/2)2) and

m(t, x) = t · exp(x) (t ∈ [0, 1], x ∈ R).

In the second model, Xt follows the distribution N (0, (t2 − t4 + 1/2)2) and m is

given by

m(t, x) =
√
t+ x2 (t ∈ [0, 1], x ∈ R).

In our last model, Xt follows the distribution N (0, (3/2 · t4 − 3/2 · t2 + 1)2) and

m is given by
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t

q̂(
I
S
)

Y
t
,α

Figure 3. The 0.95-quantile of the force at the point of impact estimated by q̂
(IS)
Yt,0.95

.

m(t, x) =


0 , for x ≤ 0,

sin(x) , for 0 < x < π/2

1 , for x ≥ π/2.

(t ∈ [0, 1], x ∈ R),

The results for both estimators are presented in Table 1. Moreover, Table 1 shows

the set of possible bandwidths H for both estimators and the chosen constant ĉ in

the interval Kn. As expected, the importance-sampling time-dependent quantile

estimation q̂
(IS)
Yt,α

outperforms the local average-based quantile estimation q̂Yt,α as

the sample size increases. Moreover, for both estimators, the estimation becomes

more accurate as the sample size increases. A comparison of the errors within

the three different models shows that the relative error in Model 1 is larger than

those in the other models. We believe this is because the distributions in Model

1 have much larger tails than those of the other models, which makes estimating

the quantiles more difficult.

4.2. Analysis of the effect of an aging spring on the force at the point

of impact

Finally, we apply the proposed estimation methods to the practical problem

described in the introduction. As before, we use three observations of Yt at
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n = 100 time points, that is, 300 evaluations of the computer experiment m. As

in the previous subsection, for the importance-sampling estimator, a surrogate

model mn of the underlying function m is estimated using a smoothing spline

estimator. The bandwidth h is chosen as described in Remark 7. Because the

true quantiles are unknown, we present only the 0.95-quantiles estimated by the

importance-sampling estimator q̂
(IS)
Yt,0.95

. The results are shown in Figure 3. The

figure shows that less force acts on the point of impact as the spring stiffness

decreases over time.

Supplementary Material

The Supplementary Material contains the proofs of Theorem 1 and Theo-

rem 2.
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