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This supplement contains two sections: all proofs of the theorems and
lemmas are in Section [S1] and some results about the D-optimal group

testing designs are in Section [S2

S1. Proofs of theorems and lemmas

In this section, we provide all technical proofs for this work. Lemmas 1 and
2 are respectively proved in Sections S1.1 and S1.2. The proof of Theorem
1 is similar to the proof of its traditional version, see for example, Atkinson,
Donev and Tobias (2007), and has therefore been omitted. Theorem 2 is
proved in Section S1.3. The proof of Lemma 3 is similar to Lemma 2 and

has also been omitted.
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S1.1 Proof of Lemma 1

It is clear that a design with at least three points is valid. We show that
a design with fewer than three points is not valid. This result is shown
by contradiction. Without loss of generality, suppose there exists a de-
sign & = {(z;,w;)}2, such that py = €] is estimable under &, where
vy < a1 <y < ay, wi,wy >0, wy +wy =1. Let e; = (1,0,0)T. There-

fore, e; belongs to the range of M (§), where

= (f(21), f(x2)) - diag(wi Ma1), wak(22)) - (f(21), f(22))"

Hence, e; belongs to the range of (f(x1), f(z2)), or equivalently, the deter-

minant of (f(z1) f(x2) e1) = 0. However,

r1—1 xo—1

z1(p1 +p2 — 1)(1 = po) z2(p1 +p2 — 1)(1 — po)

|f(x1) f(x2) ea] = 1—(1—po)™ 1— (1 —po)™

—(1 = po)™ —(1 —po)™
=1=p)™*—=(1—=py)™>0

for arbitrary x; < x5 and pg € (0,1). This contradiction shows that pg is

only estimable under a design with at least three points.

1

0

0
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S1.2 Proof of Lemma 2

Let & be a design supported on {x1, 9, 23} C |21, zy]. Note that in Lemma
1 we show that a valid design must have at least three support points and
therefore has a nonsingular information matrix. Our problem now is to find
the vector of the positive weights {w$}?_| at these three given points that

minimizes (M (§)™!),,. Here M () can be written as
M(§) = F - diag(wid(zs))izy -
where F' is nonsingular and diag(w;A(x3))3_, is positive-definite. Let e; =
(1,0,0)™. Then we have
(M(&)™),y, =er - (F7)T - diag(wi ' Aas) )iy - F~ - e
= (Ula V2, U3) : diag(wi_l)\(xi)_l)?:l ' (U17 V2, US)T (S].)
3
= Z u Jw;.
i=1

Since u? > 0 for i = 1,2,3, we apply the method of Lagrange multipliers
directly to minimize the value in subject to the constraints on the

weights, and then the desired result holds.

S1.3 Proof of Theorem 2

We only show the case with cost parameter ¢ > 0. When ¢ = 0, this

theorem degenerates to Theorem 3 in [Huang et al.| (2017). We prove this
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theorem by three steps: (i) a Dg-optimal design & must have exactly three
group sizes (denoted by z§ < x5 < x%); (ii) the Ds-optimal design is unique;

(iii) 25 = zp.

(i) We show that if & is a Ds-optimal design, the function ¢4(x, &) cannot
have four or more distinct roots in [z, zy]. Therefore, together with
Theorem 1(c) and Lemma 1, &, has exactly three support points. This

result is shown by contradiction.

Suppose that there exists a Dg-optimal design & such that ¢4(x, &)
has at least four distinct roots in [z, xy]. We denote the minimum
among these roots as xy;; and the maximum as x.c. By Theorem
1(b,c), there exists a small ¢; > 0 such that the function ¢,(z, &) + €
has at least 4 x 2 — 2 = 6 roots in interval (Zyin, Tmax) for arbitrary

€€ (0,€).

On the other hand, by equation (3.2), we have that
M) (ds(@, &) +¢)

= [(2) M (&) f(x) = fol@) M(&) ™ fo() + (e = DA(2) ™

= (ag + a1z) + (ag + a3x) (1 — po)® + (ag + asz + agz®)(1 — po)**
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(i)

and it is continuous on R, where aq, as, as, a4, as € R,
a; = (e—1)p1(1 —p1)go <0 for e € (0, min(ey, 1)), and
ag = (M(E)7™Y),, % (m +p2— 1)%/(1 = po)? > 0.

Because of the fact that Z?:o ri(z)e"” has at most Z?:o s; + h real
roots, where 7;(x) is a real polynomial of degree s; and v; € R (Karlin
and Studden, (1966, page 10), A(z)™! (¢s(x, &) + €) has at most 1 +

1+ 242 =06 real roots.

Since A(x) > 0 for x > 0, a positive root of ¢4(x, &) + € is also
a root of A\(z)™ (¢s(z, &) + €). Therefore, the two paragraphs above
indicate that for € € (0, min(ey, 1)), M(z)™* (¢s(z, &) + €) has exactly

Six r00ts N (Zyin, Tmax) and no root outside. However, since
A2) ™ (G (Tmaxs &) + €) = Mz)'e >0 and

lim A(z)7! (¢s(, &) +€) Jr = a; <0,

Z—00
it yields that A(z)™! (¢s(x, &) + €) has a root in [Tpay, 00), and so a
contradiction occurs. This shows that a Ds-optimal design has exactly
three distinct group sizes, and thus their optimal weights follow the

results at Lemma 2.

The result is shown by contradiction. Suppose that & # & are both

D-optimal designs. Since & and & have three support points and
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Lemma 2, £ # & implies that £* = %{S - %fg has at least four distinct
support points. By Theorem 1, £* is also a D,-optimal design but has
at least four distinct support points, which contradicts the result in

step (i). Therefore, the Dg-optimal design must be unique.

(iii) The result is shown by contradiction. Suppose that the Dg-optimal
design ¢, has support points x] < x5 < x5 with z{ > x7. Let €3 =
os(xp, &) < 0 (e2 # 0 by (i), and set € € (0,min(1, €, —€3)). By
arguments similar to step (i), M(z)™! (¢s(z, &) + €) has at least 3 x
2 —2 =4 roots in (z7,x}%), has a root in (z}, 00), and has at most six

real roots. However, since

M) (ps (25, &) +€) = M) te > 0,
Mz) ™ (¢s(zr, &) +€) = Mx) M (ea +€) <0, and

lim M) (g5, &) +€) /(2*(1 — po)?x) = ag > 0,

T—r—00

it yields that A(z)™! (¢s(x, &) + €) has two roots in (—oo, z5). Hence,
we have that A(x)™! (¢s(x, &) + €) has at least seven real roots and

so a contradiction occurs. This shows that i must be .
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S2. D-optimal designs

In this section we present the D-optimal budget-constraint group testing
designs under the setting that p; and py, are unknown constants. Similar
to the definition of Ds-optimal designs with equation (2.5), a D-optimal

design maximizes the criterion function

Op{M(&)} = log(|M(&)]).

The following theorem characterizes the D-optimal designs. The proof is

similar to Theorem 2 and has been omitted.

Theorem S1. The D-optimal design £* is unique. It is equally supported on
the three group sizes xy, = x] < x5 < x3 < xy, where x5 and x5 maximizes

Mz2)A(ws) |(f (xr), f(w2), f(3))].

Theorem S1 can be used to numerically obtain the D-optimal design
through a two-dimension optimization. In Figure S1 we compare the group
sizes of the D-optimal designs in Example 1 with those of the corresponding
D-optimal designs. We can see that the intermediate sizes are close, where

x5 1s slightly smaller than 273, but x5 is somewhat larger than 3.
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(a) x5 (solid) and z3 (dashed) vs. ¢ (b) 5§ (solid) and z% (dashed) vs. ¢
Figure S1:  Group sizes of the Dg-optimal design (&) and the D-optimal
design (£*) for Example 1, where &, is supported on {z%, 25, x5} and £* is on
{z7, 2%, x5}, where the smallest sizes 1 = x§ = x}. The intermediate sizes

x3 and x3 are shown in (a), the largest sizes x5 and a3 are in (b).



	Proofs of theorems and lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 2

	D-optimal designs

