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S1 An example on construction of an NMECDM based

on an SS ANOVA decomposition

We assume Y = R and model g as a function of y using the thin-plate

spline model space Hy = W 3
2 (R) 	 {1}. Suppose that we want to model

g as a function of x using an RKHS Hx = H0x ⊕ H1x where H0x is a

finite dimensional space collecting functions which are not penalized. Let

Py and Px be the projection operators onto H0y and H0x respectively. Let
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Pωg =
∫

Ω
g(y, x, ω)dP . We have the following SS ANOVA decomposition

g = [Py + (I − Py)][Px + (I − Px)][Pω + (I − Pω)]g

4
= gppf (y, x) + gpsf (y, x) + gspf (y, x) + gssf (y, x)

+gppr(y, x, ω) + gpsr(y, x, ω) + gspr(y, x, ω) + gssr(y, x, ω)(S1.1)

where gppf is the parametric fixed effect, gpsf , gspf and gssf are nonpara-

metric fixed effects, gppr is the parametric random effect, and gpsr, gspr

and gssr are nonparametric random effects. Comparing to the NMECDM

(2.5), we have Hη = (W 3
2 (R)	{1})⊗Hx, η(y, x) = gppf (y, x) + gpsf (y, x) +

gspf (y, x)+gssf (y, x) and bi(y) = gppr(y, x, ωi)+gpsr(y, x, ωi)+gspr(y, x, ωi)+

gssr(y, x, ωi).

Rather than the conditional density, regression models focus on the

conditional expectation µ(x, ω) = E(Y |X = x, ω). Suppose that we want

to model µ as a function of x using the RKHS Hx = H0x⊕H1x. Applying a

similar SS ANOVA decomposition to the random function µ(x, ω) we have

the following SS ANOVA mixed effects model (Wang, 1998)

Yij = µpf (Xij) + µsf (Xij) + µpr(Xij, ωi) + µsr(Xij, ωi) + εij, (S1.2)

where µpf and µsf are parametric and nonparametric fixed effects, µpr and

µsr are parametric and nonparametric random effects, εij
iid∼ N(0, σ2), and

random effects and εij are mutually independent. Then, up to a con-



S2. DERIVATIVES OF LOG-LIKELIHOOD

stant independent of y, the logistic density of Yij conditional on Xij =

x and cluster ω has the form {(−y2/2 + µpfy) + µsf (x)y + µpr(x, ω)y +

µsr(x, ω)y}/σ2. Comparing to the SS ANOVA decomposition (S1.1), it is

obvious that the SS ANOVA mixed effects model (S1.2) is a special case with

gppf (y, x) ∼= (−y2/2 + µpf (x)y)/σ2, gpsf (y, x) ∼= µsf (x)y/σ2, gppr(y, x, ω) ∼=

µpr(x, ω)y/σ2, gpsr(y, x, ω) ∼= µsr(x, ω)y/σ2, and gspf (y, x, ω) = gssf (y, x, ω) =

gspr(y, x, ω) = gssr(y, x, ω) = 0.

S2 Derivatives of log-likelihood

Note that

log fY i|Bi
(Y i) ∼=

ni∑
j=1

{η(Yij, Xij) + bi(Yij, Xij)−

log

∫
Y

exp{η(y,Xij) + bi(y,Xij)}dy
}
,

where

η(y, x) =

p∑
ν=1

dνφν(y, x) +
L∑
l=1

clR
∗
1(U l, (y, x)).

Hence

∂ log fY i|Bi
(Y i)

∂cl

=

ni∑
j=1

{
R∗1(U l, (Yij, Xij))−

∫
Y R

∗
1(U l, (y,Xij)) exp{η(y,Xij) + bi(y,Xij)}dy∫

Y exp{η(y,Xij) + bi(y,Xij)}dy

}

=

ni∑
j=1

{
R∗1(U l, (Yij, Xij))− E

Y |Bi
R∗1(U l, (Y,Xij))

}
,
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and

∂2 log fY i|Bi
(Y i)

∂cl∂ck

= −
ni∑
j=1

{∫
Y R

∗
1(U l, (y,Xij))R

∗
1(U k, (y,Xij)) exp{η(y,Xij) + bi(y,Xij)}dy∫

Y exp{η(y,Xij) + bi(y,Xij)}dy

−

(∫
Y R

∗
1(U l, (y,Xij)) exp{η(y,Xij) + bi(y,Xij)}dy∫

Y exp{η(y,Xij) + bi(y,Xij)}dy

)
(∫
Y R

∗
1(U k, (y,Xij)) exp{η(y,Xij) + bi(y,Xij)}dy∫

Y exp{η(y,Xij) + bi(y,Xij)}dy

)}

=

ni∑
j=1

Cov
Y |Bi

(R∗1(U k, (Y,Xij)), R
∗
1(U l, (Y,Xij))).

Other first and second derivatives can be calculated similarly.

S3 Markov Chain Monte Carlo

We need to generate MCMC samples for the computation of conditional ex-

pectations with respect to Bi|Y i. We first divide the domain Y into a finite

number of disjoint subsets Y = ∪Kk=1Yk and select points ỹk ∈ Yk for k =

1, . . . , K. We then apply the Metropolis-Hastings (MH) procedure to gener-

ate MCMC samples for random vectors B̃ij = (bi(ỹ1, Xij), . . . , bi(ỹK , Xij))

conditional on Y i for i = 1, . . . ,m and j = 1, . . . , ni. Finally we ap-

proximate the conditional expectations with respect to Bi|Y i using these

MCMC samples. Details of the MH procedure can be found in Gelman et

al. (2003).We use a multivariate normal centered at the current MCMC



Density Estimation for Clustered Data

sample as the proposal distribution with a scaled covariance matrix such

that the acceptance rate is near 23% as suggested by Gelman et al. (2003,

Ch11). Convergence and mixing are assessed by visualization tools such as

trace plot and autocorrelation.

S4 Quadratic Approximation and Cross-Validation

The log marginal likelihood for cluster i is li = log EBi
fY i|Bi

(Y i) where

fY i|Bi
(Y i) is given in (3.2). For f, g ∈ Hη and α ∈ R, consider

Lf,g(α) = log EBi

exp{
∑ni

j=1[f(Yij, Xij) + αg(Yij, Xij) + bi(Yij, Xij)]}∫
Y exp{f(y,Xij) + αg(y,Xij) + bi(y,Xij)}dy

(S4.1)

as a function of α. It can be shown that the derivatives of Lf,g(α) with

respect to α evaluated at zero are given as follows:

L′f,g(0) =

ni∑
j=1

g(Yij, Xij)−
ni∑
j=1

Ef

Bi|Y i
Ef

Y |Bi
g(Y,Xij),

L′′f,g(0) =

ni∑
j=1

Ef

Bi|Y i
Vf

Y |Bi
g(Y,Xij) + Vf

Bi|Y i

{
ni∑
j=1

Ef

Y |Bi
g(Y,Xij)

}
,

where Ef
·|· and Vf

·|· respectively represent conditional expectation and vari-

ance under model (2.5) with η(y, x) = f(y, x).

For any fixed η̃, setting f = η̃ and g = η − η̃, we have the quadratic
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approximation of the log-likelihood li at η̃

li = Lf,g(1)

≈ Lf,g(0) + L′f,g(0) +
1

2
L′′f,g(0)

= log EBi

exp{
∑ni

j=1[η̃(Yij, Xij) + bi(Yij, Xij)]}∫
Y exp{η̃(y,Xij) + bi(y,Xij)}dy

+

ni∑
j=1

{η(Yij, Xij)− η̃(Yij, Xij)}

−
ni∑
j=1

Eη̃

Bi|Y i
E η̃

Y |Bi
{η(Y,Xij)− η̃(Y,Xij)}

+
1

2

ni∑
j=1

Eη̃

Bi|Y i
Vη̃

Y |Bi
{η(Y,Xij)− η̃(Y,Xij)}

+
1

2
Vη̃

Bi|Y i

{
ni∑
j=1

E η̃

Y |Bi
(η(Y,Xij)− η̃(Y,Xij))

}
.

Dropping terms do not involve η and the last term for computational sta-

bility, and summing log-likelihoods over all clusters, we have the quadratic

approximation to log marginal likelihood at η̃

l̃(ζ, η) =
m∑
i=1

ni∑
j=1

{
η(Yij, Xij)− Eη̃

Bi|Y i
E η̃

Y |Bi
η(Y,Xij)

+
1

2
Eη̃

Bi|Y i
Vη̃

Y |Bi
(η(Y,Xij)− η̃(Y,Xij))

}
.

Consider the approximated penalized likelihood

− 1

N
l̃(ζ, η) +

1

2

q∑
j=1

λj||Pjη||2, (S4.2)

and denote η
[i,j]

λ
as the solution to (S4.2) with the jth observation from clus-

ter i begin removed. Let ψ = (φ1, . . . , φp, ξ1, . . . , ξL)T , R̆ = (ψ(Z11), . . .,



Density Estimation for Clustered Data 7

ψ(Zmnm))T where Zij = (Yij, Xij), P
⊥
1 = IN − 1N1TN/N where IN is

an N × N identity matrix and 1N is an N -vector of all ones, and Π =

EB|Y I(c̃, d̃,B) where I is a proxy of the Hessian matrix defined in Sec-

tion 3.2, and c̃ and d̃ are estimates at the current iteration. Following

similar arguments as in Gu (2013), it can be shown that

η
[i,j]

λ
(Yij, Xij) = ηλ(Yij, Xij)−

1

N − 1
{ψ(Zij)}TΠ−1{ψ(Zij)

−N−1R̆T1}.

Noting that R̆T1 =
∑m

i=1

∑ni

j=1ψ(Zij), we have

1

N

m∑
i=1

ni∑
j=1

η
[i,j]

λ
(Yij, Xij) =

1

N

m∑
i=1

ni∑
j=1

ηλ(Yij, Xij)−
tr(P⊥1 R̆Π−1R̆TP⊥1 )

N(N − 1)
.

The cross-validation score (4.4) is derived by plugging in the above into

(4.3).

S5 Figures and A Table
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Figure A.1: True and estimates of the population conditional density function when x is

discrete and m = 200. The solid black curves are the true population conditional density

functions of the two groups, the dashed blue curves are the estimates with the largest

AKL loss, the dotted red curves are the estimates with the smallest AKL loss, and the

dash-dot green curves are the estimates with the median AKL loss.
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Figure A.2: Contour plots of the true population conditional density function (solid

black lines) and three estimates corresponding to the largest AKL loss (dashed blue

lines), median AKL loss (dash-dot green lines), and the smallest AKL loss (dotted red

lines) when x is continuous and m = 200.

Parameter Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7 Subset 8

σ2
1 0.75 0.31 0.82 0.71 0.83 0.84 0.74 0.71

σ2
2 142.27 192.23 144.71 142.38 144.11 144.97 143.37 143.21

Table A.1: Estimates of the variance components from the eight subsets of the Hb

measurements.


