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Abstract: Predictions of spatial processes using large data sets have become an

important area of research. Current solutions often include placing strong assump-

tions on the error process associated with the data. Specifically, it is typically

assumed that the data are equal to the spatial process of principal interest plus

a mutually independent error process, which avoids modeling confounded cross-

covariances between the signal and the noise within an additive model. In this

study, we consider an alternative latent-process model, in which we assume that

the error process is spatially correlated and correlated with the latent process of

interest. We show that such error-process dependencies allow us to obtain precise

predictions and prevent confounded error covariances within an expression of the

marginal distribution of the data. We refer to these covariances as “nonconfounded

discrepancy error covariances.” In addition, we develop a “process augmentation”

technique as a computation aid. The proposed method is demonstrated using sim-

ulated examples and an analysis of a large data set from the U.S. Census Bureau’s

American Community Survey.

Key words and phrases: Bayesian, low rank, machine learning, mixed effects model,

nonresponse, parsimony.

1. Introduction

We introduce a general class of additive spatial models, where it is assumed

that the error process is spatially correlated and correlated with the latent process

of interest. Adopting these discrepancy error covariances is important in a variety

of applications. For example, in federal/official statistics, the assumption of an

independent “survey error” is standard and is a key component of the ubiquitous

Fay−Herriot model (Fay and Herriot (1979)). However, in many settings, it is

well known that these errors are dependent. For example, disseminated estimates

are sometimes modified/suppressed based on the value of the latent process owing

to disclosure limitations, which may induce correlations between the survey error

and the latent process (e.g., see Quick et al. (2015) for a review in a spatial
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setting). The error induced by nonresponse may be due to the value of the

latent process, and consequently, we expect cross-correlations between the error

process and the latent process (Groves et al. (2001)). In addition, sampling

designs are often motivated by the spatial structure of the latent process, which

may result in correlations between the latent process and the survey error (Wikle

and Royle (2005); Holan and Wikle (2012)). Thus, we investigate whether such

dependencies exist among American Community Survey (ACS) period estimates

(e.g., see Torrieri (2007)).

Although it is reasonable to expect that such discrepancy error covariances

exist, they are often ignored. For example, standard spatial statistics textbooks

focus almost exclusively on the case of a spatially correlated error term that is

independent of a mutually independent error term (Cressie (1993); Cressie and

Wikle (2011); Banerjee, Carlin and Gelfand (2015)). This is partially because

there is a problem of confounding between the covariances of the signal and

those of the noise (Cressie (1993)). Henceforth, we use the terms “signal” and

“latent process” interchangeably. Confounding between fixed effects and spatial

random effects has become an important research topic in the spatial statistics

literature (e.g., Clayton, Bernardinelli and Montomoli (1993); Reich, Hodges

and Zadnik (2006); Hodges and Reich (2011)). Recently, spatial basis functions

(e.g., Moran’s I basis functions) have been developed to account for confounding

within a spatial setting (Griffith (2000, 2002, 2004); Hughes and Haran (2013);

Bradley, Holan and Wikle (2015)), and are related to the classical Moran’s I

statistic (Moran (1950)). However, to the best of our knowledge, no studies have

examined confounding between the covariances of the signal and those of the

discrepancy error.

Thus, the goal of this study is to provide a way to leverage error-process

dependencies in a manner that is computationally feasible and that accounts

for confounding in the marginal covariance matrix associated with the data. We

achieve this goal by introducing non-negligible discrepancy error covariances that

are not present in the marginal distribution of the data. We refer to this class of

measurement-error covariance matrices as nonconfounded discrepancy-error co-

variances. Thus, we provide a general form of nonconfounded discrepancy-error

covariance matrices and provide several parameterizations that can be used in

practice. In particular, we show that the standard uncorrelated discrepancy-error

assumption is a special case of the nonconfounded discrepancy-error covariances.

Then, we provide parameterizations that represent slight departures from the

standard assumption of uncorrelated discrepancy errors. To aid researchers in
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assessing the appropriateness of these assumptions, we develop a covariance pe-

nalized error (Efron (2004)) as a measure of the out-of-sample error.

To date, there are no competing spatial methodologies that capitalize on the

correlations between the error and the latent process in such a computationally

efficient manner. These dependencies lead to improvements in the predictions of

the latent process. However, the general approach of leveraging the dependence

between an error process and a latent process has been exploited in settings other

than those of spatial statistics. For example, the time-series literature documents

a methodological approach referred to as “leverage effects,” applied in stochastic

volatility models (e.g., see Black (1976) for an early reference), where volatility

is assumed to be correlated with the latent process. Similar relationships are

employed in “feedback models” (Zeger and Liang (1991)).

To aid our computations we use a type of data-augmentation approach (e.g.,

see Tanner and Wong (1987); Albert and Chib (1993); Wakefield and Walker

(1999); Wolpert and Ickstadt (1998) among others). In our implementation, we

augment the process and not the data. Hence, we refer to this strategy as “pro-

cess augmentation.” The implementation of our process-augmentation approach

involves two steps. First we fit any well-defined Bayesian spatial model (e.g., see

Banerjee et al. (2008); Cressie and Johannesson (2008); Lindgren, Rue and Lind-

ström (2011); Datta et al. (2014); Nychka et al. (2015); Katzfuss (2017)). The

second step involves a posterior predictive simulation. Thus, our proposed model

can be viewed as a diagnostic tool; that is, after fitting a Bayesian statistical

model, our method checks whether the predictions can be improved by incorpo-

rating discrepancy-error covariances. Additionally, this two-step procedure shows

that the estimation of the covariances associated with the data and the regression

parameters are unaffected by incorporating nonconfounded discrepancy-error co-

variances.

The remainder of the paper is organized as follows. In Section 2, we in-

troduce the nonconfounded discrepancy-error covariances and describe several

special cases. In addition, we provide the kriging predictor (Cressie (1993)) to

aid in the interpretation of these covariances. Then, in Section 3 we describe

how to address out-of-sample performance and robustness when we depart from

the model assumptions. In Section 4, we describe the implementation using a

process-augmentation approach. In Section 5, we use simulation studies to il-

lustrate the high predictive performance of our method, and demonstrate the

method using a large data set of ACS estimates defined on census tracts. Section

6 concludes the paper. For convenience of exposition, the proofs of the tech-
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nical results, model selection, and model fitting are provided as Supplementary

Material.

2. Methodology

We start our exposition with the motivating difficulty of incorporating dis-

crepancy error covariances, namely, the presence of confounded cross-covariances.

Then, we introduce the nonconfounded discrepancy-error covariance matrix (Sec-

tion 2.1). Next, we provide several special cases and properties of the matrix in

Sections 2.2−2.5. To aid in interpreting the matrix, we discuss these special cases

in the context of kriging in Section 2.6.

2.1. Nonconfounded discrepancy-error covariances

Suppose we observe data at a finite number of locations, denoted by s1, . . . ,

sm ∈ D ⊂ Rd, where D represents the spatial domain of interest. The observed

data are denoted by {Z(s1), . . . , Z(sm)} and, in general, are realized through a

spatial process. Here, Z(s) is defined at unobserved locations s /∈ {s1, . . . , sm}.
We are interested in predictions at the set of locations {u1, . . . ,un}, which is not

necessarily equal to the set {s1, . . . , sm}. We follow the hierarchical modeling

approach commonly used in the spatial statistics literature (e.g., see standard

textbooks, Cressie and Wikle (2011); Banerjee, Carlin and Gelfand (2015)) and

assume Z(s) = Y (s) + δ(s); s ∈ D, where Y (·) represents the latent process of

interest. The data process represents a corrupted version of the latent process,

where the corruption is represented additively with the error process δ(·). The

spatial Gaussian process modeling literature assumes that both Y (s) and δ(s)

are Gaussian for any s ∈ D.

Let µ(·) be the mean function for both Y (·) and Z(·), and let the vectors z =

{Z(s1), . . . , Z(sm)}>, y = {Y (u1), . . . , Y (un)}>, δ ≡ {δ(u1), . . . , δ(un)}>, and

µ ≡ {µ(s1), . . . , µ(sm)}>. In addition, define the n× n matrices ΣY = cov(y),

Σδ = cov(δ), and ΣY,δ = cov(y, δ). Then, the probability density function of z

is

f(z|µ,ΣY = CY ,Σδ = Cδ,ΣY,δ = CY,δ)

∝ |CY + Cδ + 2CY,δ|−1/2exp

{
−1

2
(z− µ)> (CY + Cδ + 2CY,δ)

−1 (z− µ)

}
,

(2.1)

where CY , Cδ, and CY,δ are distinct values in the parameter spaces of ΣY , Σδ,

and ΣY,δ, respectively. Note that we set {s1, . . . , sm} = {u1, . . . ,un}. Although



ERRORS CORRELATED WITH THE LATENT PROCESS 85

this is not always true, the method generalizes easily to this case. The confound-

ing problem is immediately apparent in (2.1). For example, the commutative

property of the matrices yields,

f(z|µ,ΣY = CY ,Σδ = Cδ,ΣY,δ = CY,δ)

= f(z|µ,ΣY = Cδ,Σδ = CY ,ΣY,δ = CY,δ)

= f

(
z|µ,ΣY = CY ,Σδ = 2CY,δ,ΣY,δ =

1

2
Cδ

)
.

To mitigate these confounding issues, it is often assumed that ΣY,δ is an n × n
matrix of zeros (denoted by 0n,n) and Σδ = σ2In, where σ2 > 0 and In is an

n× n identity matrix. (e.g., see Banerjee et al. (2008); Cressie and Johannesson

(2008); Finley et al. (2009); Lindgren, Rue and Lindström (2011); Sang and

Huang (2012); Nychka et al. (2015) among others). This assumption gives

f(z|µ,ΣY = Σw,Σδ = σ2In,ΣY,δ = 0n,n)

∝ |Σw + σ2In|−1/2exp

{
−1

2
(z− µ)>

(
Σw + σ2In

)−1
(z− µ)

}
, (2.2)

where Σw is a generic positive semi-definite matrix in the parameter space of

ΣY . Here, confounded cross-covariances are not present in the likelihood for z.

However, we are no longer able to capitalize on the dependence between Y (·) and

δ(·) and the covariances between δ(·) at different locations. Therefore, we intro-

duce a nonzero structure to the cross-covariance parameter ΣY,δ and introduce

a compatible (possibly nondiagonal) Σδ to obtain the likelihood in (2.2). This

leads to what we call the “General Assumption.”

General Assumption: Let Σδ = ΣY + Σw − 2ΣY,w +σ2In and ΣY,δ = ΣY,w −
ΣY , where Σw is a positive semi-definite matrix, ΣY,w is an n × n real matrix,

and

cov

{(
y

δ

)
|ΣY ,Σw,ΣY,w, σ

2

}

=

(
ΣY ΣY,w −ΣY

Σ>Y,w −Σ>Y ΣY + Σw − 2ΣY,w + σ2In

)
(2.3)

is positive semi-definite.

Now, substituting the General Assumption into (2.1), we obtain

f(z|µ,ΣY ,Σδ = ΣY + Σw − 2ΣY,w + σ2In,ΣY,δ = ΣY,w −ΣY )

∝ |Σw + σ2In|−1/2exp

{
−1

2
(z− µ)>

(
Σw + σ2In

)−1
(z− µ)

}
, (2.4)
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because,

cov(z|ΣY ,Σw,ΣY,w, σ
2)

= cov(y|ΣY ,Σw,ΣY,w, σ
2) + cov(δ|ΣY ,Σw,ΣY,w, σ

2)

+ 2cov(y, δ|ΣY ,Σw,ΣY,w, σ
2)

= ΣY + ΣY + Σw − 2ΣY,w + σ2I + 2ΣY,w − 2ΣY

= Σw + σ2In.

The likelihood in (2.4) is of the same form as the likelihood in Equation (2.2),

which did not have confounded cross-covariances. The difference in our approach

is that we also have correlations between Y (·) and δ(·). That is,

cov (y, δ) = ΣY,w −ΣY .

Thus, the General Assumption gives us a Gaussian likelihood in (2.2) with non-

confounded cross-covariances, while simultaneously allowing for cross-correlations

between the latent process and the error process.

A special case of the General Assumption is the more conventionally used

uncorrelated signal and noise, with no cross-spatial dependence between the dis-

crepancy errors. In particular, let Σw = ΣY,w = ΣY , such that,

cov

{(
y

δ

)
|ΣY ,Σw,ΣY,w, σ

2

}
=

(
ΣY 0n,n
0n,n σ2In

)
, (2.5)

which is positive definite. Henceforth, we refer to Σw = ΣY,w = ΣY as the

“Standard Assumption.” This helps to interpret the new matrix-valued param-

eters Σw and ΣY,w. That is, as the difference between ΣY,w and ΣY increases,

we obtain a larger cross dependence between the signal Y (·) and the noise δ(·).
The moment properties of this model also help to interpret each matrix-valued

parameter.

Because we are primarily interested in developing nonconfounded additive

error covariances, for illustration purposes, we use standard “off-the-shelf” co-

variance functions to define ΣY and Σw. In particular, when s1, . . . , sn are

continuous, we use the Matérn covariogram (Matérn (1960)). When s1, . . . , sn
define a lattice, we use a conditional autoregressive (CAR) model (Besag (1974)).

In general, our framework can be implemented using any well-defined covariance

function.

2.2. Moment properties of the general assumption

This section discusses basic moment results, which lead to illuminating in-
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terpretations of Σw and ΣY,w defined in the General Assumption.

Proposition 1 (Moment Properties). Let the data vector z have a probability

density function defined as in (2.1). Suppose the General Assumption from Sec-

tion 2.1 holds. Then, we have the following moment results:

a. cov(z|Σw, σ
2) = Σw + σ2In;

b. E(z|Σw, σ
2) = µ;

c. cov(z,y|Σw, σ
2) = Σ>Y,w;

d. cov(z|y,Σw, σ
2) = Σw + σ2In −Σ>Y,wΣ−1Y ΣY,w;

e. E(z|y,Σw, σ
2) = µ+ Σ>Y,wΣ−1Y (y − µ).

Proof. The proof follows immediately from the General Assumption and the rules

for the conditional and marginal distributions of Gaussian random vectors (Rav-

ishanker and Dey (2002)).

Proposition 1(a,b) are the motivating features discussed in Section 2.1 (i.e.,

the marginal density of z does not contain confounded cross-correlations). How-

ever, they also show that the off-diagonals of Σw represent the cross-spatial cor-

relations of the data, and that σ2 represents the extra variability not accounted

for in Σw. These play a similar role to the nugget in classical spatial statistics

(see Cressie (1993); Cressie and Wikle (2011); and Banerjee, Carlin and Gelfand

(2015) for standard references). In addition, Proposition 1(c) shows that Σ>Y,w
represents the cross-covariance between z and y.

Proposition 1(d,e) imply that the data are not conditionally unbiased and

are not conditionally uncorrelated, given the latent process Y (·). In the ACS

example (Section 5.3), Z(·) represents the disseminated (log transform) median

income of individuals in a particular census tract, whereas Y (·) represents the

actual (log transform) median income of individuals in the census tract. The

difference between Y (·) and Z(·) may be due to a combination of the sampling

design, a nonresponse bias, modifications due to disclosure avoidance concerns,

and many other sources of error. Thus, it may be reasonable to assume that the

disseminated ACS data contain some bias and/or unaccounted for covariability

between the survey errors.

2.3. Special Case 1

In this section, we consider a slight departure from the Standard Assumption

that Σw = ΣY,w = ΣY . Specifically, we assume Σw = ΣY,w 6= ΣY . In this case,
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the expression in (2.3) is given by

cov

{(
y

δ

)}
=

(
ΣY ΣY,w −ΣY

Σ>Y,w −Σ>Y ΣY + Σw − 2ΣY,w + σ2In

)

=

(
ΣY −Σ1

−Σ1 Σ1 + σ2In

)
, (2.6)

where Σ1 ≡ ΣY −Σw. In Appendix A of the Supplementary Material, we show

that (2.6) is positive definite when Σw and Σ1 are positive definite. We refer

to (2.6) as “Special Case 1.” Here, we see an indirect relationship between the

signal-to-noise cross-covariance and the marginal covariance of the discrepancy

error. In addition, Special Case 1 leads to conditionally unbiased data (substitute

Σw = ΣY,w 6= ΣY into Proposition 1(e)). Some might consider Special Case 1 to

be more realistic in an official statistics setting. As discussed in the Introduction,

federal agencies expend much effort to produce highly accurate estimates; how-

ever, there is no guarantee that discrepancy error correlations are not present in

these estimates.

2.4. Special Case 2

Consider the assumption that Σw 6= ΣY,w = ΣY . In this case, the expression

in (2.3) is given by

cov

{(
y

δ

)}
=

(
ΣY ΣY,w −ΣY

Σ>Y,w −Σ>Y ΣY + Σw − 2ΣY,w + σ2In

)

=

(
ΣY 0n,n
0n,n Σ2 + σ2In

)
, (2.7)

where Σ2 ≡ Σw − ΣY . It follows immediately that (2.7) is positive definite,

provided that Σ2 and ΣY are positive definite. We refer to the assumption that

Σw 6= ΣY,w = ΣY as “Special Case 2.” In (2.7), we see that covariances are

present within the discrepancy errors, but that cross-covariances between the

signal and the noise are not present. In addition, Proposition 1(e) shows that

Special Case 2 implies that the data are conditionally unbiased for the latent

process.

In general, any valid covariance function can be used to represent Σ2. For

example, when {s1, . . . , sn} consists of point-referenced locations, we define the

(i, j)-th element of Σ2 as being formed by the Matérn covariogram with a cor-

relation parameter τ > 0 and a variance parameter σ2Y > 0 (Matérn (1960)).

When {s1, . . . , sn} consists of areal locations, we can define Σ2 as the covariance
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from a CAR model with a correlation parameter τ > 0 and a variance parameter

σ2Y > 0 (Besag (1974)). See Appendix B of the Supplementary Material for more

details.

Special Case 2 is equivalent to the Standard Assumption after a transfor-

mation. Specifically, let z∗ = ((1/σ2)Σ2 + In)−1z. In a similar manner, define

y∗ = ((1/σ2)Σ2 +In)−1/2y and δ∗ = ((1/σ2)Σ2 +In)−1/2δ. Then, it follows that

cov

{(
y∗

δ∗

)}
=

(
((1/σ2)Σ2 + In)−1/2ΣY ((1/σ2)Σ2 + In)−1/2 0n,n
0n,n σ2In

)
,

which has the same form as (2.5). Consequently, in Section 5 we focus less on

Special Case 2 than we do on other choices because implementing Special Case 2

is identical (after a transformation) to implementing a model using the Standard

Assumption.

2.5. Special Case 3

In this section, we consider a slight departure from the Standard Assumption

that Σw = ΣY,w = ΣY . Specifically, we assume ΣY,w 6= Σw = ΣY . In this case,

the expression in (2.3) is given by

cov

{(
y

δ

)}
=

(
ΣY ΣY,w −ΣY

Σ>Y,w −Σ>Y σ2In − 2(ΣY,w −ΣY )

)

=

(
ΣY Σ

Σ> σ2In − 2Σ

)
, (2.8)

where Σ ≡ ΣY,w −ΣY . In Appendix A of the Supplementary Material, we show

that (2.8) is positive semi-definite, provided that ΣY and ΣY −Σ>Y,wΣ−1Y ΣY,w are

both positive semi-definite. We refer to the assumption that ΣY,w 6= Σw = ΣY

as “Special Case 3.”

2.6. Special Case 4

Assume that Σw ≈ ΣY and ΣY,w ≈ ΣY , where Σw and ΣY,w are defined as

projections onto a reduced dimensional space. Specifically, let Ψ ∈ Rn×Rr be an

n×r (r ≤ n) matrix consisting of spatial basis functions evaluated at {s1, . . . , sn}.
Several examples of Ψ are provided in the Appendix C of the Supplementary

Material. Then, we assume that Σw is the left-and-right-projection of ΣY onto

the column space of Ψ, and that ΣY,w is the right projection of ΣY onto the

column space of Ψ. That is,
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Σw = Ψ

(
arg min
K∈Rr×Rr

‖ΨKΨ> −ΣY ‖2F
)

Ψ>

= Ψ(Ψ>Ψ)−1Ψ>ΣY Ψ(Ψ>Ψ)−1Ψ>, (2.9)

ΣY,w = arg min
C∈Rn×Rr

‖CΨ> −ΣY ‖2F = ΣY Ψ(Ψ>Ψ)−1Ψ>, (2.10)

respectively. The operator ‖ · ‖2F is known as the Frobenius norm, and for any

square real-valued matrix M, we have that ‖M‖2F = trace(M>M). The expres-

sions on the far right-hand side of (2.9) and (2.10) are an immediate consequence

of a result in Cressie and Johannesson (2008). For notational convenience, denote

the hat matrix P = Ψ(Ψ>Ψ)−1Ψ>.

In this case, the expression in (2.3) is given by

cov

{(
y

δ

)}
=

(
ΣY −ΣY (In −P)

−(In −P)ΣY ΣY (In −P)− (In −P)ΣY P + σ2In

)
. (2.11)

In Appendix A of the Supplementary Material, we show that (2.11) is positive

semi-definite, provided that ΣY is positive semi-definite. The cross-covariance

term between the signal and the noise is determined by the covariance of y

and the basis functions evaluated at all locations in {s1, . . . , sn}. Thus, it is

especially important that the basis functions are chosen carefully. In Appendix C

of the Supplementary Material, we describe an algorithm for selecting the basis

functions using an out-of-sample measure of error (see Section 3).

There is an interesting relationship between (2.11) and the Standard As-

sumption. That is, if we set ΣY = PHP for some n× n positive definite matrix

H, we obtain,

cov

{(
y

δ

)}
=

(
PHP 0n,n
0n,n σ2In

)
.

Thus, to capture discrepancy-error dependencies, we require that the columns of

ΣY fall within the orthogonal column space of P. In our empirical results, we

check whether all eigenvectors of ΣY are in the orthogonal complement space of

P.

2.7. The kriging predictor with nonconfounded discrepancy-error co-

variances

The traditional kriging predictor (e.g., see Matheron (1963); Cressie (1990)

among others) is a standard optimal predictor (in terms of minimizing the mean

squared prediction error (MSPE)) in spatial statistics, and should be discussed

under the General Assumption. In Appendix A of the Supplementary Material,
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we show that the kriging predictor, assuming Σw 6= ΣY,w 6= ΣY , is given by

E(y|z,µ,Σw,ΣY,w,ΣY , σ
2) = µ+ Σ>Y,w

(
Σw + σ2In

)−1
(z− µ). (2.12)

This kriging predictor has the following covariance (see Appendix A of the Sup-

plementary Material):

cov(y|z,µ,Σw,ΣY,w,ΣY , σ
2) = ΣY −Σ>Y,w

(
Σw + σ2In

)−1
ΣY,w. (2.13)

The special cases discussed in Sections 2.1−2.5 lead to illuminating special cases

of the kriging predictor.

Proposition 2 (Kriging Predictors). Let the data vector z have a probability

density function defined as in (2.1). Suppose the General Assumption from Sec-

tion 2.1 holds. Then, we have the following expressions for the kriging predictor

and kriging covariances:

a. Standard Assumption (Σw = ΣY,w = ΣY ):

E(y|z) = µ+ Σw

(
Σw + σ2In

)−1
(z− µ);

cov(y|z) = Σw −Σw

(
Σw + σ2In

)−1
Σw.

b. Special Case 1 (Σw = ΣY,w 6= ΣY ):

E(y|z) = µ+ Σw

(
Σw + σ2In

)−1
(z− µ);

cov(y|z) = ΣY −Σw

(
Σw + σ2In

)−1
Σw.

c. Special Case 2 (Σw 6= ΣY,w = ΣY ):

E(y|z) = µ+ ΣY

(
Σw + σ2In

)−1
(z− µ);

cov(y|z) = ΣY −ΣY

(
Σw + σ2In

)−1
ΣY .

d. Special Case 3 (ΣY,w 6= Σw = ΣY ):

E(y|z) = µ+ Σ>Y,w
(
Σw + σ2In

)−1
(z− µ);

cov(y|z) = Σw −Σ>Y,w
(
Σw + σ2In

)−1
ΣY,w.

e. Special Case 4 (Σw ≈ ΣY,w ≈ ΣY ):

E(y|z) = µ+ ΣYP
(
Σw + σ2In

)−1
(z− µ);

cov(y|z) = ΣY −ΣYP
(
Σw + σ2In

)−1
PΣY .

Proof. The proof follows immediately from the General Assumption and the rules

for the conditional and marginal distributions of Gaussian random vectors (Rav-

ishanker and Dey (2002)).
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In Proposition 2 (a,b), the kriging predictors are the same. However, the

kriging variances are larger in Special Case 1 than are those under the Standard

Assumption. In Proposition 2 (c,d,e), both the kriging predictor and kriging

covariance differ from the expressions developed under the Standard Assumption.

In Proposition 2(d), if we set ΣY,w = ΣY P and Σw = PΣY P, we obtain the

same kriging predictor as in Special Case 4. Henceforth, we use ΣY,w = ΣY P

when applying Special Case 3.

3. An Empirical Measure of an Out-of-Sample Error

The strategies presented in Sections 2.3−2.5 are all based on making a small

change to the Standard Assumption that Σw = ΣY,w = ΣY . By providing

flexible modeling assumptions, it is incumbent on us to provide an empirical

measure to assess the appropriateness of these new assumptions in practice. We

propose the following criterion:∑
s

{
Z(s)− Ŷ (s)

}2
+ 2
∑
s

{Z(s)− Y (s)} Ŷ (s)

=
∑
s

{
Y (s)− Ŷ (s)

}2
+
∑
s

{Z(s)− Y (s)}2 + 2
∑
{Z(s)− Y (s)}Y (s), (3.1)

where Ŷ (s) is a generic real-valued function of z, which represents a prediction at

s ∈ D. Note that the left-hand side of Equation (3.1) is the so-called covariance

penalized error introduced in Efron (1983), and is a measure of the out-of-sample

error. This out-of-sample criterion is preferable to others because it is general

enough to capture nonconfounded discrepancy-error covariances. In practice, we

use the posterior expected value of the cross-product between Z(s) − Y (s) and

Ŷ (s) to estimate the cross-product term on the left-hand side of (3.1). See Ap-

pendix B of the Supplementary Material for more details on the implementation.

In Special Cases 1 and 3, we use the estimated covariance penalized error

to select the parameters that define Σ1 and Σ2. Recall that we consider Matérn

and CAR model specifications of the matrices. Similarly, in Special Case 4, the

choice of basis functions evaluated at pre-specified locations partially defines the

discrepancy-error covariances. Consequently, we provide a stepwise algorithm

that uses the covariance penalized error in (3.1) (see Appendix C of the Supple-

mentary Material).
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4. Bayesian Implementation: Process Augmentation

4.1. Process augmentation

It is often useful to introduce an artificial latent random variable such that,

upon marginalization, we obtain the original joint probability function (e.g., see

Tanner and Wong (1987); Albert and Chib (1993); Wakefield and Walker (1999);

Wolpert and Ickstadt (1998) among others). We extend this strategy to our

setting by developing a similar “process-augmentation” approach. Specifically,

let

Z(s) = Y (s) + δ(s), (4.1)

δ(s) = w(s)− Y (s) + ε(s); s ∈ D, (4.2)

where w(s)−Y (s) 6= 0 for at least one location s ∈ D, w(·) is a Gaussian process

with mean function µ(·), and ε(·) is a mutually independent error term with mean

zero and variance σ2.

Let zn = {Z(u1), . . . , Z(un)}>, w = (w(u1), . . . , w(un))>, and ε = (ε(u1),

. . . , ε(un))>, such that (4.1) becomes

zn = y + δ, (4.3)

δ = w− y + ε. (4.4)

Let cov (y,w) ≡ ΣY,w and cov (w) ≡ Σw. Then, from (4.3) and (4.4), it follows

that

ΣY,δ = ΣY,w −ΣY ,

Σδ = ΣY + Σw − 2ΣY,w + σ2In,

yielding the General Assumption. Many of the special cases arise from Equations

(4.3) and (4.4). For example, Special Case 3 occurs when we define cov(w) =

cov(y). The remaining special cases are organized into Proposition 3.

Proposition 3 (Process Augmentation, Special Cases). Assume the model de-

scribed in (4.1) and (4.2); complete regularity conditions are provided in Ap-

pendix D of the Supplementary Material. Let {s1, . . . , sn} ∈ D be a generic

collection of points in D. Suppose the General Assumption from Section 2.1

holds. Then, we have the following:

a. The Standard Assumption (Σw = ΣY,w = ΣY ) is obtained by assuming

w(·) ≡ Y (·).

b. Special Case 1 (Σw = ΣY,w 6= ΣY ) is obtained by assuming Y (·) ≡ w(·) +

εY (·), where εY (·) is independent of w(·) and is a Gaussian process.
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c. Special Case 2 (Σw 6= ΣY,w = ΣY ) is obtained by assuming w(·) ≡ Y (·) +

εw(·), where εw(·) is independent of Y (·) and is a Gaussian process with

mean zero.

d. Special Case 3 (Σw = ΣY 6= ΣY,w) is obtained by assuming w(·) and Y (·)
are identically distributed, where w(·) and Y (·) are dependent Gaussian pro-

cesses.

e. Special Case 4 (Σw ≈ ΣY,w ≈ ΣY ) is obtained by assuming w ≡ µ+Ψη+ξ,

where Ψ is defined in Section 2.6, and η is a mean-zero Gaussian random

vector such that cov(η) = (Ψ>Ψ)−1Ψ>ΣY Ψ(Ψ>Ψ)−1 and cov(y,η) =

ΣY Ψ(Ψ>Ψ)−1, and ξ is an independent n-dimensional Gaussian random

vector.

Proof. The proof follows immediately from the General Assumption and the rules

for the conditional and marginal distributions of Gaussian random vectors (Rav-

ishanker and Dey (2002)).

In our exposition, the process w(·) is interpreted as an artificial quantity,

which aids in the implementation (see the discussion in Tanner and Wong (1987);

Albert and Chib (1993); Wakefield and Walker (1999); Wolpert and Ickstadt

(1998) among others). However, several current methods interpret w(·) as an

approximation of Y (·) (Banerjee et al. (2008); Cressie and Johannesson (2008);

Sang and Huang (2012)), but still paradoxically assume the Standard Assumption

that w(·) ≡ Y (·). We assert that it is more realistic to assume that w(·) is

separate from Y (·) when w(·) represents an approximation of Y (·).
Consider Special Case 4, which, from Proposition 3, is equivalent to assuming

w(s) =
∑r

i=1 ψi(s)ηi, where {ηi} are random effects and {ψi} are real-valued

spatial basis functions. Consider the Karhunen−Loéve representation of a spatial

random process Y (·) (Karhunen (1947); Loéve (1978)):

Y (s) =

∞∑
i=1

ψi(s)αi, (4.5)

where {ψi(·)} are orthonormal and the random variables {αi} are uncorrelated,

with mean zero and variance {λi}. Model w(·) using the truncated Karhunen-

−Loéve expansion,

w(s) =

r∑
i=1

ψi(s)αi,

where, for “large” r, w(·) approximates Y (·). Now, setting w(·) ≡ Y (·) under
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the Standard Assumption is the same as claiming
∞∑

i=r+1

ψi(s)αi = 0, (4.6)

Y (s) =

r∑
i=1

ψi(s)αi, (4.7)

Z(s) =

r∑
i=1

ψi(s)αi + ε(s), (4.8)

for every s ∈ D. Stein (2014) provides inferential problems with the KL-

divergence measure when making the assumptions given in (4.6), (4.7), and (4.8).

Some have tried to adjust for this by using the Standard Assumption and an arti-

ficial model (i.e., tapered covariance, or white noise) for
∑∞

i=r+1 ψi(s)αi, typically

chosen for computational reasons (Finley et al. (2009); Sang and Huang (2012)).

Instead of using an artificial model for
∑∞

i=r+1 ψi(s)αi, we choose to model Y (·)
in (4.5) directly through Special Case 4.

For this heuristic, Special Case 4 can be viewed as the following assumption:

Y (s) =

∞∑
i=1

ψi(s)αi,

Z(s) =

r∑
i=1

ψi(s)αi + ε(s).

Thus, if the Standard Assumption is correct, we can use our modeling approach to

make correct assumptions for Y (·) and
∑∞

i=r+1 ψi(s)αi, but use an approximation

to model Z(·). In this case, the discrepancy-error variances are induced through

a misspecified/approximated model for Z(·).
In Section 5, we compare the predictor under Special Case 4 with several

methods that assume an approximated process w(·) that is equivalent to the

exact process Y (·). Specifically, we compare it to the full-scale approximation

(FSA), modified predictive processes (MPP), and Bayesian fixed-rank kriging

(FRK) (Cressie and Johannesson (2008); Finley et al. (2009); Sang and Huang

(2012)). See Appendix E of the Supplementary Material for a review of these

methods.

4.2. Posterior predictive distributions

The presence of w(·) can be used to obtain computationally efficient predic-

tions. The following technical results demonstrate this for the Bayesian setting
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by showing a useful conditional independence property of the posterior predictive

distribution of y.

Theorem 1. Let S ⊂ D ⊂ Rd be an open set. For each k ∈ N = {1, 2, 3, . . . }
and finite collection of locations s1, . . . , sk ∈ S, define the n-dimensional ran-

dom vectors w = {w(sk+1), . . . , w(sk+n)}>, z = {Z(sk+1), . . . , Z(sk+n)}>, and

ε = {ε(sk+1), . . . , ε(sk+n)}>, for {sk+1, . . . , sk+n} ∈ D. Suppose all marginal

and conditional densities are proper (see Regularity Conditions in Appendix D of

the Supplementary Material). Furthermore, let f(Y (s1), . . . , Y (sk)|w,θ) be Kol-

mogorov consistent. Then, there exists a probability space (with sample space Ω,

sigma-algebra A, and probability measure P) and stochastic process Y : S ×Ω→
R, such that

P {Y (s1) ∈ A1, . . . , Y (sk) ∈ Ak}

=

∫
A1

. . .
∫
Ak

f(Y (s1), . . . , Y (sk)|w,θ, z)dY (s1), . . . , dY (sk)

=

∫
A1

. . .
∫
Ak

f(Y (s1), . . . , Y (sk)|w,θ)dY (s1), . . . , dY (sk), (4.9)

for all s1, . . . , sk ∈ S, k ∈ N, and measurable sets Ai ⊂ R; i = 1, . . . , k.

Proof. See Appendix F of the Supplementary Material.

The conditional independence property in Equation (4.9) has been referred

to as “Bayesianly unidentified” (e.g., see Banerjee, Carlin and Gelfand (2015,

P. 157)). However, this differs from no Bayesian learning, which implies that

f(Y (s1), . . . , Y (sk)|w,θ, z) = f(Y (s1), . . . , Y (sk)). This independence property

is not present in our modeling framework. To clarify the model structure, we

present a pictorial representation of the augmented joint probability density func-

tion in Figure 1.

In practice, we do not observe the entire spatial field D, nor do we predict

over the (possibly) uncountably infinite spatial domain. Thus, the following

corollary is important for practical purposes.

Corollary 1. Define the n-dimensional random vector y = {Y (u1), . . . , Y (un)}>

and the m-dimensional random vectors w = {w(s1), . . . , w(sm)}>, z = {Z(s1),

. . . , Z(sm)}>, and ε = {ε(s1), . . . , sm}>, for {s1, . . . , sm} ∈ D and {s1, . . . , sn}
⊂ Rd ∈ D. Let (Ω,A,P) denote the probability space for y, w, z, and ε. Assume,

for every ω ∈ Ω and h ∈ Rm, the set {ω : z(ω) = h} = {ω : ε(ω) = h − yZ(ω)}
(i.e., the additive model holds, almost surely). In addition, assume that y and ε
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Figure 1. A pictorial representation of the process augmentation. Circles represent the
parameters, and squares represent the random vectors that stack the data, augmented
process, and latent process over different spatial locations. These vectors are defined in
Corollary 1. The n-dimensional vector z is the observed data vector, w is the associated
n-dimensional vector of the augmented values, and y is an N -dimensional vector of the
values of the latent process.

are mutually independent. Let the probability density functions for y|w,θ, z and

y|w,θ exist, and denote them as f(y|w,θ, z) and f(y|w,θ), respectively. Let θ

be a generic k-dimensional real-valued parameter vector. Then, f(y|w,θ, z) =

f(y|w,θ).

Proof. The proof follows immediately from Theorem 1 by setting k = n.

In Corollary 1, the probability density function f(y|w,θ, z) is the so-called

predictive distribution for y (Berger (1985)). That is, if w[0] and θ[0] are gener-

ated from their respective posterior distributions f(w,θ|z), then a random vector

with probability density function f(y|z) can be simulated using f(y|w[0],θ[0], z).

This leads to a composition sampling approach for the model implementation,

where we first simulate w[0] and θ[0] from f(w,θ|z), and then simulate them

from f(y|w[0],θ[0]).

This implies that two steps are required to obtain posterior replicates of y:

(1) simulating from the posterior distribution of w and θ; and (2) simulating

from f(y|w,θ).

4.3. Bayesian inference of the latent process

For each special case, we assume w = Ψη, where η is a mean-zero Gaussian

random vector such that cov(η|θ) = (Ψ>Ψ)−1Ψ>H(θ) Ψ(Ψ>Ψ)−1. For point-

referenced data, the (i, j)-th element of H(θ) is CM (‖si − sj‖;θ), and for areal

data, H(θ) is the covariance from a CAR model, where θ = (σ2Y , τ)′. The

assumptions made for the implementation are outlined in Table 1.
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Table 1. Assumptions made for the Bayesian inference in Section 4.3. The choice of
Σw = PHP stays the same. Thus, to obtain Σw, we set w = Ψη, where η is a
mean-zero Gaussian random vector, such that cov(η) = (Ψ>Ψ)−1Ψ> HΨ(Ψ>Ψ)−1.
In the fifth column we give the expression of cov(y,η) that produces ΣY,w. We do not
include Special Case 2, which can be implemented using the Standard Assumption after
a transformation.

Model Σw ΣY ΣY,w cov(y,η)
Standard
Assump-
tion

Let Σw = PHP, where for
point referenced data the
(i, j)-th element of H is
CM (‖si − sj‖), and for areal
data H is the covariance
from a CAR model.

ΣY = Σw ΣY,w = Σw cov(y,η) =
PHΨ
(Ψ>Ψ)−1

Special
Case 1

Let Σw = PHP, where for
point referenced data the
(i, j)-th element of H is
CM (‖si − sj‖), and for areal
data H is the covariance
from a CAR model.

Let ΣY = PHP + Σ1. For
point referenced data the
(i, j)-th element of Σ1 is
CM (‖si − sj‖), and for areal
data Σ1 is the covariance
from a CAR model. Recall
from Section 4, the
parameters of Σ1 are chosen
using the covariance
penalized error.

ΣY,w = Σw cov(y,η) =
PHΨ
(Ψ>Ψ)−1

Special
Case 3

Let Σw = PHP, where for
point referenced data the
(i, j)-th element of H is
CM (‖si − sj‖), and for areal
data H is the covariance
from a CAR model.

Σw = ΣY Following the
discussion at the
end of Section 2.7,
we set
ΣY,w = ΣY P.

cov(y,η) =
HΨ
(Ψ>Ψ)−1

Special
Case 4

Σw = PΣY P For point referenced data the
(i, j)-th element of ΣY is
CM (‖si − sj‖) and for areal
data ΣY is the covariance
from a CAR model.

ΣY,w = ΣY P cov(y,η) =
ΣY Ψ
(Ψ>Ψ)−1

In each setting, the procedure for the posterior inference on Y (·) begins by

obtaining B posterior replicates of β, η, ξ, and θ, which we denote as β[b],

η[b], ξ[b], and θ[b], respectively for b = 1, . . . , B. Let the N -dimensional vector

w[b] =
(
w[b](s1), . . . , w

[b](sm)
)>

and w[b](s) = x(s)>β + ψ(s)>η[b] + ξ[b](s) for

each b and s. In general, the full-conditional distributions for β, η, ξ, and θ are

well known (e.g., see Cressie and Wikle (2011, Chap. 7)), and straightforward to

compute. For ease of exposition, we outline the final statistical model and the

corresponding full conditional distributions in Appendix B of the Supplementary

Material.

We point out that the computationally intensive likelihood associated with

Y (·) is not needed to obtain the posterior replicates of β, η, ξ, and θ. Instead, we

need only to use the probability density functions [z|β,η, ξ,θ], [η|θ], [ξ|θ], [β],



ERRORS CORRELATED WITH THE LATENT PROCESS 99

and [θ]. Thus, obtaining β, η, ξ, and θ requires Br3 computations, in general.

In addition, confounding between Y (·) and δ(·) is avoided when estimating these

parameters, because obtaining β[b], η[b], ξ[b], and θ[b] does not require the joint

modeling of Y (·) and δ(·).
Given the MCMC replicates of the random effects and the parameters, we

can now use the posterior predictive distribution of y to obtain samples from

[y|z]. Using Corollary 1 and standard results for the Gaussian distribution, the

predictive distribution for Y (s) is given by

Y (s)|η, ξ,θ, z ∼ Gau
(
e(s)>E(y|η, ξ,θ), e(s)>K(θ)e(s)

)
, (4.10)

where K(θ) = ΣY − cov (y,η|θ) (Ψ>Ψ)(Ψ>H(θ)Ψ)−1(Ψ> Ψ)cov (η,y|θ), the

elemental vector e(s∗) ≡ (I(s∗ = s) : s ∈ {u1, . . . ,un})>, and I(·) is the indi-

cator function. The choice of K depends on which special case we are consider-

ing. These choices are outlined in Table 1, where we explicitly provide ΣY and

cov(y,η|θ), which is needed to compute K.

For each b and s,

Y [b](s) = e(s)>E
(
y|η[b], ξ[b],θ[b]

)
+ {e(s)>K(θ[b])e(s)}1/2φ

= x(s)>β[b] + e(s)>cov
(
y,η|θ[b]

)
K(θ[b])−1η[b] + e(s)>ξ[b]

+ {e(s)>K(θ[b])e(s)}1/2φ,

where φ is a draw from a standard normal random distribution. Then, the

posterior predictions and prediction variances of Y (·) can be estimated as follows:

Ê(Y (s)|z) =
1

B

B∑
b=1

Y [b](s), (4.11)

v̂ar(Y (s)|z) =
1

B

B∑
b=1

{
Y [b](s)− Ê(Y (s)|z)

}2
,

where we let ŷ ≡ {Ê(Y (ui)|z) : i = 1, . . . , n}>. Note that the computations

needed to obtain the predictions of Y (·) are of order N (i.e., we simulate from

Equation (4.10) B times). In addition, we do not need to store K, but need only

to store the n values {e(s)>K(θ[b])e(s)}1/2 and the n× r matrix Ψ, because r is

presumed to be small in this setting. In addition, we do not compute and store

H, nor do we compute and store K before we obtain {e(s)>K(θ[b])e(s)}1/2. The

order of the matrix multiplications is chosen carefully to avoid storing an n× n
dense matrix. For example, to obtain K we compute the first column of H and

pre-multiply the column by the n-dimensional vector (Ψ>Ψ)−1Ψ>, which gives
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an r-dimensional vector. The remaining steps are described in Appendix B of

the Supplementary Material.

In principle, we could use any prior on θ, but not every prior on θ is com-

putationally feasible. Thus, we suggest using a discrete uniform prior. Suppose

the discrete uniform prior on θ takes on M values. Then, we need only store

the n values in {e(s)>K(θ)e(s)}1/2 for each of the M values of the support of θ.

However, if the prior distribution has continuous support, then the n values in

{e(s)>K(θ)e(s)}1/2 need to be computed each time θ is updated within a Gibbs

sampler, which is not computationally feasible. Of course, in low dimensions, a

continuous support for θ would be straightforward to implement.

To choose the support of the discrete uniform distribution, we suggest con-

sidering several discrete fixed intervals for the range parameter of a Matérn or

CAR model, and using the deviance information criterion of Spiegelhalter et al.

(2002) to select from among the candidate supports. Our independent simulation

studies suggest that the results are robust to this specification, provided that the

discrete uniform support is not too coarse (i.e., M is small). In Appendix B of

the Supplementary Material, we outline the statistical model in full and provide

the full-conditional distributions for the Gibbs sampler.

5. Empirical Results

In this section, we provide several analyses of simulation studies, as well as

an analysis of median household income using a large data set of ACS five-year

period estimates at the census tract level. We do not provide empirical results

for Special Case 2 because it is closely related to the Standard Assumption (see

Section 2.4). In addition, following the discussion at the end of Section 2.7,

we only investigate predictions using Special Case 4, and not Special Case 3

(our parameterization of Special Case 3 produces the same kriging predictor as

that from Special Case 4). A simulation study of Special Case 1 is provided in

Appendix G of the Supplementary Material.

5.1. Simulation study of special Case 4: Robust to departures from

the standard assumption

In this simulation study, we compare a Bayesian prediction under Special

Case 4 to an MPP approach, Bayesian FRK, and an FSA (Finley et al. (2009);

Kang and Cressie (2011); Sang and Huang (2012)). The Gibbs sampler for the

Bayesian FRK is outlined in Appendix B of the Supplementary Material, the
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Figure 2. In Panel (a), we display the simulated data {Z(·)} over a collection of observed
locations DO ⊂ D, which are generated by randomly selecting points outside of a rect-
angular region in D. Here, D is a 40× 40 grid D ≡ {(s1, s2)> : s1, s2 = 0, 0.025, . . . , 1}.
White areas indicate missing observations. Panel (b) represents a simulation of the la-
tent process with a Matérn covariance function, as specified in the last row of Table 1.
In Panels (c), (d), (e), and (f), we present the posterior expected values of Y (·) from
MD = SC4, FRK, MPP, and FSA defined in Table 1, respectively.

spBayes R-package is used to compute the MPP predictor (Finley, Banerjee and

Carlin (2015)), and Matlab code is used to compute an empirical Bayes imple-

mentation of the FSA (del Castillo, Colosimo and Tajbakhsh (2015)). The same

equally spaced knot locations are used for all methods that share the same rank

r. We consider several choices of r for each method. The goal of this analysis is to

show that Special Case 4 is robust to departures from the Standard Assumption

by comparing it to other reasonable choices for spatial predictions used in the

literature.

We generate a random process on a 40 × 40 grid D ≡ {(s1, s2)> : s1, s2 =

0, 0.025, . . . , 1}, and let {Y (s) : s ∈ D} be generated from a Matérn process with

an unknown mean x(s)>β = 2 + u1 + 7u2 for s = (u1, u2) ∈ D, a smoothing

parameter of 0.5 (i.e., an exponential covariagram), and a unit variance. The

range parameter of the Matérn process is τ = 1/12, such that the spatial range

is moderate at 1/4. Let var {ε(·)} ≡ 0.5, resulting in a large signal-to-noise ratio

(≈ 10).

To obtain the simulated data, we add independent error,

Z(s) = Y (s) + ε(s); s ∈ DO,

where {ε(si) : i = 1, . . . ,m} consists of independent and identically distributed

Gaussian random variables with mean zero and variance 0.5. Note that Z(·) is

not generated according to the General Assumption. In Figure 3(a), we plot Z
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Figure 3. Boxplots of the rMSPE value defined in (5.1). The x-axis indicates the method
and the choice of rank r. The y-axis is relative to the MSPE of SC4. When the rMSPE is
greater than one this indicates that the MSPE of SC4 is smaller than that of the model
labeled on the x-axis.

over our choice of observed data locations, with observations missing at random

at locations outside of a large square region in D. Note that our model makes an

incorrect assumption about the data process, but correctly specifies the latent

process.

The bi-square radial basis functions of Cressie and Johannesson (2008) are

used. These functions depend on a collection of r knots. The location and

number of these knots are found using an algorithm that compares estimates of

the latent process to estimates of w(·). In Appendix C of the Supplementary

Material, we outline how we select the basis functions. For the predictions in

Figure 3, we set r = 100.

The predictions in Figure 3 are based on a single realization of Z(·), and are

given in Figure 3(a). Let the total MSPE be defined as

MSPE(MD) ≡ 1

|D|
∑

[Y (s)− EMD {Y (s)|z}]2 ; MD = SC4,FRK,MPP,FSA,

where “MD” represents the model from which the posterior expected value is

taken, and “SC4” denotes Special Case 4.

For the example shown in Figure 3, the total MSPEs are as follows: 0.08

for the SC4 approach, 0.75 for FRK, 0.23 for MPP, and 0.12 for FSA. Thus,

it is clear that the MSPE is considerably smaller using the SC4 approach. For

the Bayesian FRK and MPP, we observe a strange circular artifact in the large

‘square’ missing region in D, which is a well-known consequence of low rank
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modeling (Datta et al. (2014)). This deficiency in low-rank modeling is not

present when using our model, nor is it present for the full-scale approximation of

Sang and Huang (2012). These behaviors are consistent over multiple replicates.

That is, after generating 100 different sets of {Z(s)} and {Y (s)}, we obtain the

results presented in Figure 4. Here, we plot the relative MSPE (rMSPE),

rMSPE(MD) =
MSPE(MD)

MSPE(SC4)
; MD = SC4,BFRK,MPP,FSA. (5.1)

For each choice of r, we tend to have values of rMSPE greater than one, which

indicates that our approach (i.e., Model 1) outperforms each of its competitors.

Furthermore, for each method, as we increase the rank, the range of the rMSPE-

values tends to move further away from one, which indicates increasingly better

performances as a result of using the SC4 approach.

The data are simulated in a manner such that the optimal kriging predictor

should outperform SC4. The MSPE of the optimal kriging predictor tends (over

the replicate simulations) to be around 0.02. In addition, the rMSPE associated

with the traditional kriging predictor tends to be around 0.91. This suggests that

SC4 produces predictions with an MSPE that is close to (albeit greater than)

that of the optimal predictor.

5.2. Census-tract level ACS five-year period estimates of median house-

hold income

The U.S. Census Bureau’s ACS is a key data source for U.S. demographics.

ACS estimates have a unique structure, where the estimates are reported for

different periods. Specifically, the ACS currently produces one-year and five-year

period estimates for various U.S. demographic variables. We consider a subset

of the ACS data and provide a spatial analysis of median household income for

the period 2009−2013. We consider a fairly large data set of 72,361 observations,

which includes of estimates of median household income over all census tracts in

the contiguous United States. A subset of the data is presented in Figure 4(a).

This particular example is especially interesting from the point of view of a

spatial analysis, because ACS period estimates of median household income have

been modeled using Moran’s I (MI) basis functions (e.g., see Bradley, Wikle and

Holan (2015, 2016)). The literature suggests that MI basis functions require a

large r to obtain a reasonable fit when using a low-rank approach; for example,

in Bradley, Wikle and Holan (2015) r = 4, 750. Hence, one of our goals is to

determine whether our approach allows us to model w using fewer basis func-

tions than is common in the literature. Furthermore, federal data sets, such as
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Figure 4. In Panel (a), we plot the log of the ACS 2013 five-year period estimates
of median household income over census tracts in the northeast United States. Panel
(b) contains the predicted log median income, and Panel (c) displays the corresponding
posterior variances. Data, predictions, and prediction variances are available for the
whole of the United States, however, we only plot the northeast United States in Panels
(a), (b), and (c) for brevity.

the public-use ACS estimates, are typically modeled under the assumption of

independent “survey errors” (i.e., δ) (Fay and Herriot (1979)). Thus, evidence

suggesting that the survey errors are dependent may have important implications

for the modeling of federal data.

For this example, let {R(s) : s ∈ D} represent the median household in-

come over the census tracts in the contiguous United States (denoted by D).

Histograms of the logarithm of R appear roughly symmetric, indicating that

normality of Z(·) = log{R(·)} is reasonable. Thus, for this example, we assume

that Z (i.e., the logarithm of the data) is Gaussian. In addition, the survey vari-

ances are converted to a log scale using the delta method (Oehlert (1992)). We

use an intercept-only model and set X equal to a vector of ones. We consider two

different methods to analyze areal data sets: a version of Bayesian kriging, as in

Hughes and Haran (2013, among others); and the CAR model (Besag (1974)).

In Appendix H of the Supplementary Material, we clearly explain the model as-

sumptions, as well as the implementations for Special Case 1, Bayesian FRK,

and the CAR model.

All Markov chains in this section use a burn-in of 1,000 replications and

generate B = 10, 000 posterior replications. Convergence is assessed visually

using trace plots of the sample chain, with no lack of convergence detected. The

rank r is specified according to Appendix C of the Supplementary Material. Here,

we find that r = 30 is reasonable, and a comparison with historical choices of

r when using MI basis functions shows that we obtain a significant dimension

reduction. For this data set σ2Y = 9 and τ = 0.91 minimize the covariance

penalized error in (3.1). In Figure 4(b,c) we display subsets of the posterior

mean and variances. Here, we see that the overall pattern of the predictions

are similar to, but smoother than, the spatial patterns of the data. In addition,
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the estimates of Efron (2004) covariance penalized error (see (3.1)) are -0.9874

for our model, -0.1321 for the FRK, and 0.9153 for the CAR model. Thus, the

proposed model outperforms competing methods for spatial prediction.

6. Discussion

In this paper, we have introduced a hierarchical model that leverages spa-

tial dependencies within the error process associated with the data, as well as

leveraging cross-dependencies between the error process and the latent process of

principal interest. This is done by introducing nondegenerate discrepancy error

covariances that are not confounded within the marginal distribution of the data.

The “Standard Assumption” of uncorrelated discrepancy errors is an important

special case of our general parameterization, which occurs when three matrix-

valued parameters are equal to each other. We consider four additional special

cases in which we allow the matrix-valued parameters to differ.

Our parameterization between the error process and the latent process leads

to a computationally useful process-augmentation approach. The first step in our

implementation is to fit a model for the process that does not assume a dependent

error process (see Appendix B of the Supplementary Material). Then, the second

step produces predictions of a latent process that is dependent on the error

process. The latter predictions are based on the output from the first step of the

algorithm (see Section 5.2 and Appendix B of the Supplementary Material). This

feature of our model greatly increases the applicability of the approach because

any statistical model that is based on the assumption of mutually independent

errors can be used in the first step of the algorithm.

Our empirical results suggest that our approach is robust to departures from

our model assumptions. We illustrated this by implementing Special Case 3,

where the data are generated using a full-rank Matérn specification. Low-rank

statistical models are known to be sensitive to the setting when the data are

very sparse over the spatial domain. Hence, sparse data were generated. In

this setting, our predictor outperformed many of the current methods used for

predictions. These result suggest that if the assumption of a dependent error

process is not correct, then nonconfounded discrepancy-error covariances may

still be useful.

The nonconfounded discrepancy error covariance can also be scaled to large

data sets, which we demonstrated using a data set consisting of ACS estimates of

median household income defined on census tracts.Note that we have produced



106 BRADLEY, WIKLE AND HOLAN

precise predictions that have a full-rank specification, as well as computational

gains for a reduced-rank model. In a sense, the proposed method benefits from

a full-rank specification and low-rank specification. Furthermore, our example

demonstrated that there appears to be dependent error in a popular survey data

set. This is a setting in which it is typically assumed that the error process is

independent of the latent process (i.e., the Fay−Herriot model used in federal

statistics). This could have important implications for small area estimation

because the Fay−Herriot model is a ubiquitous choice for modeling area-level

data in the official statistics literature.

There are many opportunities for future research. For example, the selection

of a basis function (e.g., see Huang et al. (2006); Bradley, Cressie and Shi (2011))

is an important and recurring inferential problem. We specified knot locations so

that the augmented process was close to the latent process. This type of strategy

can also be used to choose the class of spatial basis functions. In general, there is

great potential to use the proposed modeling paradigm to specify parsimonious

models in an informed manner.

Supplementary Materials

The Supplementary Material provides proofs of the technical results, a review

of current methods in spatial statistics, an additional simulation, and additional

details on the model specification and implementation.
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