
Statistica Sinica: Supplement

SELECTIVE SIGN-DETERMINING MULTIPLE CONFIDENCE

INTERVALS WITH FCR CONTROL

Asaf Weinstein and Daniel Yekutieli

Stanford University and Tel Aviv University

Supplementary Material

S1. Determining the Direction and the Type of the Association

in Genomic Association Studies

The data were taken from the WTCC1 case-control study of Type-2 dia-

betes (Burton et al., 2007). We analyze data for m = 459, 653 SNPs. The

data for SNP s = 1, ...,m, is a 2-by-3 table listing the SNPs’ minor allele

counts for the cases and for the controls. We denote by ns,i,j the number of

subjects of type i (controls = 1, cases = 2) with j = 0, 1, 2 copies of a, the

minor allele of SNP s. For example, the data for SNP s = 1412 is shown in

Table 1.

Clarke et al. (2011) suggest using the Cochran-Armitage trend test

for discovering association between SNP and disease, with weights w =
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Table 1: Data for SNP 1412.

Genotype: AA Aa aa

Controls 690 1442 804

Cases 377 989 555

(w1, w2, w3) that are chosen to detect particular types of association. w =

(0, 1, 1) is used to test whether allele a is dominant over allele A and w =

(0, 0, 1) is used to test whether allele a is recessive to allele A. However,

most often, w = (0, 1, 2) is used to test for an additive effect of allele a. The

Cochran-Armitage statistic has a chi-squared distribution with 1 d.f. under

the null hypothesis of no association. It is equivalent to the score statistic

for the corresponding linear logit model, and its result is very similar to

the logistic regression Wald test (Agresti, 2002). Assume that ns,i,j are

multinomial with probabilities (πs,1,0, ..., πs,2,3). Let γjs = log(πs,2,j/πs,1,j)

denote the log-Odds for diabetes for allele a count j of SNP s. For SNP

1412, the Cochran-Armitage test with w = (0, 1, 2) yielded Z = 2.605; while

the Wald test for the the null hypothesis that β1
s = 0 in the corresponding

linear model,

γjs = β0
s + β1

s · j, (S1.1)

yielded Z = 2.604.
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S1.1 Confidence Regions for the Dominance and Recessiveness

Effects

In our analysis, we treat SNP association as a bivariate problem that cor-

responds to the linear model:

γjs = γ0s + βDoms · I(1 ≤ j) + βRecs · I(2 ≤ j). (S1.2)

Our parameters of interest are the allele a dominance effect βDoms = γ1s−γ0s ,

and the allele a recessiveness effect βRecs = γ2s − γ1s . For our analysis we

assume that the allele effect is monotone increasing, γ0s ≤ γ1s ≤ γ2s , or de-

creasing, γ0s ≥ γ1s ≥ γ2s . Thus, (βDoms , βRecs ) are both either nonnegative or

non-positive. In our analysis, we construct confidence regions that deter-

mine the sign of (βDoms , βRecs ) and indicate whether this effect is dominant

(βRecs = 0), additive (βRecs = βDoms ) or recessive (βDoms = 0).

Our parameter estimators are β̂Doms = γ̂1s − γ̂0S and β̂Recs = γ̂2s − γ̂1S, with

γ̂jS = log(ns2j/ns1j). To construct the confidence sets for (βDoms , βRecs ), we

assume that (β̂Doms , β̂Recs ) are bivariate normal with mean (βDoms , βRecs ) and

covariance matrix whose entries are the following estimated variances and

covariance: V̂ar(β̂Doms )=1/ns20+1/ns10+1/ns21+1/ns11, V̂ar(β̂Recs )=1/ns21+

1/ns11 + 1/ns22 + 1/ns12, and ˆCov(β̂Doms , β̂Recs )= − 1/ns21 − 1/ns11. Note

that these parameter estimates are the same as those produced by fitting
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model (S1.2) in R. The effect estimates for SNP 1412 are β̂Dom1412 = 0.227 and

β̂Rec1412 = 0.006 and the estimated covariance matrix is

Σ̂1412 =

 0.0058 −0.0017

−0.0017 0.0047

 .

The confidence regions for (βDom1412 , β
Rec
1412), shown in Figure 1a, are valid

under the assumption that (β̂Dom1412 , β̂
Rec
1412) is bivariate normal with mean

(βDom1412 , β
Rec
1412) and covariance Σ̂1412. The black curves are equi-density curves

that produce 1−α confidence regions with smallest volume for (βDom1412 , β
Rec
1412).

The blue arrows are drawn in the direction of the principal components of

the covariance matrix and their length is proportional to the square root of

their variance. For Σ̂1412, PC
1
1412 = (−0.805, 0.593)T with variance 0.0071,

PC2
1412 = (0.593, 0.805)T with variance 0.0035.

Per construction, for all s, β̂Doms and β̂Recs are negatively correlated.

Therefore, the 1st principal component will be a weighted difference be-

tween βDoms and βRecs and the 2nd principal component will be a weighted

sum of βDoms and βRecs . As the sign of PC2
s is the same as the signs of

βDoms and βRecs , we use the linear combination of (β̂Doms , β̂Recs ) in the di-

rection of PC2
s which has the smallest variance of all linear combinations

of (β̂Doms , β̂Recs ) to determine the direction of association. The line passing

through (0, 0) that is perpendicular to PC2
s (for SNP 1412 it is the red
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diagonal line in Figure 1) represents 0 association. We quantify the size of

association with Z(PC2
s ), the distance in PC2

s standard deviations between

(β̂Doms , β̂Recs ) and the red diagonal. For SNP 1412, Z(PC2
1412) = 2.37.

The 1−α confidence regions for (βDoms , βRecs ) we propose for this prob-

lem, are rectangular regions formed by intersecting a marginal 1−α1 confi-

dence region for (βDoms , βRecs ) in the PC1
s direction with a 1−α2 confidence

region for (βDoms , βRecs ) in the PC2
s direction, where 1−α = (1−α1)·(1−α2).

Orthogonality of the estimators of the principal components ensures 1− α

coverage probability for our rectangular intervals, thereby allowing to allo-

cate a different degree of confidence in each direction. In the next section

we use this property for constructing confidence regions that are inflated

due to selection only in the direction of PC2
s . Furthermore, replacing the

ellipsoid confidence regions with rectangular confidence regions may also

lead to sharper sign determination.

The green rectangle in Figure 1a is 0.95 confidence region for (βDom1412 , β
Rec
1412)

formed by intersecting a symmetric two-sided marginal 0.96 CI in the

PC2
1412 direction and a symmetric two-sided marginal 1− 0.0104 CI in the

PC1
1412 direction. Indeed, we see that since Z(PC2

1412) > z.02 this confidence

region SNP is above and to the right of the red line even though the 0.95

ellipsoid bivariate normal confidence set crosses the red diagonal, indicating
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positive association of allele a with diabetes. Furthermore, the confidence

region prominently covers βRec1412 = 0 parameter points while barely cover-

ing βDom1412 = 0 parameter points, suggesting that the effect of allele a is

dominant.

S1.2 Using FCR-Adjusted CIs for Determining SNP Direction

of Association

We begin by constructing 1-dimensional CIs for β1
s , the logistic regression

coefficient for the number of minor SNP alleles in model (S1.1), for all m

SNPs and use these CIs to determine the SNPs’ direction of association.

Applying the BH procedure to ps = 2 ·(1−Φ(|Z(β̂1
s )|)) at level q = 0.05

yielded 27 discoveries and at level q = 0.10 it yielded 43 discoveries. Here

Z(β̂1
s ) = β̂1

s/ŝd(β̂1
s ). Level q = 0.05 FCR-adjusted MQC CI with ψ = 0.7

yielded 35 discoveries and setting ψ = 0.9 yielded 36 discoveries.

We now consider the rectangular confidence regions for (βDoms , βRecs )

defined in Section 5 that, using the algorithm in Definition 3 , will be

inflated for selection according to the value Z(PC2
s ), for determining the

SNPs’ direction of association and the type of association.

For the rectangular confidence regions for (βDoms , βRecs ) it is necessary

to specify q1 and q2, the non-coverage level for each principal component.
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Allocating all the non-coverage probability to PC2
s , i.e. setting q2 = q and

q1 = 1, reduces the confidence regions to 1 − q marginal CIs for PC2
s and

level q selection rules that are based on PC2
s . Applying the BH procedure

to ps = 2 · (1 − Φ(|Z(PC2
s )|)) at level q = 0.05 yielded 23 discoveries and

at level q = 0.10 it yielded 31 discoveries. Level q = 0.05 FCR-adjusted

MQC CI with ψ = 0.7 yielded 24 discoveries and setting ψ = 0.9 yielded

30 discoveries.

We now consider confidence regions for (βDoms , βRecs ) with q2 = 0.04

and q1 = 0.0104. As selection is only applied in the direction of PC2
s , the

CIs for PC2
s are level q2 = 0.04 FCR-adjusted marginal CIs that are based

on Z(PC2
s ), and the CIs for PC1

s are (unadjusted) 1 − 0.0104 marginal

two-sided CIs based on Z(PC1
s ). Applying the BH procedure to Ps =

2 · (1−Φ(|Z(PC2
s )|)) at level q = 0.04 yielded 23 discoveries as before, and

at level q = 0.08 the BH procedure yielded 30 discoveries. Level q = 0.04

FCR-adjusted MQC CI with ψ = 0.7 yielded 24 discoveries, and setting

ψ = 0.9 yielded 29 discoveries. Even though the distribution of |Z(β̂1
s )|

was larger than that of |Z(PC2
s )| (it yielded more discoveries) the ordering

of the SNPs according to the two Z-scores was very similar—the ranking

of the 19 most significant SNPs according to Z(β̂1
s ) and Z(PC2

s ) was the

same.
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SNP 69962 has large Z(PC2
69962) = 4.461 (ranked 27) and a relatively

smaller Z(β̂1
69962) = 4.074 (ranked 64 – undiscoverable with level q = 0.10

BH procedure). The rectangle formed by the solid green lines in Figure 1b

is the MQC CI rectangular confidence sets for (βDom69962, β
Rec
69962) with q2 = 0.04

and q1 = 0.0104 and ψ = 0.9 adjusted for the 29 selected SNPs. The

smaller rectangle formed by the broken green lines and the solid green lines

is the unadjusted confidence sets for (βDom69962, β
Rec
69962) with q2 = 0.04 and

q1 = 0.0104. As SNP 69962 was selected its selection adjusted confidence

set does not cross the red line, but rather is on the red line corresponding

to MQC CI lower boundary that is equal 0; this indicates non-negative as-

sociation with diabetes. Furthermore, the fact that the selective confidence

region prominently covers βRec69962 = 0 parameter points while barely covering

βDom69962 = 0 parameter points suggests that the effect of allele a is dominant.

S2. Selective-SDCI Procedures Under Dependency

Equipped with any marginal CI that satisfies the requirements (MON 1)

and (MON2), a level-q Selective-SDCI procedure is guaranteed to control

FCR ≤ q under independence of the observations. The case of dependent

data is considerably more challenging. For general dependency, applying

the Selective-SDCI of Definition 2 (Section 3), equipped with any marginal
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(b) selective confidence regions

Figure 1: (a) Confidence regions for (βDom1412 , β
Rec
1412). Green plus sign is (β̂Dom1412 , β̂

Rec).

Black curves are 0.50, 0.75 and 0.95 bivariate normal confidence regions. Blue arrows

are the principal components of the bivariate normal distribution. Green rectangle is

a 0.95 confidence set based on the two principal components. Red line is drawn at

association effect equals 0. (b) Selection-adjusted confidence regions for (βDom69962, β
Rec
69962).

Green plus sign is at (β̂Dom69962, β̂
Rec
69962). Black curves are 0.50, 0.75 and 0.95 (unadjusted)

bivariate normal confidence regions. Green rectangle captured by broken lines is the 0.95

unadjusted confidence set based on the two principal components. Solid green rectangle

is the 0.95 selection-adjusted confidence set based on the two principal components. Red

line is drawn at association effect equals 0.

CI) at level q/
∑m

j=1
1
j

ensures FCR ≤ q. This follows immediately from

Theorem 4 in Benjamini and Yekutieli (2005).
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If the estimators are positive regression dependent on a subset (PRDS

hereafter; Benjamini and Yekutieli, 2001), a consequence of Theorem 3 in

Benjamini and Yekutieli (2005) is that if the level-q procedure of Definition 2

(Section 3) is equipped with a the interval C(y;α) = (y−cα,∞) (or C(y;α) =

(−∞, y + cα)), then the FCR is still controlled at q under PRDS; however,

if sign detection is of interest, we would never want to equip the Selective-

SDCI with such a CI (which would mean giving up on either detection

of positive or on detection of negative parameters). Hence Theorem 3 in

Benjamini and Yekutieli (2005) does not really cover selection followed by

CI construction via the Selective-SDCI procedure of Definition 2 (Section

3). We would like to point out that under PRDS even the validity of the

level-q directional-BH procedure, which is a special case of our Selective-

SDCI procedure, has not been established before.

We examine FCR of the Selective-SDCI procedure in practice us-

ing simulations. The data simulates the brain voxel data of Section

7 under dependency; it was generated as in Rosenblatt and Benjamini

(2014) and using their code, available at https://github.com/johnros/

SelectiveEstimationSimulations. Specifically, for each configuration of

nonzero effect size and proportion of nulls, and in each of 100 rounds, data

representing z-transformed (n = 16 subjects) correlations for a “brain” of

https://github.com/johnros/ SelectiveEstimationSimulations
https://github.com/johnros/ SelectiveEstimationSimulations
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Figure 2: Estimated FCR of the Selective-SDCI procedure under dependency. Each point

in the figure is estimated FCR for a specific configuration, when applying the procedure

of Definition 2 (Section 3) at level 0.1 to Fisher-transformed voxel correlations (sample

size is n = 16). Vertical bars are drawn at ± two standard errors. In each simulation

round the underlying signal for each voxel was independently set to ρ1 w.p. π1 or zero

w.p. 1 − π1. The two line types correspond to the procedure using the QC marginal

interval (broken) and the MQC marginal interval (solid). For the no-signal case (π1 = 0)

the two lines coincide.

10× 10× 10 voxels was generated as the sum of a signal field and a smooth

Gaussian noise field. The smoothness of the noise field—controlling the spa-

tial covariance—is represented by the parameter FWHM, which was varied

at 3 different levels {3.3, 4.7, 5.7} (4.7 being the estimated quantity from

the actual data analyzed in Section 7 . The smooth Gaussian random field
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used in generating the data is PRDS (Nichols and Hayasaka, 2003), hence

is an appropriate case to examine the actual FCR of our procedure for

PRDS data. More details describing how data was generated are available

in Rosenblatt and Benjamini (2014, Appendix C.2).

In each round we applied our procedure at level q = 0.1, first using

the QC interval as the marginal CI, and second using the MQC as the

marginal CI. For each of the two methods we recorded the proportion of

non-covering constructed CIs (FCP) as well as the number of constructed

sign-determining intervals. The results are presented in Figure 2, which

shows that, overall, the situation is qualitatively similar to the indepen-

dent case: for almost each simulation configuration the estimated FCR

is under 0.1, while it is much closer to the nominal level for the MQC-

equipped procedure. Specifically, for larger proportion of non-zero effects

(π1 = 0.5, 0.9), the estimated FCR of the MQC-equipped procedure is larger

than q/2 = 0.05 for all configurations of smoothness (FWHM) and levels of

non-zero signal strength (≥ 0.2).

S3. Connections to Existing Work on Post-Selection Inference

In the procedure of Definition 2 (Section 3) a CI is constructed for θi only if

i ∈ S(Y) where S is a prespecified rule. While selection needs to be taken
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into account when constructing the CIs, adjusting the level of marginal

CIs is not the only way to achieve FCR control. To restore validity of

post-selection CIs, a common approach, which is not limited to the mul-

tiplicity setup or to selection rules we consider in the current paper, is to

construct intervals that have the nominal coverage level conditional on se-

lection. Thus, in the setup of the current paper, whenever i ∈ S(Y) the

conditional approach would construct an interval CIi(q) with the property

Pr
(
θi ∈ CIi(q)

∣∣i ∈ S(Y)
)
≥ 1− q. (S3.3)

Conditional CIs based on a truncated univariate normal distribution were

suggested in Zhong and Prentice (2008) and Weinstein et al. (2013) . A

Recent line of work, including Lee et al. (2016); Taylor et al. (2014); Sun

and Taylor (2014) (among others), greatly increased the applicability of

the conditional approach by developing exact methods for constructing CIs

when selection corresponds to truncating a multivariate normal distribution

to a polyhedron; these results were in turn extended to generalized linear

models in Fithian et al. (2014), who also provided theoretical support.

Under independence of the Yi, we obtain a valid two-stage procedure by

selecting parameters through a level-2q BH procedure for testing H i
0 : θi =

0, classifying θi as positive or non-positive according as Yi > 0 or Yi < 0;
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then for each classified parameter constructing a 1−q conditional CI. From

Weinstein et al. (2013, Section 7) it follows that if for each i ∈ S(Y) a

CI CIi = C(Yi;σ2, ĉ, q) is constructed where C(Yi;σ2, c, α) has the property

that

PrY∼N(θ,σ2)

(
θ ∈ C(Y ;σ2, c, α)

∣∣|Y | > c
)
≥ 1− α (S3.4)

and where

ĉ = Φ−1(1− i∗q/m), i∗ = max{i : P(i) ≤ i(2q)/m}

for Pi = 2(1−Φ(|Yi|)) and P(1) ≤ P(2) ≤ ...P(m), then (S3.3) is satisfied. This

is because the conditional distribution of Yi
∣∣ (Y(i), i ∈ S(Y)

)
is that of a

normal variable truncated to {y : |y| > ĉ} where ĉ is a constant determined

by Y(i).

The procedure described above controls both wdFDR ≤ q and FCR ≤ q

as required; however, a disadvantage is that—unlike the procedure of Defi-

nition 2 (Section 3)—it cannot ensure that a constructed CIi does not cross

zero; this would contradict with the fact that the sign of θi was detected.

In the example of Section 7 , if we use the conditional CI of Weinstein et al.

(2013, CQC with λ = 0.4) after BH selection at level 0.2, then 28,082 out of

the 43,804 constructed intervals include both positive and negative values.

Hence 64% of the parameters whose sign was classified at the first stage,

are supplemented with intervals that do not determine the sign. In fact, the
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construction of Weinstein et al. (2013) is designed specifically to promote

sign detection, and still it is not able to guarantee it.

We now show that the situation would be similar if any other conditional

CI is used instead. Indeed, for a constant c let P̄θ(·) indicate probability un-

der the conditional distribution of Y ∼ N(θ, 1) given |Y | > c, and suppose

that there exists a procedure C(y;α) = C(y;σ2 = 1, c, α) with the property

(S3.4) such that C(y;α) ⊆ (−∞, 0] or C(y;α) ⊆ (0,∞) for all |y| > c. Let

α < 1/2. Then

1 = P̄0(C(Y ;α) ⊆ (−∞, 0]) + P̄0(C(Y ;α) ⊆ (0,∞))

= lim
θ→0+

P̄θ(C(Y ;α) ⊆ (−∞, 0]) + P̄0(C(Y ;α) ⊆ (0,∞)) ≤ α + α = 2α

which is a contradiction. The equality in the second line is by continuity of

P̄θ(C(y;α) ⊆ (−∞, 0]) at θ = 0. The inequality in the third line is because

for any θ > 0, coverage property of the interval implies necessarily that

P̄θ(C(y;α) ⊆ (−∞, 0]) ≤ α, and similarly P̄0(C(y;α) ⊆ (0,∞)) ≤ α.

S4. A Full Specification of the MQC Confidence Interval

In Section 4 (equation 9 ) we provided a specification of the MQC CI when

0 < ψ ≤ ψ1. A complete specification of the MQC CI follows. The constants

c̄, c̃, ψ1, ψ2 and the function g(θ) are all as defined in Section 4 .
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If 0 < ψ ≤ ψ1,

CMQC(y;α) =



(−c̄− cα/2, c̄+ cα/2), 0 ≤ y < c̄

[0, y + cα/2), c̄ ≤ y < cα/2

(0, y + cα/2), cα/2 ≤ y < c̃

(g−1(y), y + cα/2), c̃ ≤ y ≤ g(c̄+ cα/2)

(c̄+ cα/2, y + cα/2), g(c̄+ cα/2) < y < c̄+ 2cα/2

(y − cα/2, y + cα/2), c̄+ 2cα/2 ≤ y
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If ψ1 < ψ ≤ ψ2,

CMQC(y;α) =



(−c̄− cα/2, c̄+ cα/2), 0 ≤ y < c̄

[0, y + cα/2), c̄ ≤ y < cα/2

(0, y + cα/2), cα/2 ≤ y < c̃

(c̄+ cα/2, y + cα/2), c̃ ≤ y ≤ c̄+ 2cα/2

(y − cα/2, y + cα/2), c̄+ 2cα/2 < y

If ψ2 < ψ,

CMQC(y;α) =



(−c̄− cα/2, c̄+ cα/2), 0 ≤ y < c̄

[0, y + cα/2), c̄ ≤ y < cα/2

(0, y + cα/2), cα/2 ≤ y < c̃

(y − cα/2, y + cα/2), c̃ ≤ y

with C(−y;α) = −C(y;α).

S5. Detecting Large Correlations

The focus in Section 7 was on detecting the sign of correlations. In practice

it may be of interest to detect instead only large correlations, namely, corre-

lations ρi > ρ0 or ρi < −ρ0 for some prespecified constant ρ0 ∈ (0, 1), while

still controlling the proportion of incorrect decisions. Hodges and Lehmann
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(1954) referred to testing of the interval hypothesis H0 : ρ ∈ [−ρ0, ρ0] as

testing for “material significance”. Also, as pointed out by Finner (1994),

our pursuit reflects in some sense the opposite goal of the bioequivalence

problem, where the aim is to detect parameters |ρ| < ρ0. We offer here

an extension of our Selective-SDCI procedure and use it to detect large

correlations in the study of Section 7.

As before, let Yi ∼ f(yi − θi) i = 1, ...,m, with f a unimodal and

symmetric density. Fix δ ∈ (0,∞). We are interested in a procedure which,

for a subset S = S(Y) ∈ {1, ...,m}, constructs a CI CIi for each θi, i ∈ S,

such that CIi ⊆ (δ,∞) or CIi ⊆ (−∞,−δ), and at the same time FCR ≤ q.

Adapting the Selective-SDCI procedure from the original sign problem to

the current situation is starightforward: simply replace R in Definition 3

(Section 3) with

R = max
{
r : CI(r)

(r · q
m

)
includes only values > δ or only values < −δ

}

and leave the procedure of Definition 2 (Section 3) otherwise unchanged. As

was the case for the sign problem, any marginal CI satisfying Requirements

(MON 1) and (MON 2) can be used with the Selective-SDCI procedure.

However, in order to obtain a powerful procedure, we would like to use

a marginal CI which is suited to the current task rather than to the sign

problem. Specifically, we adapt the MQC marginal interval of Section 4 to

obtain an interval that avoids intersecting [−δ, δ] starting at an observation
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value smaller (in absolute value) than δ + cα/2.

Like the MQC interval of Section 4 , the new interval is obtained by

inverting a family of acceptance regions. The 1 − α acceptance regions

describing the CI are

AMQCδ(θ) =



(−δ − c̄, δ + c̄), 0 ≤ θ ≤ δ

(−δ − c̄, gδ(θ)), δ ≤ θ < δ + c̄+ cα/2

(θ − cα/2, θ + cα/2), δ + c̄+ cα/2 < θ

with AMQCδ(θ) = −AMQCδ(θ) for θ < 0. Above, the constant c̄ is determined

by δ through

F (δ + c̄− δ)− F (−δ − c̄+ θ) = 1− α (S5.5)

and the function gδ is given by

gδ(θ) = θ + F−1{1− α + F (−δ − c̄− θ)}.

The convex hull of {θ : y ∈ AMQCδ(θ)} is then

C(y;α) =



(−δ − c̄− cα/2, δ + c̄+ cα/2), 0 ≤ x < δ + c̄

(g−1(x), x+ cα/2), δ + c̄ ≤ x < g(δ + c̄+ cα/2)

(δ + c̄+ cα/2, x+ cα/2), g(δ + c̄+ cα/2) ≤ x < δ + c̄+ 2cα/2

(x− cα/2, x+ cα/2), δ + c̄+ 2cα/2 ≤ x
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Figure 3 shows the resulting interval for a normal distribution and δ = 0.5.

Note that while the MQC interval was parametrized by ψ (or, equivalently,

by c̄) which determined the tradeoff between early sign determination and

maximum length of the CI, MQCδ is not indexed by such a parameter.

Indeed, for MQCδ there is no flexibility in choosing how early the interval

stops crossing δ (or −δ): to any δ corresponds a constant c̄ given by (S5.5).

Note also that while MQC guarantees only weak determination of the sign

(≤ 0 or > 0) whenever it does not include values of both signs, MQCδ is

always an open interval, and it separates from δ (−δ) immediately at δ+ c̄,

whereas MQC separates from zero at c̃ > c̄. These are consequences of

the difference between the sign problem and the problem of detecting large

effects.

We set q = 0.1 and applied our procedure, equipped with the MQCδ

interval, to the data from Tom et al. (2007) for detecting correlations ρi >

0.2 or ρi < −0.2; the value ρ0 = 0.2 was chosen to represent a “sufficiently

large” correlation size. The results are shown in Figure 3(b) of Section

7 . Out of the 382,362 voxels originally considered in our analysis, our

procedure finds that only 9 can be declared to have a correlation larger

than 0.2 or smaller than -0.2. All 9 reported intervals are for positive

estimated correlations, and cover only values larger than 0.2. Hence, while



S5. DETECTING LARGE CORRELATIONS

detection of the sign was possible for as many as 36,131 parameters (in the

previous subsection), there is a dramatic decrease in the number of finding

already when we aim at discovering correlations of size at least 0.2.

Note that the 9 constructed intervals which lie above 0.2 are FCR-

adjusted at a more stringent level than the sign-determining intervals con-

structed before, as less parameters are selected. This inflation is needed to

ensure that FCR is controlled for the new set of findings: reporting those

among the 36,131 sign-determining intervals which further lie above 0.2 or

below -0.2 would, of course, suffer from the same type of selection bias

problem as would reporting in the first place all unadjusted 90% intervals

which lie above 0.2 or below -0.2.
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Figure 3: Modified Quasi-Conventional CI MQCδ for early detection of large effects.

Here Y ∼ N(θ, 1) and the CI for θ is designed to exclude values in [−δ, δ] as early

as possible, i.e., for small values of |y|. The plot is for α = 0.1, δ = 0.5. For this

configuration the interval lies completely above 0.5 or completely below −0.5 starting

at |y| = 1.84; compare to δ + z1−0.1/2 = 2.14 for the symmetric interval, shown in gray.

Broken lines are drawn at ±δ and the origin is marked with a plus sign.
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