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This supplement contains two sections: all proofs of the theorems and

lemmas are in Section S1, and some results about the D-optimal group

testing designs are in Section S2.

S1. Proofs of theorems and lemmas

In this section, we provide all technical proofs for this work. Lemmas 1 and

2 are respectively proved in Sections S1.1 and S1.2. The proof of Theorem

1 is similar to the proof of its traditional version, see for example, Atkinson,

Donev and Tobias (2007), and has therefore been omitted. Theorem 2 is

proved in Section S1.3. The proof of Lemma 3 is similar to Lemma 2 and

has also been omitted.
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S1.1 Proof of Lemma 1

It is clear that a design with at least three points is valid. We show that

a design with fewer than three points is not valid. This result is shown

by contradiction. Without loss of generality, suppose there exists a de-

sign ξ = {(xi, wi)}2i=1 such that p0 = eT1 θ is estimable under ξ, where

xL ≤ x1 < x2 ≤ xU , w1, w2 ≥ 0, w1 + w2 = 1. Let e1 = (1, 0, 0)T. There-

fore, e1 belongs to the range of M(ξ), where

M(ξ) =
2∑

i=1

wiλ(xi)f(xi)f(xi)
T

= (f(x1), f(x2)) · diag(w1λ(x1), w2λ(x2)) · (f(x1), f(x2))
T.

Hence, e1 belongs to the range of (f(x1), f(x2)), or equivalently, the deter-

minant of (f(x1) f(x2) e1) = 0. However,

|f(x1) f(x2) e1| =

∣∣∣∣∣∣∣∣∣∣∣
x1(p1 + p2 − 1)(1− p0)

x1−1 x2(p1 + p2 − 1)(1− p0)
x2−1 1

1− (1− p0)
x1 1− (1− p0)

x2 0

−(1− p0)
x1 −(1− p0)

x2 0

∣∣∣∣∣∣∣∣∣∣∣
= (1− p0)x1 − (1− p0)x2 > 0

for arbitrary x1 < x2 and p0 ∈ (0, 1). This contradiction shows that p0 is

only estimable under a design with at least three points.
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S1.2 Proof of Lemma 2

Let ξ be a design supported on {x1, x2, x3} ⊂ [xL, xU ]. Note that in Lemma

1 we show that a valid design must have at least three support points and

therefore has a nonsingular information matrix. Our problem now is to find

the vector of the positive weights {ws
i }3i=1 at these three given points that

minimizes (M(ξ)−1)11. Here M(ξ) can be written as

M(ξ) = F · diag(wiλ(x3))
3
i=1 · FT,

where F is nonsingular and diag(wiλ(x3))
3
i=1 is positive-definite. Let e1 =

(1, 0, 0)T. Then we have

(
M(ξ)−1

)
11

= eT1 · (F−1)T · diag(w−1i λ(xi)
−1)3i=1 · F−1 · e1

= (v1, v2, v3) · diag(w−1i λ(xi)
−1)3i=1 · (v1, v2, v3)

T

=
3∑

i=1

u2i /wi.

(S1)

Since u2i > 0 for i = 1, 2, 3, we apply the method of Lagrange multipliers

directly to minimize the value in (S1) subject to the constraints on the

weights, and then the desired result holds.

S1.3 Proof of Theorem 2

We only show the case with cost parameter q > 0. When q = 0, this

theorem degenerates to Theorem 3 in Huang et al. (2017). We prove this
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theorem by three steps: (i) a Ds-optimal design ξs must have exactly three

group sizes (denoted by xs1 < xs2 < xs3); (ii) the Ds-optimal design is unique;

(iii) xs1 = xL.

(i) We show that if ξs is aDs-optimal design, the function φs(x, ξs) cannot

have four or more distinct roots in [xL, xU ]. Therefore, together with

Theorem 1(c) and Lemma 1, ξs has exactly three support points. This

result is shown by contradiction.

Suppose that there exists aDs-optimal design ξs such that φs(x, ξs)

has at least four distinct roots in [xL, xU ]. We denote the minimum

among these roots as xmin and the maximum as xmax. By Theorem

1(b,c), there exists a small ε1 > 0 such that the function φs(x, ξs) + ε

has at least 4 × 2 − 2 = 6 roots in interval (xmin, xmax) for arbitrary

ε ∈ (0, ε1).

On the other hand, by equation (3.2), we have that

λ(x)−1 (φs(x, ξs) + ε)

= f(x)TM(ξs)
−1f(x)− fs(x)TMs(ξs)

−1fs(x) + (ε− 1)λ(x)−1

= (a0 + a1x) + (a2 + a3x)(1− p0)x + (a4 + a5x+ a6x
2)(1− p0)2x
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and it is continuous on R, where a0, a2, a3, a4, a5 ∈ R,

a1 = (ε− 1)p1(1− p1)q0 < 0 for ε ∈ (0,min(ε1, 1)), and

a6 =
(
M(ξs)

−1)
11
× (p1 + p2 − 1)2/(1− p0)2 > 0.

Because of the fact that
∑h

i=0 ri(x)evix has at most
∑h

i=0 si + h real

roots, where ri(x) is a real polynomial of degree si and vi ∈ R (Karlin

and Studden, 1966, page 10), λ(x)−1 (φs(x, ξs) + ε) has at most 1 +

1 + 2 + 2 = 6 real roots.

Since λ(x) > 0 for x > 0, a positive root of φs(x, ξs) + ε is also

a root of λ(x)−1 (φs(x, ξs) + ε). Therefore, the two paragraphs above

indicate that for ε ∈ (0,min(ε1, 1)), λ(x)−1 (φs(x, ξs) + ε) has exactly

six roots in (xmin, xmax) and no root outside. However, since

λ(x)−1 (φs(xmax, ξs) + ε) = λ(x)−1ε > 0 and

lim
x→∞

λ(x)−1 (φs(x, ξs) + ε) /x = a1 < 0,

it yields that λ(x)−1 (φs(x, ξs) + ε) has a root in [xmax,∞), and so a

contradiction occurs. This shows that a Ds-optimal design has exactly

three distinct group sizes, and thus their optimal weights follow the

results at Lemma 2.

(ii) The result is shown by contradiction. Suppose that ξs 6= ξ′s are both

Ds-optimal designs. Since ξs and ξ′s have three support points and
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Lemma 2, ξs 6= ξ′s implies that ξ∗ = 1
2
ξs + 1

2
ξ′s has at least four distinct

support points. By Theorem 1, ξ∗ is also a Ds-optimal design but has

at least four distinct support points, which contradicts the result in

step (i). Therefore, the Ds-optimal design must be unique.

(iii) The result is shown by contradiction. Suppose that the Ds-optimal

design ξs has support points xs1 < xs2 < xs3 with xs1 > xL. Let ε2 =

φs(xL, ξ
∗) < 0 (ε2 6= 0 by (i)), and set ε ∈ (0,min(1, ε1,−ε2)). By

arguments similar to step (i), λ(x)−1 (φs(x, ξs) + ε) has at least 3 ×

2− 2 = 4 roots in (x∗1, x
∗
3), has a root in (x∗3,∞), and has at most six

real roots. However, since

λ(x)−1 (φs(x
s
1, ξs) + ε) = λ(x)−1ε > 0,

λ(x)−1 (φs(xL, ξs) + ε) = λ(x)−1(ε2 + ε) < 0, and

lim
x→−∞

λ(x)−1 (φs(x, ξs) + ε) /(x2(1− p0)2x) = a6 > 0,

it yields that λ(x)−1 (φs(x, ξs) + ε) has two roots in (−∞, xs1). Hence,

we have that λ(x)−1 (φs(x, ξs) + ε) has at least seven real roots and

so a contradiction occurs. This shows that xs1 must be xL.
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S2. D-optimal designs

In this section we present the D-optimal budget-constraint group testing

designs under the setting that p1 and p2 are unknown constants. Similar

to the definition of Ds-optimal designs with equation (2.5), a D-optimal

design maximizes the criterion function

ΦD{M(ξ)} = log(|M(ξ)|).

The following theorem characterizes the D-optimal designs. The proof is

similar to Theorem 2 and has been omitted.

Theorem S1. The D-optimal design ξ∗ is unique. It is equally supported on

the three group sizes xL = x∗1 < x∗2 < x∗3 ≤ xU , where x
∗
2 and x∗3 maximizes

λ(x2)λ(x3) |(f(xL), f(x2), f(x3))|2.

Theorem S1 can be used to numerically obtain the D-optimal design

through a two-dimension optimization. In Figure S1 we compare the group

sizes of theDs-optimal designs in Example 1 with those of the corresponding

D-optimal designs. We can see that the intermediate sizes are close, where

xs2 is slightly smaller than x∗2, but xs3 is somewhat larger than x∗3.
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Figure S1: Group sizes of the Ds-optimal design (ξs) and the D-optimal

design (ξ∗) for Example 1, where ξs is supported on {xs1, xs2, xs3} and ξ∗ is on

{x∗1, x∗2, x∗3}, where the smallest sizes 1 = xs1 = x∗1. The intermediate sizes

xs2 and x∗2 are shown in (a), the largest sizes xs3 and x∗3 are in (b).
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