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This supplementary material includes technical assumptions and proofs of the theoretical

properties of our proposed method. The technical assumptions are given in Section A. The

proofs of Theorems 1 and 2 are given in Section B and Section C respectively.

Appendix: Technical assumptions and proofs

A Technical assumptions

The following assumptions are made for Theorems 1 and 2 in Section 3. These are standard
assumptions used to establish asymptotic properties of nonparametric estimation procedures for

varying coefficient models; see Huang et al. [2] and Wang et al. [4] for more details.

(A1) The response and covariate processes {yx(t), zx(t), k = 1,...,n} are iid as {y(¢t), z(t)}.
And the observation time points, ty, [ =1,...,ng, k=1,...,n, are iid from an unknown

1



density, f(t), on [0, M], where f(¢) is uniformly bounded away from zero and infinity. That
is, 0 < hy < f(t) < hy < oo for some positive constants h; and hy. Moreover, the obser-
vation time points are independent of the response and covariate processes {yx(t), zr(t),

k=1,...,n}.

(A2) The eigenvalues of the matrix E[z(t)x’ (t)] are uniformly bounded away from zero and
infinity for ¢ € [0, M], that is, there exist positive constants M; and M, to be the lower

and upper bound of the eigenvalues for all ¢ € [0, M].
(A3) There exists a positive constant Mj such that |z;(¢)] < Mj fort € [0, M] and i =1,...,p.
(A4) There exists a positive constant My such that E{e*(t)} < M, for all ¢t € [0, M]
(A5) limsup, (max;K;/min; K;) < oo.

(A6) The process €(t) can be decomposed as the sum of two independent stochastic processes,
€M) and €, where €V is an arbitrary mean zero process, and € is a process of measure-
ment errors that are independent at different time points and have mean zero and finite

constant variance 2.

B Proof of Theorem 1

The following lemma from Lemma A.3 of Huang et al. [2] will be used in the proof.

Lemma 1. Suppose that lim,,_,., K,log K,,/n = 0. There are positive constants Cy and Cs
such that, except on an event whose probability tends to zero, all eigenvalues of n™* K, UTU fall

between C, and Csy, and consequently UTU is invertible.



Proof of Theorem 1. Note that

18— Bl < 118° = Bl + 118 — B2

By B-spline property, ||5; — @Hz = O,(K,?) where EZ is an approximation in B-spline space as
defined in (2.3). It can be shown that the same rate holds true if EZ is replaced by its sparse
approximation of B;Q (see Lemma 1 in Wang and Kai [3]). Thus, ||8° — 8|2 = O,(K,?).

For the second term, by (A5) and B-spline property, we have ||3;||2 < D;l|c|2/ K, for some

positive constant D;, i = 1,...,p [1, 2]. Denote D, = max;D;, and we have
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Below we concentrate on the term ||& — &°||; and in particular we show that [|a — a°||3 =
O,(n™'K?).

By the minimality of &, we have pl(a) < pl(a®); that is,

p G; p G;
ly —U&l —lly —U&°I5 <X D D llah, I =2 >0 ) lléa, I (1)
i=1 g=1 i=1 g=1

Y

Note that, the right hand side of (1) can be decomposed into two terms, A, > 7, >~ 1
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term, applying the inequality [0 —a”| < 2|b—a|b?~!, for a,b > 0, and Cauchy-Schwarz inequal-

~0
geA |aAig

’ ~

a4,

|oa,, 1. For the first

’1}/ and )\n Z€:1 zgeAiz |&?4i9

ity yields that



p p
Do lab I =0 > llaw, I

i=1 geA;1 i=1 geA;
~ -1
< 23 (a8 — G| 18, 2
1=1 g€A;1
p
< 2> ) &l &, I
=1 geAj;
1 2 ~0 — ~0 A
< 2(d+1 /ZZH %, I A, llo
=1 QEAZI
» 12 /o 1/2
< 2(d+1)2 (Z Z H&?Llig ?(vl)> (Z Z Hagig —ay, 3) .
=1 geAjn 1=1 geAi

For the second term, note that ||, [[1 = 0 for g € A;». Thus, the second term is less than or

equal to zero. Combining above results and (1), we have
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It follows that
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On the other hand, straightforward calculation gives that
y—Ua|?-|ly-Ua’|? = (Ua)"Ua- (Ua")'Ua’-2y"U(a—a°
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Let 0, = ||a—a®||2, then by Lemma 1, ||[U(a—aP)||3 > CinK, 62 with probability approaching
1. In addition, applying Cauchy-Schwarz inequality yields that (eI U (a—a®))? < 62(elUU"e,).
Further, E(elUU"€,) = E(e'UU"€)+E(e’UU"e). As a consequence of Lemma A.3 of [4], we
have E(e"UU7T€) = O(n) with n;, uniformly bounded. Similarly, we have E(e?UU”e) = O(n)
since E(e(ty)e(ti)) < C||8—8°%, for some constant C and ||8 — 3°|| is bounded by O(K;2).

Therefore, E(eIUUTe,) = O(n). Thus, we have
ly —Ual; — |y = U&°|3 = CinK, '3 — 6.0,(n"/?). (3)

Combining (2) and (3), we have
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and by (S1) we have ||a — a°||3 = O,(n ' K?2).



C Proof of Theorem 2

Proof. First, for any 4, define @j; in the following way. Let aj; = 0 if {j —

otherwise, a;; = @;;. Note that &), = 0 for g € Ay

By Karush-Kuhn-Tucker conditions, for a;; # 0 we have
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where U(;; is the column of U corresponding to &;;. Multiplying both sides by (a;; —
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Since Y0771(b — a) < b7 — a” for 0 < a < b, we have, for g € Ay,
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Note that ||, [l1 = 0 for g € Aj. Thus, we have > 7, ZgG;j ey, 17 =
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and
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and thus

Pr{|la* — al; > 0} gPr{ <op(1)}.
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By assumption (S2), the right hand side converges to zero as n goes to infinity, which implies

that (aua,, : g € Aip) = 0 with probability approaching to one. O
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