Supplement: Cost Considerations for Efficient Group Testing Studies

Shih-Hao Huang^{1,2,3}, Mong-Na Lo Huang⁴ and Kerby Shedden³

¹National Central University, ²Academia Sinica,

³University of Michigan, and ⁴National Sun Yat-sen University

This supplement contains two sections: all proofs of the theorems and lemmas are in Section S1, and some results about the D-optimal group testing designs are in Section S2.

S1. Proofs of theorems and lemmas

In this section, we provide all technical proofs for this work. Lemmas 1 and 2 are respectively proved in Sections S1.1 and S1.2. The proof of Theorem 1 is similar to the proof of its traditional version, see for example, Atkinson, Donev and Tobias (2007), and has therefore been omitted. Theorem 2 is proved in Section S1.3. The proof of Lemma 3 is similar to Lemma 2 and has also been omitted.

S1.1 Proof of Lemma 1

It is clear that a design with at least three points is valid. We show that a design with fewer than three points is not valid. This result is shown by contradiction. Without loss of generality, suppose there exists a design $\xi = \{(x_i, w_i)\}_{i=1}^2$ such that $p_0 = e_1^T \theta$ is estimable under ξ , where $x_L \leq x_1 < x_2 \leq x_U, w_1, w_2 \geq 0, w_1 + w_2 = 1$. Let $e_1 = (1, 0, 0)^T$. Therefore, e_1 belongs to the range of $M(\xi)$, where

$$M(\xi) = \sum_{i=1}^{2} w_i \lambda(x_i) f(x_i) f(x_i)^{\mathrm{T}}$$

= $(f(x_1), f(x_2)) \cdot \operatorname{diag}(w_1 \lambda(x_1), w_2 \lambda(x_2)) \cdot (f(x_1), f(x_2))^{\mathrm{T}}.$

Hence, e_1 belongs to the range of $(f(x_1), f(x_2))$, or equivalently, the determinant of $(f(x_1) f(x_2) e_1) = 0$. However,

$$|f(x_1) f(x_2) e_1| = \begin{vmatrix} x_1(p_1 + p_2 - 1)(1 - p_0)^{x_1 - 1} & x_2(p_1 + p_2 - 1)(1 - p_0)^{x_2 - 1} & 1 \\ 1 - (1 - p_0)^{x_1} & 1 - (1 - p_0)^{x_2} & 0 \\ -(1 - p_0)^{x_1} & -(1 - p_0)^{x_2} & 0 \end{vmatrix}$$
$$= (1 - p_0)^{x_1} - (1 - p_0)^{x_2} > 0$$

for arbitrary $x_1 < x_2$ and $p_0 \in (0, 1)$. This contradiction shows that p_0 is only estimable under a design with at least three points.

S1.2 Proof of Lemma 2

Let ξ be a design supported on $\{x_1, x_2, x_3\} \subset [x_L, x_U]$. Note that in Lemma 1 we show that a valid design must have at least three support points and therefore has a nonsingular information matrix. Our problem now is to find the vector of the positive weights $\{w_i^s\}_{i=1}^3$ at these three given points that minimizes $(M(\xi)^{-1})_{11}$. Here $M(\xi)$ can be written as

$$M(\xi) = F \cdot \operatorname{diag}(w_i \lambda(x_3))_{i=1}^3 \cdot F^{\mathrm{T}},$$

where F is nonsingular and $\operatorname{diag}(w_i\lambda(x_3))_{i=1}^3$ is positive-definite. Let $e_1 = (1,0,0)^{\mathrm{T}}$. Then we have

$$(M(\xi)^{-1})_{11} = e_1^{\mathrm{T}} \cdot (F^{-1})^{\mathrm{T}} \cdot \operatorname{diag}(w_i^{-1}\lambda(x_i)^{-1})_{i=1}^3 \cdot F^{-1} \cdot e_1$$

$$= (v_1, v_2, v_3) \cdot \operatorname{diag}(w_i^{-1}\lambda(x_i)^{-1})_{i=1}^3 \cdot (v_1, v_2, v_3)^{\mathrm{T}}$$

$$= \sum_{i=1}^3 u_i^2 / w_i.$$
(S1)

Since $u_i^2 > 0$ for i = 1, 2, 3, we apply the method of Lagrange multipliers directly to minimize the value in (S1) subject to the constraints on the weights, and then the desired result holds.

S1.3 Proof of Theorem 2

We only show the case with cost parameter q > 0. When q = 0, this theorem degenerates to Theorem 3 in Huang et al. (2017). We prove this theorem by three steps: (i) a D_s -optimal design ξ_s must have exactly three group sizes (denoted by $x_1^s < x_2^s < x_3^s$); (ii) the D_s -optimal design is unique; (iii) $x_1^s = x_L$.

(i) We show that if ξ_s is a D_s-optimal design, the function φ_s(x, ξ_s) cannot have four or more distinct roots in [x_L, x_U]. Therefore, together with Theorem 1(c) and Lemma 1, ξ_s has exactly three support points. This result is shown by contradiction.

Suppose that there exists a D_s -optimal design ξ_s such that $\phi_s(x, \xi_s)$ has at least four distinct roots in $[x_L, x_U]$. We denote the minimum among these roots as x_{\min} and the maximum as x_{\max} . By Theorem 1(b,c), there exists a small $\epsilon_1 > 0$ such that the function $\phi_s(x, \xi_s) + \epsilon$ has at least $4 \times 2 - 2 = 6$ roots in interval (x_{\min}, x_{\max}) for arbitrary $\epsilon \in (0, \epsilon_1)$.

On the other hand, by equation (3.2), we have that

$$\lambda(x)^{-1} (\phi_s(x,\xi_s) + \epsilon)$$

= $f(x)^{\mathrm{T}} M(\xi_s)^{-1} f(x) - f_s(x)^{\mathrm{T}} M_s(\xi_s)^{-1} f_s(x) + (\epsilon - 1)\lambda(x)^{-1}$
= $(a_0 + a_1 x) + (a_2 + a_3 x)(1 - p_0)^x + (a_4 + a_5 x + a_6 x^2)(1 - p_0)^{2x}$

and it is continuous on \mathbb{R} , where $a_0, a_2, a_3, a_4, a_5 \in \mathbb{R}$,

$$a_1 = (\epsilon - 1)p_1(1 - p_1)q_0 < 0$$
 for $\epsilon \in (0, \min(\epsilon_1, 1))$, and

$$a_6 = \left(M(\xi_s)^{-1}\right)_{11} \times (p_1 + p_2 - 1)^2 / (1 - p_0)^2 > 0.$$

Because of the fact that $\sum_{i=0}^{h} r_i(x)e^{v_ix}$ has at most $\sum_{i=0}^{h} s_i + h$ real roots, where $r_i(x)$ is a real polynomial of degree s_i and $v_i \in \mathbb{R}$ (Karlin and Studden, 1966, page 10), $\lambda(x)^{-1}(\phi_s(x,\xi_s) + \epsilon)$ has at most 1 + 1 + 2 + 2 = 6 real roots.

Since $\lambda(x) > 0$ for x > 0, a positive root of $\phi_s(x, \xi_s) + \epsilon$ is also a root of $\lambda(x)^{-1} (\phi_s(x, \xi_s) + \epsilon)$. Therefore, the two paragraphs above indicate that for $\epsilon \in (0, \min(\epsilon_1, 1)), \lambda(x)^{-1} (\phi_s(x, \xi_s) + \epsilon)$ has exactly six roots in (x_{\min}, x_{\max}) and no root outside. However, since

$$\lambda(x)^{-1} \left(\phi_s(x_{\max}, \xi_s) + \epsilon \right) = \lambda(x)^{-1} \epsilon > 0 \quad \text{and}$$
$$\lim_{x \to \infty} \lambda(x)^{-1} \left(\phi_s(x, \xi_s) + \epsilon \right) / x = a_1 < 0,$$

it yields that $\lambda(x)^{-1} (\phi_s(x, \xi_s) + \epsilon)$ has a root in $[x_{\max}, \infty)$, and so a contradiction occurs. This shows that a D_s -optimal design has exactly three distinct group sizes, and thus their optimal weights follow the results at Lemma 2.

(ii) The result is shown by contradiction. Suppose that $\xi_s \neq \xi'_s$ are both D_s -optimal designs. Since ξ_s and ξ'_s have three support points and

Lemma 2, $\xi_s \neq \xi'_s$ implies that $\xi^* = \frac{1}{2}\xi_s + \frac{1}{2}\xi'_s$ has at least four distinct support points. By Theorem 1, ξ^* is also a D_s -optimal design but has at least four distinct support points, which contradicts the result in step (i). Therefore, the D_s -optimal design must be unique.

(iii) The result is shown by contradiction. Suppose that the D_s -optimal design ξ_s has support points $x_1^s < x_2^s < x_3^s$ with $x_1^s > x_L$. Let $\epsilon_2 = \phi_s(x_L, \xi^*) < 0$ ($\epsilon_2 \neq 0$ by (i)), and set $\epsilon \in (0, \min(1, \epsilon_1, -\epsilon_2))$. By arguments similar to step (i), $\lambda(x)^{-1}(\phi_s(x, \xi_s) + \epsilon)$ has at least $3 \times 2 - 2 = 4$ roots in (x_1^*, x_3^*) , has a root in (x_3^*, ∞) , and has at most six real roots. However, since

$$\lambda(x)^{-1} (\phi_s(x_1^s, \xi_s) + \epsilon) = \lambda(x)^{-1} \epsilon > 0,$$

$$\lambda(x)^{-1} (\phi_s(x_L, \xi_s) + \epsilon) = \lambda(x)^{-1} (\epsilon_2 + \epsilon) < 0, \text{ and}$$

$$\lim_{x \to -\infty} \lambda(x)^{-1} (\phi_s(x, \xi_s) + \epsilon) / (x^2 (1 - p_0)^2 x) = a_6 > 0,$$

it yields that $\lambda(x)^{-1}(\phi_s(x,\xi_s)+\epsilon)$ has two roots in $(-\infty, x_1^s)$. Hence, we have that $\lambda(x)^{-1}(\phi_s(x,\xi_s)+\epsilon)$ has at least seven real roots and so a contradiction occurs. This shows that x_1^s must be x_L .

S2. *D*-optimal designs

In this section we present the *D*-optimal budget-constraint group testing designs under the setting that p_1 and p_2 are unknown constants. Similar to the definition of D_s -optimal designs with equation (2.5), a *D*-optimal design maximizes the criterion function

$$\Phi_D\{M(\xi)\} = \log(|M(\xi)|).$$

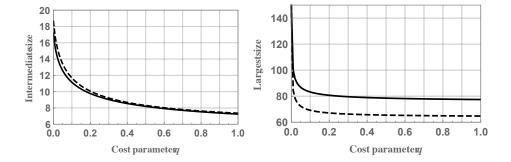
The following theorem characterizes the *D*-optimal designs. The proof is similar to Theorem 2 and has been omitted.

Theorem S1. The D-optimal design ξ^* is unique. It is equally supported on the three group sizes $x_L = x_1^* < x_2^* < x_3^* \leq x_U$, where x_2^* and x_3^* maximizes $\lambda(x_2)\lambda(x_3) |(f(x_L), f(x_2), f(x_3))|^2$.

Theorem S1 can be used to numerically obtain the *D*-optimal design through a two-dimension optimization. In Figure S1 we compare the group sizes of the D_s -optimal designs in Example 1 with those of the corresponding *D*-optimal designs. We can see that the intermediate sizes are close, where x_2^s is slightly smaller than x_2^* , but x_3^s is somewhat larger than x_3^* .

References

- Atkinson, A. C., Donev, A. N. and Tobias, R.D. (2007). Optimum experimental designs, with SAS. Oxford University Press, Oxford.
- Huang, S.-H., Huang, M.-N. L., Shedden, K. and Wong, W. K. (2017). Optimal group testing designs for estimating prevalence with uncertain testing errors. J. Roy. Statist. Soc. Ser. B, 79, 1547-1563.
- Karlin, S. and Studden, W. J. (1966). Tchebycheff Systems with Applications in Analysis and Statistics. Wiley, New York.



(a) x_2^s (solid) and x_2^s (dashed) vs. q (b) x_3^s (solid) and x_3^s (dashed) vs. q

Figure S1: Group sizes of the D_s -optimal design (ξ_s) and the D-optimal design (ξ^*) for Example 1, where ξ_s is supported on $\{x_1^s, x_2^s, x_3^s\}$ and ξ^* is on $\{x_1^*, x_2^*, x_3^*\}$, where the smallest sizes $1 = x_1^s = x_1^*$. The intermediate sizes x_2^s and x_2^* are shown in (a), the largest sizes x_3^s and x_3^* are in (b).