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Abstract: The main purpose of this study is to develop parameter identifiability

and statistical inferences for a class of possibly over-identified nonsmooth moment

functions with nonignorable missing data. Assuming a parametric model on the

respondent probability, we propose a propensity score-based nonparametric impu-

tation approach that uses an instrumental variable to address model identifiability

in the presence of nonignorable missing data. A set of augmented inverse probabil-

ity weighting moment functions is constructed as a basis for inferences performed

using the generalized empirical likelihood method. Under some mild regularity

conditions, we establish the large-sample properties of the resultant two-step gen-

eralized empirical likelihood estimators and generalized empirical likelihood ratio

statistics for the case in which the propensity score is estimated parametrically us-

ing a correctly specified model. A derivative-free optimization method based on the

simulated annealing algorithm is developed to implement the proposed methods.

The methods are illustrated using simulations and an application to a data set on

the serum-cholesterol levels of heart-attack patients.
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tal variable, nonignorable missing data, nonsmooth moment conditions, simulated
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1. Introduction

Missing data are often a problem in clinical trials and survey studies. It is

well known that performing complete case analyses using complete observations

only results in a loss of information, leading to bias if the data are not missing

completely at random. Consequently, various valid inferential alternatives to

the complete-case approach have been developed for handling missing values,

including the likelihood-based approach (Ibrahim, Lipsitz and Chen (1999); Little

and Rubin (2002)), imputation approach (Rubin (1987); Cheng (1994)), and

https://doi.org/10.5705/ss.202017.0042


218 ZHAO, TANG AND ZHU

augmented inverse probability weighting (AIPW) approach (Robins, Rotnitzky

and Zhao (1994)). These methods have been applied successfully to analyze

ignorable missing data (see Tstatis (2006) for a more detailed discussion). For a

complete review of statistical analyses with missing data, see Little and Rubin

(2002) and Kim and Shao (2013).

Most existing methods assume that an ignorable missing-data mechanism

will fail to recover information from incomplete observed cases, or will fail to

correct the bias when the mechanism is nonignorable. Handling nonignorable

missing data is difficult, owing to several key challenges. Such challenges in-

clude developing a sensible model to characterize the nonignorable missing-data

mechanism and its associated model identifiability and estimation (Robins and

Ritov (1997); Kim and Yu (2011); Wang, Shao and Kim (2014); Tang, Zhao and

Zhu (2014); Zhao and Shao (2015); Shao and Wang (2016); Miao and Tchetgen

(2016); Zhao et al. (2017a)). The AIPW method is a popular semiparametric

method used to handle missing data, including nonignorable missing data; see,

for example, Scharfstein, Rotnitzky and Robins (1999); Rotnitzky, Robins and

Scharfstein (1998), and Vansteelandt, Rotnitzky and Robins (2007), among oth-

ers. However, existing AIPW methods focus only on smooth moment conditions

and depend on identifiable nonignorable propensity score models with restric-

tions that are difficult to verify. Thus, the body of research on AIPW methods

for nonignorable missing data is far from complete.

Statistical and econometric models defined using nonsmooth moment func-

tions include the least absolute deviations, quantile regression models, and quan-

tile treatment effects as special cases. Considerable effort has been devoted

to estimating finite-dimensional parameters defined using nonsmooth moment

functions in the presence of missing data; see, for example, Chen, Hong and

Tarozzi (2008), Cattaneo (2010), Chen, Wan and Zhou (2015), and Chaudhuri

and Guilkey (2016), as well as the references therein. However, most existing

estimation procedures were developed to handle ignorable missing data based on

the generalized method of moments (GMM, Hansen (1982)). Such GMM-based

approaches lack the ability to generate likelihood ratio-based confidence regions

with a shape that adapts to the support of the data. Moreover, the performance

loss for the GMM can be substantial in the case of small samples. Thus, the

development of a likelihood ratio-based approach for nonsmooth models with

missing data is well motivated.

The empirical likelihood (EL) and exponentially tilted likelihood (ET) meth-

ods, known as nonparametric maximum likelihood methods, have been shown to
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be useful alternatives to the GMM for finding estimators, constructing confidence

regions, and testing hypotheses. Newey and Smith (2004) showed that the EL

and ET estimators are members of a class of generalized empirical likelihood

(GEL) estimators. In addition to improving their small-sample properties, this

enables GMM estimators to compete with the bootstrap method (see, e.g., Owen

(1990); Qin and Lawless (1994); Kitamura and Stutzer (1997); Imbens, Spady and

Johnson (1998)). Here, we formulate GEL and AIPW procedures for parameter

identification and estimation in a collection of possibly over-identified nonsmooth

moment functions in the presence of nonignorable missing data. There is surpris-

ingly little discussion in the literature on this topic. Without considering missing

values, Molanes-Lopez, Van Keilegom and Veraverbeke (2009) and Parente and

Smith (2011) developed EL and GEL methods, respectively, to make statistical

inferences on nonsmooth moment functions.

This study makes three contributions to the literature. First, we suggest a

more attractive imputation procedure that mitigates the effects of missing data

and identifies the parameters in a nonignorable propensity score model. The

proposed imputation procedure is applicable under a general and easily verified

parametric model assumption on the respondent probability, and is developed

based on a “kernel-assisted moment function imputation scheme.” The paramet-

ric identification is based on the independence between a subset of the observed

auxiliary variables, called nonrespondent instrumental variables (Wang, Shao

and Kim (2014)), and the missing indicator, conditional on the missing variables

and other observed auxiliary variables. A set of unbiased augmented inverse

probability weighted moment functions (AIPW-MF) is constructed based on the

proposed imputation approach. The use of a nonparametric kernel approach

makes the AIPW procedure robust against possible model misspecification.

Second, by applying the theory of GEL to the AIPW-MF, we construct a

class of estimated GEL ratio (GLR) statistics and develop a class of two-step

AIPW-based GEL (AIPW-GEL) estimates for the parameters of interest. We

systematically investigate the asymptotic properties of our proposed two-step

AIPW-GEL estimators and GLR statistics for cases in which the propensity

score is estimated parametrically under a correctly specified parametric model.

The large-sample theories are established using the results of modern empirical

process theories, including the uniform law of large numbers, stochastic equicon-

tinuity, and Donsker class. The GEL confidence intervals for the parameters of

interest are constructed using a bootstrap approximation to the distribution of

the proposed GLR statistics.
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Third, we propose a derivative-free optimization method based on the sim-

ulated annealing (SA, Kirkpatrick, Gelatt and Vecchi (1983); Goffe, Ferrier and

Rogers (1994)) algorithm for the numerical implementation of the proposed two-

step AIPW-GEL estimators. The proposed algorithm consists of an inner loop

and an outer loop. The inner loop solves the optimization problem of Lagrange

multipliers, which can be done using Newton-type methods. The outer loop im-

plements the classical SA approach to minimize the concentrated GEL function

in order to solve the optimization problem of unknown parameters defined us-

ing nonsmooth moment functions. The proposed algorithm is a sophisticated

random search, which empirical studies have shown to be successful at locating

global minima.

The rest of this paper is organized as follows. In Section 2, we discuss the

identification of nonsmooth moment functions using a parametric nonignorable

propensity score model and the semiparametric empirical likelihood estimation

of the propensity. Here, we also outline the formulation of the GEL procedure.

In Section 3, we present the asymptotic results for the proposed method and

introduce a bootstrap calibration procedure. Section 4 discusses the modified

SA algorithm. Our simulation studies are presented in Section 5, and a data

example is discussed in Section 6. Section 7 concludes the paper. All technical

details are presented in the Appendix and in the online Supplementary Material.

2. Methodology

2.1. Basic setup

Let (X>, Y >)> be a (dx + dy)-dimensional vector of variables jointly dis-

tributed as a cumulative distribution function F (x, y), where X ∈ Rdx , Y ∈ Rdy ,
and F (x, y) ∈ F , a class of distributions on a sample space. Let β be a vector of

parameters of interest belonging to a compact subset B of Rp, and let g(X,Y,β)

be a known vector-valued function with dimension r ≥ p. On F , there is some

β0 ∈ B ⊂ Rp such that

E{g(X,Y,β0)} = 0 w.p.1, (2.1)

where E{·} represents the expectation taken with respect to F , the notation

“w.p.1” refers to “with probability one.” Throughout this paper, we assume that

the moment functions g are a class of nonsmooth functions with respect to β.

Thus, many parametric models, such as the quantile regression model (Koenker

(2005)), copulas (Nelsen (1999)), receiver operating characteristic curves (Pepe
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(2003)), and quantile treatment effects (Cattaneo (2010)), are special cases of

model (2.1).

We consider the observed sample {(Xi, Yi, δi) : i = 1, . . . , n}, which is an

independently and identically distributed (i.i.d.) sample from (X,Y, δ). Here,

δ is a dichotomous variable indicating whether or not Y is missing, and Yi is

observed if and only if δi = 1, whereas Xi is always available for i = 1, . . . , n.

For simplicity, we suppose that the missing components have the same compo-

nents across different individuals. Moverover, the missing Y may represent a

response or covariates in a regression setting. We assume that the missing-data

mechanism is nonignorable in the sense that δi | (Xi, Yi) ∼ Bernoulli(πi), where

πi = π(Xi, Yi) is a function that depends both on observed and missing vari-

ables. The main interest of this study is in making statistical inferences on the

parameters β0 defined in (2.1) under the nonignorable missing-data mechanism.

2.2. Identification

When nonignorable missing data are involved, model identification can be

a crucial issue, even if a fully parametric approach is adopted. To make the

unknown parameters under study identifiable, some additional assumptions on

the missing-data mechanism are required. Assume that the observable variables

X can be decomposed as X = (U,Z) ∈ U × Z ⊂ Rdu ×Rdz , with 0 < du < dx,

where U is continuously distributed and Z can be continuous, discrete, or mixed.

We assume that the indicator δ is independent of Z, conditional on (U, Y ); that

is, δ ⊥⊥ Z | (U, Y ). In this case, we consider the following fully parametric

propensity score model:

Pr(δ = 1 | X,Y ) = Pr(δ = 1 | U, Y ) =: π(U, Y,α0), (2.2)

where π is a known smooth function with an l-dimensional unknown parameter

α0 ∈ A, a compact subset of Rl. It follows from (2.2) that the respondent prob-

ability is not independent of the missing variable Y , even after adjusting for the

auxiliary variables X. In this case, the missing-data mechanism is nonignorable

(Little and Rubin (2002)). The excluded variable Z is referred to as a nonre-

spondent instrument (Wang, Shao and Kim (2014)), which means that it helps

to identify parameters in the considered respondent probability model, but is not

directly related to the response probability. In practice, the exclusion require-

ment (2.2) is reasonable because the conditional independence δ ⊥⊥ Z | (U, Y ) is

more likely to hold when the dimension of the auxiliary variables X increases or
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Z is determined by the experimental design. Assuming (2.2), Wang, Shao and

Kim (2014) proposed using the GMM approach to construct a root-n consistent

estimator for the unknown α0. In practical applications, we can specify (2.2) as

cumulative distribution functions or logistic regression models.

Denote W = (Z, Y ). Using some algebraic manipulation, we can show the

following relationship:

Pr(W ∈ B | U, δ = 0)

Pr(W ∈ B | U, δ = 1)
=

Pr(δ = 0 |W ∈ B,U)/Pr(δ = 1 |W ∈ B,U)

Pr(δ = 0 | U)/Pr(δ = 1 | U)
,

for any measurable set B.

Under assumption (2.2), the conditional odds of missing data is Pr(δ = 0 |
X,Y )/Pr(δ = 1 | X,Y ) = Pr(δ = 0 | U, Y )/Pr(δ = 1 | U, Y ) = π−1(U, Y,α0) −
1 =: O(U, Y,α0). Consequently, we obtain

f0(Z, Y | U) = f1(Z, Y | U)× O(U, Y,α0)

E{O(U, Y,α0) | U, δ = 1}
, (2.3)

where fκ(Z, Y | U) = f(Z, Y | U, δ = κ) is the conditional density of (Z, Y ) given

U , and δ = κ for κ = 0 and 1. Note that

f(Z, Y | U) = f1(Z, Y | U)Pr(δ = 1 | U) + f0(Z, Y | U)Pr(δ = 0 | U). (2.4)

This, together with (2.3), implies that the unknown quantities in the joint den-

sity f(X,Y ) and conditional density f(Z, Y | U) can be estimated based on

the observed data distribution. For example, using identities (2.3) and (2.4),

E{g(X,Y,β)} is equal to the following functional of the observed data distribu-

tion:

E{g(X,Y,β)} = E{E[g(X,Y,β) | U ]}

= E
{

Pr(δ = 1|U)m1
g(U,β) + Pr(δ = 0 | U)m0

g(U,β)
}

= E{δg(X,Y,β) + (1− δ)m0
g(U,β)},

where mκ
g (U,β) = E{g(X,Y,β) | U, δ = κ}, κ = 0, 1. If the response mechanism

is ignorable, then we have f0(Z, Y | U) = f1(Z, Y | U) = f(Z, Y | U) and

m0
g(U,β) = m1

g(U,β) = E{g(X,Y,β) | U}. The identity given in (2.3) is key to

our methodology.

2.3. Augmented moment functions

From (2.3), it follows that we have

m0
g(U,β) =

E{δg(X,Y,β)O(U, Y,α0) | U}
E{δO(U, Y,α0) | U}

=: m0
g(U,β,α0). (2.5)
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It is assumed that m0
g(U,β,α) ∈ M, for all β ∈ B and α ∈ A, where M

represents a subspace of smooth functions on U .

Our method is based on the following AIPW moment functions:

g̃i(β,α) =
δig(Xi, Yi,β)

π(Ui, Yi,α)
− δi − π(Ui, Yi,α)

π(Ui, Yi,α)
m0
g(Ui,β,α). (2.6)

The imputation procedure proposed in (2.6) is based on a projection of the

moment functions g, with nonignorable missing values, onto the space generated

by the non-excluded auxiliary variables U of nonrespondents. The following

proposition shows that the proposed moment functions g̃i(β0,α0) are doubly

robust when the propensity score (2.2) is of a special parametric model.

Proposition 1. (i) Regardless of the choice of m0
g(Ui,β,α), g̃i(β0,α0) has mean

zero, provided that the model for π(Ui, Yi,α0) is specified correctly. (ii) Assume

that the true response model is a parametric logistic model logit{π(Ui, Yi,α0)} =

ϕ(Ui,α0) + q(Yi), where ϕ(·) is a known smooth function in an unknown param-

eter vector α0, and q(·) is an arbitrary user-specified (i.e., known) function that

measures the departure from the ignorable missing-data mechanism assumption.

Then, the AIPW moment function g̃i(β0,α0) has mean zero, even if the model

for ϕ(Ui,α0) is specified incorrectly.

Remark 1. Despite enjoying the doubly robust property, Proposition 1 (ii) has

a very limited application scope because an ad hoc sensitivity analysis (Vanstee-

landt, Rotnitzky and Robins (2007)) is required when we do not know the infor-

mation from the known part q(Y ). The nonrespondent instrument can success-

fully handle the identifiability issue of a fully parametric nonignorable propensity

without any sensitivity analysis techniques, which is the motivation for our work.

It follows from Eq. (2.5) that the conditional expectation m0
g(U,β,α) is

estimable using the observed data set {(Xi, Yi), for each δi = 1; i = 1, . . . , n}. To

enhance the robustness against a potential model misspecification, we consider a

nonparametric regression model for f1(Z, Y | U) that leads to a nonparametric

kernel estimator of m0
g(U,β), given by

m̂0
g(U,β,α0) =

n∑
i=1

Wi0(U,α0)g(Xi, Yi,β),

where Wi0(U,α) is a point mass assigned to g(Xi, Yi, θ), and is given by

Wi0(U,α) =
δiO(Ui, Yi,α)Kh(U − Ui)∑n
j=1 δjO(Uj , Yj ,α)Kh(U − Uj)

=
Wi1(U)O(Ui, Yi,α)∑n
j=1Wj1(U)O(Uj , Yj ,α)

.

Moreover, Wi1(U) = δiKh(U − Ui)/
∑n

j=1 δjKh(U − Uj), Kh(·) = diag(K
(1)
h(1)

(·),
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. . . ,K
(r)
h(r)

(·)), K(ν)
h(ν)

(·) = K(ν)(·/h(ν))/h
du
(ν), K

(ν) is a du-dimensional kernel func-

tion and h(ν) is a bandwidth parameter for each ν ∈ {1, . . . , r}. Note that

the kernel weight Wi1(U) represents a point mass assigned to g(Xi, Yi,β), for

i = 1, . . . , n, such that E{g(X,Y,β) | U, δ = 1} can be approximated by the

kernel-based regression estimator

m̂g(U,β) =

n∑
i=1

Wi1(U)g(Xi, Yi,β),

which is widely used to deal with ignorable missing data; for example, Cheng

(1994) proposed using m̂g(U,β) with g(Xi, Yi,β) = Yi − β to develop a root-

n consistent nonparametric imputation estimator for the mean response β0 =

E(Y ).

Under the nonignorable missing-data mechanism (2.2), the set of propensity

score-based and kernel-assisted nonsmooth functions for the ith individual is

given by

ĝi(β,α) =
δig(Xi, Yi,β)

π(Ui, Yi,α)
− δi − π(Ui, Yi,α)

π(Ui, Yi,α)
m̂0
g(Ui,β,α).

Note that the above nonparametric AIPW procedure simultaneously achieves

the identifiability of the parameters and robustness against a potential model

misspecification.

2.4. Propensity score estimation

To make the modified moment functions ĝi(β,α) applicable, a consistent

first-step estimator for α0 should be specified in advance. Instead of using the

GMM approach proposed in Wang, Shao and Kim (2014), we employ the semi-

parametric empirical likelihood (SEL) method (Qin, Leung and Shao (2002)) to

estimate α0. Because this method has been presented in the literature (Qin,

Leung and Shao (2002); Zhao et al. (2017b)), we only outline the main steps of

the method. We consider the following complete data likelihood function:

L(α0) =

n∏
i=1

{
π(Ui, Yi,α0)dF (Xi, Yi)

}δi [∫∫
{1− π(U, Y,α0)}dF (X,Y )

]1−δi
.

Define pi = dF (Xi, Yi) and ω0 =
∫∫

π(U, Y,α0)dF (X,Y ). Thus, we obtain the

following complete data log-likelihood function:

l(ω0,α0) =

n∑
i=1

δi log pi +

n∑
i=1

δi log π(Ui, Yi,α0) + (n− n1) log(1− ω0), (2.7)
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where n1 =
∑n

i=1 δi. An estimator of α0 can be obtained by maximizing

l(ω,α), subject to four constraints:
∑n

i=1 δipi = 1, pi ≥ 0 for i = 1, . . . , n,∑n
i=1 δipi{π(Ui, Yi,α)−ω} = 0, and

∑n
i=1 δipiφ(Xi, Yi,α) = 0. Here, φ(Xi, Yi,α)

is an arbitrary user-specified κ-dimensional vector function satisfying E{φ(Xi,

Yi,α0)} = 0. The third constraint reflects the feature of missing not at random,

which is necessary. The fourth constraint is required for the efficiency improve-

ment and is constructed from the auxiliary information in the observed data.

By introducing Lagrange multipliers λ1 and λ2, we obtain the optimal value

of pi as pi = δin
−1
1 {1+λ>1 φ(Xi, Yi,α0)+λ2[π(Ui, Yi,α0)−ω0]}−1 for i = 1, . . . , n.

Substituting pi into (2.7) yields

l(α0,ω0, λ1, λ2) =

n∑
i=1

δi log π(Ui, Yi,α0) + (n− n1) log(1− ω)

−
n∑
i=1

δi log{1 + λ>1 φ(Xi, Yi,α0) + λ2[π(Ui, Yi,α0)− ω0]}.

The consistent estimators of (α>0 ,ω0, λ
>
1 , λ2), say (α̂>, ω̂, λ̂>1 , λ̂2)>, are defined

as (α̂, ω̂) = arg maxα,ω infλ1,λ2
l(α,ω, λ1, λ2) and

(λ̂1, λ̂2) = arg min
λ1,λ2

l(α̂, ω̂, λ1, λ2).

2.5. Two-step generalized empirical likelihood

Let ρ(v) be a concave function of the scalar v ∈ V (e.g., an open interval V
containing zero), and let ρj(v) = ∂jρ(v)/∂vj and ρj = ρj(0) for j ≥ 1. Similarly

to Newey and Smith (2004), we impose a normalization on ρ(v) such that ρ1 =

ρ2 = −1. For any given α, we construct the following recentered GEL criterion:

P̂n(β, λ,α) =

n∑
i=1

{ρ(λ>ĝi(β,α))− ρ0}
n

,

where λ is an r-vector of auxiliary parameters. The factor ρ0 = ρ(0) in the

definition of P̂n(β, λ,α) is for the convenience of asymptotic development, and

can be dropped for computational purposes.

Given the SEL estimator α̂, the class of two-step AIPW-GEL estimators for

β0 can be defined as the solution to the following saddle-point problem:

β̂
S

= arg inf
β∈B

sup
λ∈Λ̂n(β,α̂)

P̂n(β, λ, α̂), (2.8)

where Λ̂n(β,α) = {λ : λ>ĝi(β,α) ∈ V, i = 1, . . . , n}. For nonsmooth moment

functions, AIPW-GEL estimators are no longer required to minimize (2.8), but
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satisfy

P̂n(β̂
S
, λ̂S, α̂) ≤ arg inf

β∈B
sup

λ∈Λ̂n(β,α̂)

P̂n(β, λ, α̂) + op(n
−σ),

where σ is nonnegative and λ̂S = λ(β̂
S
) = arg max

λ∈Λ̂n(β̂
S
,α̂)

P̂n(β̂
S
, λ, α̂). The

empirical likelihood-based AIPW (AIPW-EL) estimator is obtained by taking

ρ(v) = log(1− v) and V = (−∞, 1), whereas the exponential tilting-based AIPW

(AIPW-ET) estimator is constructed by setting ρ(v) = − exp(v). In addition, the

implied GEL empirical probabilities associated with each AIPW-GEL estimator

are given by

p̂i =
ρ1(λ̂>

S
ĝi(β̂S, α̂))∑n

j=1 ρ1(λ̂>
S
ĝj(β̂S, α̂))

, i = 1, . . . , n.

The empirical conditional probabilities p̂i (i = 1, . . . , n) sum to one, by construc-

tion, and satisfy the sample moment condition
∑n

i=1 p̂iĝi(β̂S, α̂) = 0.

3. Main Results

In this section, using the empirical process theory for statistics (see, e.g.,

Pakes and Pollard (1989); Van der Vaart and Wellner (1996)), we investigate the

large-sample properties of the proposed two-step AIPW-GEL estimators given

in Section 2. We use
L→ to denote convergence in distribution.

Let η = (α>,ω,γ>)>, with γ = λ1(1 − ω), and let η0 = (α>0 ,ω0, 0)> be

the true value of η. Denote η̂ = (α̂>, ω̂, γ̂>)> as the estimator of η, where

γ̂ = λ̂1(1 − ω̂). The following proposition shows that the SEL estimator α̂

proposed in Section 2.4 is consistent and asymptotically normal.

Proposition 2 (Zhao et al. (2017b)). Suppose that Assumptions (C1)–(C2) given

in the Appendix hold. We have the following results: (i) η0 is locally iden-

tified if and only if rank(A) = l + κ + 1; (ii) η̂
p→ η0 and n1/2(η̂ − η0)

L→
N (0,A−1B(A−1)>), where A and B are defined in the Supplementary Material.

From Proposition 2, an asymptotic linear expansion for α̂ can be defined

as n1/2(α̂ − α0) = n−1/2
∑n

i=1 Ψi(α0) + op(1), where Ψi(α0) = Ψ(Xi, Yi,α0)

is an influence function, defined in the Supplementary Material. Let V1 =

E{g̃i(β0,α0)g̃i(β0,α0)>}, V2 = Var{g̃i(β0,α0)− ΞΨi(α0)},

Ξ = Cov{g̃i(β0,α0),∆(U, Y,α0)},

∆(U, Y, α) = {δ − π(U, Y,α)}∂logit{π(U, Y,α)}
∂α>

,
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and Γ = ∂E{g(X,Y,β)}/∂β>|β=β
0

. Then, we have the following theorem.

Theorem 1. Suppose that assumptions (A1), (A2), (B1), (B2), and C given in

the Appendix hold. Then, the respondent probability model π(U, Y,α0) is correctly

specified and the two-step AIPW-GEL estimator β̂
S

is obtained by solving (2.8),

with α̂ computed using the SEL approach. Thus, we have β̂
S
− β0 = op(1). In

addition, if assumptions (A3), (A4), (B3), and (B4) given in the Appendix hold,

we obtain

n1/2(β̂
S
− β0)

L→ N (0,ΣS),

where ΣS = (Γ>V −1
1 Γ)−1Γ>V −1

1 V2V
−1

1 Γ(Γ>V −1
1 Γ)−1.

Theorem 1 has some interesting implications. First, it indicates that the

efficiency of the proposed estimators depends on the correlation between the

efficient score function g̃i(β0,α0) and the influence function Ψi(α0). In partic-

ular, if ΞVar{Ψi(α0)}Ξ> − 2ΞCov{g̃i(β0,α0),Ψi(α0)} ≤ 0, the proposed two-

step AIPW-GEL estimators achieve an efficiency gain over the estimators com-

puted using the known propensity score. This is a common phenomenon under

a missing-at-random setup (Robins, Rotnitzky and Zhao (1994)). Second, if

g̃i(β,α0) is orthogonal to the score ∆(U, Y,α0), that is, Ξ = 0, the limit distri-

bution of β̂
S

is invariant to that of α̂.

Note that the asymptotic variance of the proposed AIPW-GEL estimators

contain derivative and variance terms. In the nonsmooth case, the derivative

terms are not easy to estimate, because the derivatives of the objective functions

are no longer available. Hence, the Wald-type confidence regions for β0 are

difficult to establish. The following theorems show that the proposed AIPW-

GEL ratio statistics provide a convenient framework for developing confidence

regions.

Theorem 2. Assume that the conditions given in Theorem 1 hold. As n→∞,

we have 2nP̂n(β0, λ(β0), α̂)
L→ Q>ΩQ under the null hypothesis H0 : β = β0,

where Ω = V
1/2

2 V −1
1 V

1/2
2 and Q is an r-dimensional standard normal random

vector (i.e., Q ∼ N (0, Ir)).

Theorem 2 indicates that the proposed AIPW-GEL ratio converges to a

linear combination of independent chi-square distributions. Despite the loss of

Wilks’ theorem, the confidence regions based on the AIPW-GEL ratio 2nP̂n(β0,

λ(β0), α̂) are still appealing because they preserve the range and respect transfor-

mations, owing to their likelihood ratio-based nature. To construct GEL-based

confidence regions for β0, we approximate the distribution of 2nP̂n(β0, λ, α̂) by
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resampling. Let X ∗m = {(X∗i , Y ∗i , δ∗i ) : i = 1, . . . ,m} be a bootstrap sample from

{Xn = (Xj , Yj , δj) : j = 1, . . . , n}. Based on X ∗m, we compute the bootstrap es-

timator α̂∗ of α0 using the aforementioned SEL approach. Then, the bootstrap

version of P̂n(β0, λ, α̂) is defined as

P̂ ∗m(β̂
S
, λ∗, α̂∗) =

m∑
i=1

{ρ(λ∗>ĝ(X∗i , Y
∗
i , β̂S, α̂

∗))− ρ0}
m

,

where λ∗ = arg maxλ P̂
∗
m(β̂

S
, λ, α̂∗). The following theorem justifies the boot-

strap procedure.

Theorem 3. Assume that the conditions given in Theorem 1 hold. Then, the

conditional distribution of 2mP̂ ∗m(β̂
S
, λ∗, α̂∗), given the original sample Xn, con-

verges to the distribution of Q>ΩQ, w. p. 1, as n→∞ and m→∞.

Let c∗α be the 100(1− α)% quantile of the distribution of 2mP̂ ∗m(β̂
S
, λ∗, α̂∗)

evaluated using the resampling method. Then, it follows from Theorem 3 that

the bootstrap empirical log-likelihood confidence region at the nominal coverage

level 1− α is given by Cα = {β : 2nP̂n(β, λ, α̂) ≤ c∗α}.
Remark 2. The results obtained here are still valid if we replace m0

g(U,β,α)

and Wi0(U,α) with m0
g(X,β,α) and

Wi0(X,α) =
δiO(Ui, Yi,α)Kh(X −Xi)∑n
j=1 δjO(Uj , Yj ,α)Kh(X −Xj)

,

respectively, where Kh(·) is defined based on a dx-dimensional kernel function.

That is, an alternative set of unbiased AIPW moment functions can be con-

structed to be structurally identical to g̃i(β,α) in (2.6), except that m0
g(Ui,β,α)

is replaced by m0
g(Xi,β,α).

Assume that Z is a vector of discrete components that take at most a finite

number of values (see, e.g., Wang, Shao and Kim (2014)). Then, using the

arguments of Andrews (1995), the results obtained above continue to be valid if

we redefine Wi0(Uj ,α) as

Wi0(Uj ,α) =
δiO(Ui, Yi,α)Kh(Ui − Uj)I{Zi = Zj}∑n
j=1 δjO(Uj , Yj ,α)Kh(Ui − Uj)I{Zi = Zj}

.

4. Computation

Computing the proposed two-step AIPW-GEL estimators is computationally

challenging because of the nonsmooth moment functions, which mean that none

of the gradient functions are well defined. To overcome this difficulty, we develop
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a derivative-free approach to implement the numerical optimization, based on the

SA algorithm. This algorithm is a kind of calculation precision of the random

search algorithm, which has advantages over other local search methods because

of its flexibility and its ability to achieve global optimality. Assume that the

estimator α̂ of α0 has been obtained. The modified SA algorithm consists of an

inner loop and an outer loop. The detailed steps are as follows.

Inner Loop. This step determines the Lagrange multiplier

λ̂S = arg max
λ

P̂n(β, λ, α̂)

for a given β. Let

P̂λ(β, λ) =

n∑
i=1

ρ1(λ>ĝi(β, α̂))ĝi(β, α̂),

P̂λλ(β, λ) =

n∑
i=1

ρ2(λ>ĝi(β, α̂))ĝi(β, α̂)ĝi(β, α̂)>.

Then, the modified Newton–Raphson method for finding λ̂S is implemented using

the following iterative equation:

λ(t+1) = λ(t) − %{P̂λλ(β, λ(t))}−1P̂λ(β, λ(t)),

where % > 0 is a scalar step length, and λ(t) is the value of λ at the tth iteration.

Here, the initial value λ(0) of λ is taken to be a zero vector. The iteration

continues until the gradient function P̂λ(β, λt) is smaller than some prespecified

tolerance, such as 0.0001. Following Hansen (2015), we set % to % = (P̂2 +

3P̂0 − 4P̂1)/(4P̂2 + 4P̂0 − 8P̂1), where P̂S = P̂n(β, λ̃s, α̂), in which λ̃s = λ(t) −
%S{P̂λλ(β, λ(t))}−1P̂λ(β, λ(t)) for s = 0, 1, 2, and %0 = 0, %1 = 1/2, and %2 = 1.

For the AIPW-EL approach, at each iteration step, we need to check whether

the condition n{1−λ>ĝi(β, α̂)} ≥ 1 holds for all i. When the condition does not

hold, we decrease the step length % until this condition is satisfied. A detailed

discussion of the convergence problem of the above algorithm can be found in

Chen, Sitter and Wu (2002).

Outer Loop. Once λ̂S is obtained in the inner loop, we conduct the following

minimization step: β̂
S

= arg infβ∈B P̂n(β, λ̂S, α̂). This can be done using the

classical SA algorithm. Further details on the SA algorithm and its implementa-

tion can be found in Goffe, Ferrier and Rogers (1994). In the smooth case, this

step can also be done using the Newton–Raphson method.

The proposed modified SA algorithm retains the main advantages of the

classical SA method in that the objective function for implementing the SA algo-
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rithm only is a profile function of β, although nuisance parameters are involved.

Thus, the global convergence property of the Outer Loop step is guaranteed by

the classical SA algorithm. Moreover, the proposed algorithm is general and

useful because it can be used to solve various optimization problems, regardless

of the linear or nonlinear relationship between the variables and the parameters,

or the smooth or nonsmooth objective functions with or without missing data.

5. Simulation Studies

In this section, we present several simulation studies that were conducted to

evaluate the finite-sample performance of the proposed methodologies.

Experiment 1. In this experiment, we simulated data from the following in-

strumental variable quantile regression (IVQR) model:

Y = β1 + ζβ2 + σ(X1, X2)(ε−Qε(τ)),

ζ =
(X1 +X2)

3
+ ε+$, (5.1)

where β0 = (β1, β2)> = (1, 0.5)>, Qε(τ) is the conditional τ -quantile of ε, X1 ∼
χ2

1, X2 ∼ χ2
2, ε ∼ N (0, 1), and $ ∼ N (0, 1), in which χ2

k represents a chi-

squared distribution with k degrees of freedom. Following Parente and Smith

(2011), we considered two scenarios for σ(X1, X2): (i) σ(X1, X2) = 1; and (ii)

σ(X1, X2) =
√

3/14{1 + (X1 +X2)/3}, which is used to investigate the effect of

heteroscedasticity.

We assumed that X = (X1, X2)> was completely observed, but that Y

might be subject to missingness. Denote δ = 1 if Y is observed, and δ = 0 if Y is

missing. The following model was used to generate the respondent indicator δ:

Pr(δ = 1|X,Y ) =
exp(a+ α1X2 + α2Y )

1 + exp(a+ α1X2 + α2Y )
=: π(X2, Y,α0), (5.2)

where α0 = (a, α1, α2)> = (a, 0.05, 0.01)>, and a is set to 2.0, 1.5, 1.0, and 0.5,

leading to different missing proportions. In Eq. (5.2), the respondent indicator

depends on the missing variable Y , but is independent of the covariate X1, given

(X2, Y ). Thus, the covariate X1 is treated as a nonrespondent instrument, which

helps to make the parameter α0 in (5.2) identifiable. Under the above settings,

we have U = X2 and Z = X1.

We considered three quantile levels (τ = 0.25, 0.5, and 0.75) for each of the

four respondent probabilities. Newey and Smith (2004) showed that continuous

updating is also a member of the GEL class. However, like the GMM approach,
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continuous updating lacks the ability to generate likelihood ratio-based confi-

dence regions with a shape that adapts to the support of the data. Thus, in

this experiment, we focused only on EL and ET inferences. For each of the 12

combinations of three quantile levels and four respondent probabilities, we inde-

pendently generated 1,000 data sets {(Yi, Xi, δi) : i = 1, . . . , n}, with n = 200,

according to the IVQR model (5.1) together with the propensity score model

(5.2). Here, Xi = (X1i, X2i)
>. For a given data set {(Xi, Yi, δi) : i = 1, . . . , n},

we computed the two-step AIPW-EL and AIPW-ET estimators of β0 based on

the nonsmooth moment functions g(Xi, Yi,β) = Xi{I(Yi ≤ β1 + ζiβ2) − τ} sat-

isfying the restrictions E{g(Xi, Yi,β0)} = 0, for i = 1, . . . , n. In evaluating the

nonparametric kernel estimation, that is, computing the nonparametric kernel es-

timator of the conditional expectation m0
g(X2i,β) = E{g(X,Y,β) | X2i, δi = 0},

for i = 1, . . . , n, we took the one-dimensional Gaussian kernel function with a

fixed bandwidth h = 1.25σ̂x2
n−1/5, where σ̂x2

is the sample standard deviation

of X2. The initial values for β0 in the SA algorithm were computed using a

complete-case analysis. The SEL approach discussed in Section 2.4 was em-

ployed to compute the estimator α̂ of α0. The auxiliary information was defined

as φ(Xi, Yi,α) = δiπ
−1(X2i, Yi,α)(Xi − X), where X = n−1

∑n
i=1Xi. The ini-

tial values for α0 were set to (ς̃ , 0), where ς̃ = (ã, α̃1) is obtained by maximizing

the log-binomial likelihood given by log{
∏n
i=1 p(X2i, ς)

δi(1−p(X2i, ς))
1−δi}, with

logit{p(X2, ς)} = a+ α1X2.

The results for 1,000 repetitions in each of the 12 cases are presented in Tables

1 and 2 for homoscedasticity (i.e., case (i) of σ(X1, X2)) and heteroscedasticity

(i.e., case (ii) of σ(X1, X2)), respectively. In the tables, “Bias” represents the

difference between the true value and the mean of 1,000 estimates, “SD” and

“RMS’” denote the standard deviation of 1,000 estimates and the root mean

square between the estimates of 1,000 repetitions and their true values, respec-

tively, “AL” is the average length of 1,000 EL or ET-based 95% confidence inter-

vals, and “CP” is the proportion of the 1,000 95% confidence intervals covered

by the true value of the parameter. The proposed bootstrap calibration method

with B = 1, 000 bootstrap replications was used to compute the critical value of

the limiting distribution of the AIPW-GEL ratio statistics.

Tables 1 and 2 reveal the following findings. (i) Under all considered cir-

cumstances, both the AIPW-EL and the AIPW-ET methods produce unbiased

estimates of β0, in that the absolute values of their biases are less than 0.07,

and their RMS values are quite close to their corresponding SD values, which are

consistent with our established theoretical properties. (ii) The coverage proba-
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Table 1. Simulation results for the IVQR model with homoscedasticity assumption.

EL ET
τ β0 Statistic a = 2 a = 1.5 a = 1 a = 0.5 a = 2 a = 1.5 a = 1 a = 0.5

0.25 β1 Bias 0.004 0.006 0.011 0.010 0.009 0.006 0.008 0.008
RMS 0.144 0.142 0.153 0.165 0.181 0.175 0.187 0.190
SD 0.144 0.142 0.153 0.165 0.181 0.175 0.187 0.190
CP 0.952 0.942 0.934 0.930 0.935 0.924 0.921 0.915
AL 0.355 0.375 0.418 0.484 0.319 0.331 0.349 0.418

β2 Bias -0.039 -0.047 -0.049 -0.050 -0.059 -0.055 -0.051 -0.065
RMS 0.138 0.147 0.152 0.158 0.201 0.196 0.200 0.209
SD 0.132 0.139 0.144 0.150 0.193 0.189 0.193 0.199
CP 0.962 0.947 0.940 0.936 0.943 0.930 0.928 0.926
AL 0.363 0.383 0.426 0.492 0.327 0.339 0.357 0.426

0.5 β1 Bias 0.000 0.003 -0.002 -0.003 0.004 0.008 0.001 0.006
RMS 0.139 0.150 0.147 0.155 0.193 0.193 0.205 0.201
SD 0.139 0.150 0.147 0.155 0.193 0.193 0.205 0.201
CP 0.949 0.958 0.963 0.936 0.942 0.948 0.947 0.928
AL 0.197 0.203 0.209 0.240 0.189 0.184 0.190 0.221

β2 Bias -0.009 -0.014 -0.009 -0.010 -0.009 -0.016 -0.009 -0.019
RMS 0.098 0.104 0.100 0.106 0.129 0.132 0.135 0.140
SD 0.098 0.103 0.100 0.105 0.129 0.131 0.135 0.139
CP 0.952 0.960 0.966 0.939 0.945 0.949 0.951 0.931
AL 0.205 0.211 0.217 0.248 0.197 0.192 0.198 0.229

0.75 β1 Bias -0.009 -0.005 -0.009 0.010 -0.006 0.000 -0.014 -0.002
RMS 0.160 0.172 0.184 0.186 0.214 0.207 0.224 0.225
SD 0.160 0.172 0.184 0.186 0.214 0.207 0.223 0.225
CP 0.939 0.946 0.928 0.934 0.936 0.935 0.911 0.908
AL 0.158 0.158 0.173 0.204 0.158 0.147 0.158 0.198

β2 Bias -0.002 -0.003 -0.002 -0.012 -0.005 -0.007 0.000 -0.008
RMS 0.088 0.088 0.090 0.098 0.106 0.107 0.108 0.113
SD 0.088 0.088 0.090 0.097 0.106 0.107 0.108 0.113
CP 0.945 0.950 0.931 0.938 0.943 0.936 0.915 0.911
AL 0.166 0.166 0.181 0.212 0.166 0.155 0.166 0.206

bilities of the resultant confidence intervals based on our proposed method are

close to the prespecified nominal level of 95%. (iii) The missing rate improves

the accuracy of the parameter estimate and the empirical coverage of the con-

fidence interval. (iv) The AIPW-ET method has a consistently lower coverage

probability and a shorter average length than those of the AIPW-EL method.

(v) The AIPW-EL estimator has smaller RMS and SD values than those of the

AIPW-ET estimator.

Experiment 2. In this experiment, we compared the proposed AIPW-GEL ap-
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Table 2. Simulation results for the IVQR model with heteroscedasticity assumption.

EL ET
τ β0 Statistic a = 2 a = 1.5 a = 1 a = 0.5 a = 2 a = 1.5 a = 1 a = 0.5

0.25 β1 Bias 0.006 0.003 0.005 -0.002 0.003 0.005 0.008 0.000
RMS 0.144 0.149 0.152 0.160 0.174 0.175 0.180 0.184
SD 0.144 0.149 0.152 0.160 0.175 0.175 0.180 0.184
CP 0.947 0.948 0.941 0.927 0.933 0.937 0.929 0.914
AL 0.466 0.497 0.539 0.587 0.417 0.422 0.469 0.510

β2 Bias -0.048 -0.051 -0.044 -0.057 -0.055 -0.053 -0.069 -0.064
RMS 0.158 0.154 0.152 0.170 0.214 0.206 0.214 0.221
SD 0.151 0.145 0.146 0.161 0.207 0.199 0.203 0.212
CP 0.953 0.950 0.944 0.931 0.939 0.941 0.934 0.916
AL 0.474 0.505 0.547 0.595 0.425 0.430 0.477 0.518

0.5 β1 Bias 0.001 0.008 0.000 0.004 0.007 0.009 0.007 0.012
RMS 0.132 0.140 0.139 0.152 0.184 0.188 0.179 0.194
SD 0.132 0.140 0.139 0.152 0.184 0.188 0.179 0.194
CP 0.952 0.953 0.943 0.943 0.946 0.946 0.930 0.933
AL 0.246 0.254 0.252 0.274 0.219 0.229 0.218 0.254

β2 Bias -0.014 -0.018 -0.013 -0.022 -0.018 -0.020 -0.020 -0.029
RMS 0.114 0.117 0.117 0.121 0.150 0.157 0.147 0.157
SD 0.113 0.116 0.117 0.119 0.149 0.155 0.146 0.155
CP 0.952 0.954 0.944 0.947 0.946 0.948 0.932 0.937
AL 0.254 0.262 0.260 0.282 0.227 0.237 0.226 0.262

0.75 β1 Bias -0.012 -0.009 -0.002 0.006 0.007 0.007 0.010 -0.012
RMS 0.160 0.168 0.168 0.184 0.204 0.210 0.218 0.216
SD 0.159 0.168 0.168 0.184 0.204 0.210 0.217 0.215
CP 0.944 0.952 0.937 0.929 0.935 0.937 0.922 0.909
AL 0.206 0.205 0.209 0.233 0.187 0.190 0.198 0.212

β2 Bias -0.002 -0.004 -0.006 -0.011 -0.012 -0.011 -0.013 -0.002
RMS 0.095 0.101 0.105 0.109 0.117 0.120 0.124 0.124
SD 0.095 0.101 0.104 0.108 0.117 0.120 0.123 0.125
CP 0.949 0.954 0.941 0.934 0.940 0.940 0.925 0.916
AL 0.214 0.213 0.217 0.241 0.195 0.198 0.206 0.220

proach with two existing methods. The first is Tang and Qin’s (2012) non-

parametric multiple imputation, which assumes that missing data are ignorable.

The second is the naive nonparametric imputation using follow-up data only.

The other purpose of this experiment is to examine the robustness of the pro-

posed two-step AIPW-GEL estimators to the misspecified nonignorable paramet-

ric propensity score model.

We independently simulated 500 data sets {(Xi, Yi) : i = 1, . . . , n} with n =

100 from the two-dimensional multiplicative regression model Yi = exp(X>i β0)εi,
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where β0 = (β1, β2)> = (0.5, 1)>, Xi = (X1i, X2i)
>, and Xi is independently

generated from the bivariate normal distribution N (0,Σx) with Σx = (σkjx ).

Here, σkjx = 0.5|k−j| for 1 ≤ k, j ≤ 2, and εi is independently drawn from the

following distribution assumptions: (A) log(εi) ∼ N (0, 1) and (B) log(εi) ∼
Uniform(0, 1). Similarly, we assumed that Xi is completely observed, but that Yi
may be subject to missingness. The respondent indicator δi for Yi was generated

from the Bernoulli distribution with probability πi(α0), specified by

πi(α0) =
exp(a+ α1X2i + α2Yi)

1 + exp(a+ α1X2i + α2Yi)
, (5.3)

where α0 = (a, α1, α2)> = (a, 0.05, 0.01)>, with the true value of a being 1.0,

0.5, or 0.01, leading to different missing proportions. Clearly, the respondent

indicator δi depends on missing variable Yi, but is independent of the covari-

ate X1i, given (X2i, Yi). Thus, the covariate X1i is treated as a nonrespondent

instrument, which helps to make the parameter α0 identifiable.

Without missing data, following the argument of Chen et al. (2010), the

parameters in a multiplicative regression model can be estimated by minimizing

the following least absolute relative error (LARE):

LAREn(β) =

n∑
i=1

{∣∣∣∣Yi − exp(X>i β)

Yi

∣∣∣∣+

∣∣∣∣Yi − exp(X>i β)

exp(X>i β)

∣∣∣∣}. (5.4)

It is easily seen that the LARE function (5.4) is piecewisely differentiable with

respect to β. Let εi(β) = Yi/ exp(X>i β) and g(Xi, Yi,β) = {ε−1
i (β) + εi(β)}

sgn{εi(β) − 1}Xi. These are a set of nonsmooth functions with respect to β.

Following Li et al. (2014), the solution to minimizing (5.4) is equivalent to the

solution to estimating the equations n−1
∑n

i=1 g(Xi, Yi,β) = 0. Thus, for a

given combination of two error distribution assumptions and three respondent

probabilities and each of 500 generated data sets, based on the objective functions

g(Xi, Yi,β), we computed the following six types of GEL estimators for β0:

S1. the proposed AIPW-EL and AIPW-ET estimators using the correctly

specified respondent probability model (5.3);

S2. the proposed AIPW-EL and AIPW-ET estimators using the misspecified

respondent probability model: πi(α0) = Φ(a+ α1X2i + α2Yi), where Φ(·) is the

cumulative distribution function of the standard normal distribution;

S3. the same as S1, except that the kernel weight Wi0(X2j ,α) is replaced

with Wi0(Xj ,α), which is defined in Remark 2;

S4. the same as S2, except that the kernel weight Wi0(X2j ,α) is replaced

with Wi0(Xj ,α);
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S5. EL and ET estimators under the ignorable assumption of missing re-

sponses, which were evaluated using the following inverse probability weighted

estimating functions with multiple imputation (Tang and Qin (2012)):

ĝMi (β) =
δi

π̂(Xi)
g(Xi, Yi,β) +

{
1− 1

π̂(Xi)

}
1

κ

κ∑
j=1

g(Xi, Ỹij ,β),

where π̂(Xi) =
∑n

j=1 δjKh(Xi − Xj)/
∑n

j=1Kh(Xi − Xj), Ỹij ∼ F̂ (y|Xi), and

F̂ (y|X) =
∑n

j=1 δj × Kh(Xi − Xj)I(Yj ≤ y)/
∑n

j=1 δjKh(Xi − Xj), with κ =

20. Here, Kh(·) is a two-dimensional product kernel; that is, Kh(Xi − Xj) =

h−2K(h−1(X1i − X1j))K(h−1(X2i − X2j)), where K(·) denotes the Gaussian

kernel and h is a bandwidth parameter.

S6. EL and ET estimators based on a naive nonparametric imputation:

ĝNi (β) = δig(Xi, Yi,β)− (1− δi)m̃0
g(X2i,β),

where

m̃0
g(X2i,β) =

∑n
j=1(1− δj)rjK(h−1(X2i −X2j))g(Xj , Yj ,β)∑n

j=1(1− δj)rjK(h−1(X2i −X2j))
,

where rj is an indicator function, taking the value one if unit j belongs to the

follow-up sample, and zero otherwise (Kim and Yu (2011)). Here, the kernel

function K(·) is defined similarly to that in S5, and the follow-up rate was 0.25.

To evaluate estimators S1 and S2, the proposed nonparametric AIPW pro-

cedure was implemented using a one-dimensional Gaussian kernel function with

bandwidth h = 1.25σ̂x1
n−1/5, where σ̂x1

is the sample standard deviation of

X1. Moreover, the estimator of α0 was computed using the same SEL proce-

dure proposed in the first experiment. Estimators S3–S4 were computed using

a two-dimensional product Gaussian kernel, with the same bandwidth as in S1

and S2. The bandwidths for S5 and S6 were chosen in the same way as those in

S1–S4. The initial values for β0 and α0 were chosen in the same way as those in

Experiment 1.

Table 3 reports the bias, RMS, and SD values of 6 × 2 = 12 estimators for

β0. These results yield the following observations: (i) the proposed AIPW-EL

and AIPW-ET estimators (i.e., S1–S4) consistently perform reasonably well, even

when the working respondent probability model is misspecified; (ii) when a = 1,

RMS and SD in S3 and S4 are smaller than those in S1 and S2; however, estima-

tors S1 and S2 exhibit better performance in terms of RMS and SD when a = 0.5

and 0.01; (iii) as expected, Tang and Qin’s estimator leads to considerable bias,

because it depends heavily on the ignorable assumption of the respondent prob-
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ability model; thus, it is sensitive to the selection of the respondent probability

model; and (iv) the proposed AIPW-GEL estimators have smaller standard devi-

ations than those of Tang and Qin’s estimator and the naive estimator under the

considered settings. The above findings indicate that the proposed AIPW-GEL

method yields a significant improvement in the estimation efficiency over that

of the naive estimation method. This is because the AIPW-GEL method uses

the respondent data to estimate m0
g(X2i,β) = E{g(X,Y,β) | X2i, δ = 0}, and

the nonparametric kernel regression estimator of m0
g(X2i,β) was computed us-

ing the parametrically estimated propensity score. However, the naive estimator

only utilized the follow-up data to estimate m0
g(X2i,β).

We further conducted a simple simulation study to evaluate the finite-sample

performance of the proposed approach when the estimating equations might be

of higher dimension. Here, we independently simulated 500 data sets {(Xi, Yi) :

i = 1, . . . , n}, with n = 100, from a five-dimensional multiplicative regression

model Yi = exp(X>i β0)εi, where β0 = (β1, β2, β3, β4, β5)> = (1, 0.5, 1, 1.5, 1)>;

Xi = (X1i, X2i, X3i, X4i, X5i)
> ∼ N (0,Σx), with Σx = (σkjx ) and σkjx = 0.5|k−j|,

for 1 ≤ k, j ≤ 5; and log(εi) ∼ N (0, 1). To estimate β0, we considered the same

moment functions as in the two-dimensional case. The response indicator δi for

Yi was generated from the following logistic regression model:

πi(α0) =
exp(a+ α1X2i + α2X3i + α3X4i + α4X5i + α5Yi)

1 + exp(a+ α1X2i + α2X3i + α3X4i + α4X5i + α5Yi)
,

where α0 = (a, α1, α2, α3, α4, α5)> = (a, 0.05, 0.01, 0.025, 0.01, 0.01)>, with a =

0.7 and 0.25. The estimator of α0 was computed using the SEL approach, incor-

porating the auxiliary information

φ(Xi, Yi,α) = δiπ
−1(X2i, Yi,α)(Xi −X),

where X = n−1
∑n

i=1Xi. Assume that Pr(δi = 1 | Ui) = {1 − exp(−ϑ1 −
ϑ>2 Ui)}−1 =: S(Ui,ϑ0), where Ui = (X2i, X3i, X4i, X5i). We estimate ϑ0 us-

ing the maximum likelihood estimation method and denote the estimate as

ϑ̂ = (ϑ̂1, ϑ̂
>
2 )>. Let Ŝi = S(Ui, ϑ̂) = {1 − exp(−ϑ̂1 − ϑ̂>2 Ui)}−1. We then

computed the kernel dimension-reduction AIPW-GEL estimators for β0 using

the one-dimensional kernel smoothers Kh(Ŝ − Ŝi). Table 4 reports the simulated

bias, RMS, and SD. It can be seen that the proposed estimators have negligible

bias, and that the values of RMS are quite close to those of SD.
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Table 3. Simulation results of the two-dimensional multiplicative regression model.

a = 1 a = 0.5 a = 0.01
εi Type GEL β0 Bias RMS SD Bias RMS SD Bias RMS SD
A S1 EL β1 0.008 0.148 0.148 0.010 0.154 0.154 0.022 0.174 0.173

β2 0.002 0.151 0.151 0.009 0.155 0.155 -0.008 0.183 0.183
ET β1 0.009 0.149 0.149 0.009 0.154 0.154 0.024 0.174 0.173

β2 0.003 0.151 0.151 0.010 0.155 0.155 -0.008 0.182 0.182
S2 EL β1 0.009 0.149 0.149 0.011 0.154 0.154 0.021 0.174 0.173

β2 0.004 0.152 0.152 0.010 0.156 0.156 -0.006 0.183 0.183
ET β1 0.009 0.150 0.150 0.011 0.153 0.153 0.021 0.174 0.173

β2 0.004 0.152 0.152 0.011 0.155 0.155 -0.006 0.183 0.183
S3 EL β1 0.008 0.146 0.146 0.005 0.163 0.163 0.014 0.186 0.186

β2 0.001 0.138 0.138 0.008 0.160 0.160 0.013 0.192 0.191
ET β1 0.009 0.146 0.146 0.005 0.161 0.161 0.013 0.186 0.185

β2 0.000 0.139 0.139 0.009 0.161 0.161 0.014 0.190 0.190
S4 EL β1 0.008 0.145 0.145 0.005 0.164 0.164 0.014 0.188 0.187

β2 0.001 0.139 0.139 0.009 0.160 0.160 0.011 0.191 0.191
ET β1 0.008 0.145 0.145 0.005 0.163 0.163 0.014 0.188 0.188

β2 0.000 0.138 0.138 0.007 0.161 0.161 0.011 0.191 0.191
S5 EL β1 -0.039 0.352 0.350 -0.037 0.396 0.395 -0.095 0.409 0.398

β2 -0.074 0.361 0.354 -0.118 0.440 0.424 -0.192 0.453 0.411
ET β1 -0.024 0.251 0.250 -0.014 0.278 0.278 -0.054 0.290 0.285

β2 -0.030 0.272 0.271 -0.068 0.291 0.283 -0.097 0.309 0.294
S6 EL β1 0.024 0.188 0.187 0.013 0.201 0.201 0.026 0.246 0.245

β2 0.000 0.192 0.193 0.005 0.201 0.201 -0.018 0.238 0.238
ET β1 0.024 0.188 0.187 0.014 0.200 0.199 0.025 0.244 0.243

β2 0.000 0.193 0.193 0.004 0.200 0.200 -0.017 0.238 0.238
B S1 EL β1 -0.003 0.103 0.103 -0.003 0.116 0.116 0.006 0.123 0.123

β2 0.005 0.095 0.095 0.008 0.099 0.099 0.003 0.114 0.114
ET β1 -0.003 0.102 0.102 -0.003 0.114 0.114 0.006 0.120 0.120

β2 0.004 0.092 0.092 0.008 0.098 0.098 0.002 0.113 0.113
S2 EL β1 -0.003 0.102 0.102 -0.003 0.117 0.117 0.005 0.123 0.123

β2 0.005 0.095 0.095 0.008 0.100 0.099 0.004 0.115 0.115
ET β1 -0.003 0.101 0.101 -0.004 0.116 0.116 0.006 0.119 0.119

β2 0.004 0.094 0.094 0.009 0.097 0.097 0.002 0.112 0.112
S3 EL β1 0.001 0.097 0.097 -0.009 0.108 0.108 -0.007 0.115 0.115

β2 -0.003 0.091 0.091 0.006 0.105 0.105 0.005 0.103 0.103
ET β1 0.000 0.096 0.096 -0.008 0.107 0.107 -0.007 0.112 0.112

β2 -0.002 0.092 0.092 0.006 0.105 0.105 0.005 0.103 0.103
S4 EL β1 0.001 0.097 0.097 -0.008 0.107 0.107 -0.007 0.114 0.114

β2 -0.003 0.091 0.091 0.006 0.105 0.105 0.005 0.103 0.103
ET β1 0.001 0.096 0.096 -0.009 0.107 0.107 -0.009 0.114 0.114

β2 -0.002 0.090 0.090 0.007 0.105 0.105 0.006 0.102 0.102
S5 EL β1 -0.041 0.262 0.259 -0.058 0.279 0.274 -0.102 0.319 0.303

β2 -0.101 0.310 0.293 -0.141 0.340 0.310 -0.173 0.370 0.327
ET β1 -0.018 0.215 0.215 -0.031 0.229 0.227 -0.043 0.251 0.247

β2 -0.009 0.232 0.232 -0.046 0.240 0.236 -0.043 0.270 0.267
S6 EL β1 0.002 0.145 0.145 -0.010 0.158 0.158 0.001 0.179 0.180

β2 0.018 0.136 0.135 0.024 0.145 0.143 0.034 0.165 0.162
ET β1 0.001 0.146 0.146 -0.011 0.157 0.157 0.003 0.177 0.177

β2 0.019 0.136 0.134 0.024 0.145 0.143 0.032 0.164 0.161



238 ZHAO, TANG AND ZHU

Table 4. Simulation results of the five-dimensional multiplicative regression model.

a = 0.7 a = 0.25
GEL Statistic β1 β2 β3 β4 β5 β1 β2 β3 β4 β5
EL Bias 0.021 -0.004 0.006 0.005 0.017 0.008 0.003 0.013 0.019 0.022

RMS 0.148 0.167 0.173 0.161 0.145 0.164 0.189 0.188 0.185 0.165
SD 0.147 0.167 0.173 0.161 0.144 0.164 0.189 0.187 0.184 0.164

ET Bias 0.020 -0.003 0.006 0.008 0.015 0.006 0.007 0.012 0.021 0.018
RMS 0.148 0.168 0.171 0.165 0.144 0.167 0.192 0.189 0.187 0.165
SD 0.147 0.168 0.171 0.165 0.144 0.167 0.193 0.189 0.186 0.165

6. A Real Example

We use a data set on the serum-cholesterol levels of heart-attack patients

(Schafer (1997)) to illustrate the proposed methodologies. In this data set, the

serum-cholesterol levels of 28 heart-attack patients at a Pennsylvania medical

center were measured 2, 4, and 14 days after the heart attack. Let X1i be the

cholesterol level of the ith patient measured after two days, X2i be the cholesterol

level of the ith patient measured after four days, and Yi be the cholesterol level

of the ith patient measured after 14 days, for i = 1, . . . , 28. We find that X1i

and X2i were completely observed, but that Yi is subject to missingness. Let

δi be an indicator function taking the value one if Yi is observed, and zero if

Yi is missing. The proportion of missing observations for Yi is 32%. Let Xi =

(X1i, X2i). Schafer (1997) analyzed this data set using an EM algorithm under a

trivariate normal distribution assumption of (Xi, Yi), together with an ignorable

assumption of missing values for Yi. Unlike Schafer (1997), we assume that the

missing-data mechanism is nonignorable.

The main purpose of our study was to investigate whether Yi was related

to Xi. To this end, we considered a quantile regression model. Specifically,

we assumed the following τth conditional quantile of Yi: QYi(τ | Xi) = X>i β0,

i = 1, . . . , 28, where Xi = (1, X1i, X2i)
> and β0 = (β1(τ), β2(τ), β3(τ))>. The

moment functions for β0 are defined as g(Xi, Yi,β0) = Xi{I(Yi ≤ X>i β0)−τ}, sat-

isfying E{g(Xi, Yi,β0)} = 0. We considered three different quantile levels: τ =

0.25, 0.5, and 0.75. Moreover, we assumed that Pr(δi = 1|Xi, Yi) = π(Ui, Yi,α0),

where Ui = X1i or X2i, and considered the following two respondent probability

models:

Model 1: π(Ui, Yi,α0) =
exp(α1 + α2Ui + α3Yi)

1 + exp(α1 + α2Ui + α3Yi)
,

Model 2: π(Ui, Yi,α0) = Φ(α1 + α2Ui + α3Yi),
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where Φ(·) is the cumulative probability density function of the standard normal

distribution.

To determine Ui or Zi, we follow Shao and Wang (2016) and consider the

following criterion:

D =

∥∥∥∥ 1

n

n∑
i=1

δiXi

π(Ui, Yi, α̃)
− 1

n

n∑
i=1

Xi

∥∥∥∥,
where α̃ is an estimator of α0 computed by the SEL approach with a candidate

Ui. Note that D converges to zero if and only if π(Ui, Yi,α0) is correctly specified

and α̃ = α0 + op(1) and Zi is the instrument. Hence, a valid Ui or Zi can be

selected by minimizing D over a set of candidate variables. By calculation,

we obtained Ui = X1i and Zi = X2i for both respondent probability models

considered above.

Similarly to the simulation studies, we used a one-dimensional Gaussian ker-

nel function with bandwidth h = 1.25σ̂x1
n−1/5 to evaluate the nonparametric ker-

nel estimation, where σ̂x1
is the sample standard deviation of {X1i, i = 1 . . . , n}.

For a given value of τ , we calculated the proposed two-step AIPW-EL and AIPW-

ET estimators of β0. The proposed bootstrap calibration procedure with 200

bootstrap replications was adopted to estimate the standard errors (SE) of the

proposed estimators, and to calculate the 95% bootstrap percentile-based con-

fidence intervals. In addition, we calculated the 95% EL-based and ET-based

confidence intervals for the parameters β1(τ), β2(τ) and β3(τ), respectively.

Table 5 presents the point estimates (Est) of parameters β1(τ), β2(τ), and

β3(τ), and the corresponding SE and lengths of various 95% confidence intervals.

From Table 5, we have the following observations. First, all of the considered

parameter estimates yield the same conclusion that the cholesterol level measured

after two days has a negative effect on the cholesterol level measured after 14

days. Furthermore, the cholesterol level measured after four days has a positive

effect on the cholesterol level measured after 14 days, regardless of the quantile

levels and the specified response probability models. Second, in general, the EL-

based and ET-based methods lead to narrower confidence intervals than those

generated by the bootstrap method.

7. Discussion

In an attempt to improve and refine existing methods for handling nonignor-

able missing data, we assume a parametric nonignorable propensity score model.

Then, we propose a propensity score-based nonparametric imputation approach
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Table 5. Results of the real-data analysis.

EL ET
Model β0 Statistic τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

1 β1(τ) Est 0.584 0.654 0.776 0.768 0.636 0.984
SE 0.515 0.481 0.449 0.515 0.490 0.455
length1 2.017 1.887 1.760 2.018 1.921 1.784
length2 0.084 0.078 0.087 0.065 0.077 0.093

β2(τ) Est -0.311 -0.263 -0.249 -0.373 -0.204 -0.161
SE 0.228 0.234 0.213 0.235 0.238 0.218
length1 0.893 0.919 0.836 0.921 0.934 0.855
length2 0.088 0.082 0.091 0.069 0.081 0.097

β3(τ) Est 0.965 0.943 0.962 0.949 0.876 0.820
SE 0.255 0.236 0.213 0.260 0.247 0.219
length1 1.001 0.925 0.835 1.020 0.969 0.857
length2 0.184 0.178 0.187 0.165 0.177 0.193

2 β1(τ) Est 0.461 0.465 0.687 0.392 0.768 0.856
SE 0.555 0.478 0.451 0.519 0.470 0.445
length1 2.176 1.875 1.767 2.036 1.842 1.744
length2 0.085 0.070 0.098 0.083 0.061 0.072

β2(τ) Est -0.210 -0.160 -0.105 -0.198 -0.180 -0.229
SE 0.241 0.251 0.218 0.239 0.245 0.210
length1 0.944 0.984 0.855 0.936 0.961 0.822
length2 0.089 0.074 0.102 0.087 0.065 0.076

β3(τ) Est 0.872 0.897 0.877 0.878 0.813 0.906
SE 0.260 0.233 0.229 0.257 0.245 0.220
length1 1.020 0.912 0.899 1.009 0.961 0.862
length2 0.185 0.170 0.198 0.183 0.161 0.172

NOTE: length1 denotes the lengths of approximate 95% bootstrap-based confidence in-
tervals with 200 bootstrap replications, and length2 represents the lengths of approximate
95% EL-based (or ET-based) confidence intervals.

that uses an instrument to address the potential model identifiability problem in

the presence of nonignorable missing data. Moreover, we adopt the GEL together

with the AIPW approach to make statistical inferences on the parameters of the

nonsmooth moment functions, and the large-sample results are established under

some fairly mild conditions.

Correctly specifying the propensity score model is critical to the proposed

method. If the nonrespondent instrument is not selected appropriately, the

propensity score model might be incorrectly specified, leading to misleading con-

clusions. A valid nonrespondent instrument is known to satisfy the following

conditions: (a) it has to be related to the outcome in the underlying population,

conditional on a set of fully observed covariates; (b) it is not directly related
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to the response mechanism, conditional on the fully observed covariates. If a

nonrespondent instrument is manually selected as a subset or function of the

auxiliary variables, the above two conditions are difficult to verify in practical

applications.

Although the criterion D proposed in Shao and Wang (2016) is sensitive

to the choice of instrument, it might not help us determine the best subset of

instruments if multiple instruments are available. Choosing from among valid in-

struments is important when many are thought to be equally valid. Similarly to

Donald, Imbens and Newey (2009), we could develop asymptotic mean square er-

ror (MSE)-based criteria, related to the efficiency of the resultant estimators, for

the instrument selection in our estimation of the nonsmooth moment conditions

with nonignorable missing data. An optimal instrument should simultaneously

minimize the D and MSE criteria. The results are currently under investigation

and are not discussed further here.

Supplementary Material

The online Supplementary Material contains detailed technical proofs of

Propositions 1–2, Theorems 1–2, and the related lemmas.
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Appendix

We first provide a few notation used in the rest of the paper. Define N% =:

{β ∈ B : |β−β0| < %} for some small % > 0. Let |·| denote the matrix norm given

by |H| =:
√

trace(H>H) for any q×m matrix H (including q = 1 or q = m = 1).

For any q ×m matrix H(u,β), ‖H(β)‖∞ = supu∈U |H(u,β)| for any β ∈ B, U
is the support of random vectors U . For ease of presentation, we consider the

nonparametric estimation of m0
g(U,β) using the same kernel function, that is,

for each ν = 1, . . . , r, we set K
(ν)
h(ν)

(·) = Kh(·) = K(·/h)/hdu , in which K(·) is a

du-dimensional kernel function and h = hn is a bandwidth sequence satisfying

hn → 0 as n → ∞. Let Gn(β,α) = n−1
∑n

i=1 ĝi(β,α), G(β) = E{g(X,Y,β)},
and let a⊗2 = aa> for any vector a. Throughout the appendix, C represents a
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generic positive constant which may vary depending on the context.

Assumption A. The moment function g(X,Y,β) satisfies:

(A1) (a) β0 ∈ B is the unique solution to G(β) = 0, and B is a compact subset

of Rp;

(b) E{supβ∈B |g(X,Y,β)|} <∞ and E{supβ∈N% |g(X,Y,β)|2} <∞;

(A2) the class of functions {g(X,Y,β) : β ∈ B} is Glivenko-Cantelli;

(A3) for some % > 0, {g(X,Y,β) : β ∈ N%} is Donsker;

(A4) for all β ∈ B and all small positive value % = o(1),

E

{
sup

β,β′∈N%

∣∣∣gj(X,Y,β′)− gj(X,Y,β)
∣∣∣2} ≤ C%2s

for some constants s ∈ (0, 1], where gj(·) denotes the jth coordinate of g(·)
and j = 1, . . . , r.

Remark A1. Assumption A has been used extensively in econometrics and

statistics (see, e.g., Cattaneo (2010); Chaudhuri and Guilkey (2016)). Consider

the quantile regression model, where g(X,Y,β) = X[I(Y ≤ X>β) − τ ] for τ ∈
T ⊂ [τL, τU ] and 0 < τL < τU < 1. Assume that there exists a constant Kx such

that E|X|3 ≤ Kx. Let Xj denote the jth coordinate of X, j = 1, . . . , r, let FY |x
be the conditional distribution function at evaluation point X = x. Assumption

(A1) is satisfied with some additional regularity conditions on quantile regression

model. Note that the functional class F = {I(Y ≤ X>β),β ∈ B} is a VC

subgraph class and hence a bounded Donsker class. Hence F−T is also bounded

Donsker and X(F − T ) is, therefore Donsker with a square-integrable envelope

2 maxj∈1,...,r |X|j (see Theorem 2.10.6 in Van der Vaart and Wellner (1996)).

Assumptions (A2) and (A3) are then verified since the functional class {X[I(Y ≤
X>β)−τ ], τ ∈ T ,β ∈ B} is formed as X(F−T ). For j = 1, . . . , r, |gj(X,Y,β′)−
gj(X,Y,β)|2 ≤ X2

j |I{Y ≤ X>β′} − I{Y ≤ X>β}|. For small enough % > 0,

E[sup|β−β′|≤%X
2
j |I{Y ≤ X>β

′} − I{Y ≤ X>β}|] ≤ E[|X|3{F (X>β + % | X)−
F (X>β − % | X)}] ≤ C%, where the last inequality follows provided FY |x is

Lipschitz in Y uniformly in x. This verifies Assumption (A4).

Assumption B. The conditional expectation m0
g(U,β,α0) defined in (2.5) sat-

isfies the following conditions:

(B1) the class of functions {m0
g(U,β,α0) : β ∈ B} is Glivenko-Cantelli;
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(B2) for all U ∈ U , and for some % > 0,

(a) m0
g(U,β,α0) is continuously differentiable with derivative

∂βm
0
g(U,β,α0) =: ∂m0

g(U,β,α0)/∂β>

in β ∈ N%;
(b) E{supβ∈N% |∂βm

0
g(U,β,α0)|} <∞;

(B3) there exist ε ∈ (0, 1] and a measurable function b(U) with E{|b(U)|} < ∞
such that

|∂βm̃
0
g(U,β,α0)− ∂βm

0
g(U,β,α0)|

≤ b(U) sup
β∈N%

‖m̃0
g(β,α0)−m0

g(β,α0)‖ε∞

for all smooth functions m̃0
g(U,β,α0) ∈ M with supβ∈N% ‖m̃

0
g(β,α0) −

m0
g(β,α0)‖∞ < %.

Remark A2. Assumption B restricts the class of functions

G =

{
m̃0
g(U,β,α0) : m̃0

g(U,β,α0) ∈M,β ∈ N% and

‖m̃0
g(β,α0)−m0

g(β,α0)‖∞ < %

}
,

where m0
g(U,β,α0) ∈ G by construction. It is easy to verify Assumption (B1)

because it is natural to assume that the conditional expectations E{δg(X,Y,β)

O(U, Y,α0) | U} are smooth in β; Assumption (B2) is a usual dominance con-

dition. Assumption (B3) is similar to Assumption 4 in Chen, Hong and Tamer

(2005) and Assumption 7 in Cattaneo (2010). Assumption (B3) further restricts

function class {g(X,Y,β) : β ∈ N%} by requiring that functions are uniformly

close and also their derivatives close. Assumptions A and B are necessary in

order to establish the uniform convergence of the proposed estimators and de-

rive the stochastic equicontinuity for guaranteeing the resulting estimators are

still root-n consistent and asymptotically normally distributed under nonsmooth

moment conditions in the presence of nonignorable missing data.

Assumption C. Regularity conditions:

(C1) (i) The random vector X can be decomposed as X = (U,Z) ∈ U × Z ⊂
Rdu × Rdz , and δ ⊥⊥ Z | (U, Y ), where U is continuously distributed with

Lebesgue density f ; (ii) The probability density function f(u) is bounded

away from ∞ in the support of U and the second derivative of f(u) is

continuous and bounded.
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(C2) (a) For all α in a neighborhood of α0, the propensity model π(U, Y,α) is

twice differentiable with respect to α and E|π(U, Y,α)|3 < ∞; (b) π(U) =

E{π(U, Y,α0) | U} 6= 1 a.s.; (c) uniformly for all α ∈ A, π(Ui, Yi,α) ≥
C > 0 for all i = 1, . . . , n, uniformly in n.

(C3) The kernel function K(·) of the q-th order satisfies the following conditions

(i) K(·) is bounded and has compact support;

(ii)
∫
K(u1, . . . , udu)du1 . . . dudu = 1;

(iii)
∫
ulsK(u1, . . . , udu)du1 . . . dudu = 0 and∫
uqsK(u1, . . . , udu)du1 . . . dudu 6= 0 for any s = 1, . . . , du and 1 ≤ l < q.

(C4) The data-dependent bandwidth h satisfies nhdu/ log n→∞ and nh2q → 0.

Remark A3. (C1) is conditional independence assumption, which is used to

achieve identification with nonignorable missing data (e.g., Wang, Shao and Kim

(2014) and Zhao and Shao (2015)). Assumptions (C2)–(C4) are commonly used

in the missing data analysis and nonparametric regression inference.

To prove Theorems 1–3, we need the following lemmas, whose proofs can be

found in the Supplementary Material.

Lemma A1. Suppose that Assumption C holds. Then, we have

sup
β∈B,α∈A

‖m̂0
g(β,α)−m0

g(β,α)‖∞ = op(n
−1/4).

Lemma A2. Suppose that Assumption C holds; that the respondent probabil-

ity model π(U, Y,α0) is correctly specified; and that α̂ is computed by the SEL

approach. Then, we have

Gn(β0, α̂) =
1

n

n∑
i=1

g̃i(β,α0)− Ξ× (α̂−α0) + op(n
−1/2),

where g̃i(β,α) is defined in (2.6), Ξ = Cov{g̃i(β0,α0),∆(U, Y,α0)} with

∆(U, Y,α) = {δ − π(U, Y,α)}∂logit{π(U, Y,α)}/∂α>.

Lemma A3. Suppose that Assumption C holds; that the respondent probabil-

ity model π(U, Y,α0) is correctly specified; and that α̂ is computed by the SEL

approach. Then, we have

1

n

n∑
i=1

ĝi(β0, α̂)ĝi(β0, α̂)> = V1 + op(1),

where V1 = E{g̃i(β0,α0)g̃i(β0,α0)>}.
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Lemma A4. Suppose that Assumptions A, B and C hold; that the respondent

probability model π(U, Y,α0) is correctly specified; and that α̂ is computed by the

SEL approach. Then, for all positive %n = op(1), we have

sup
|β−β

0
|≤%n

|Gn(β, α̂)− G(β)− Gn(β0, α̂) + G(β0)|
1 + Cn1/2|β − β0|

= op(n
−1/2).

Lemma A5. Suppose that Assumptions (A1) and C hold; that the respondent

probability model π(U, Y,α0) is correctly specified; and that α̂ is computed by the

SEL approach. Then, for Λn = {λ : |λ| ≤ Cn−1/2}, we obtain

sup
β∈B,λ∈Λn,1≤i≤n

|λ>ĝi(β, α̂)| p→ 0

and w.p.1, Λn ⊆ Λ̂n(β,α) for all β ∈ B and α ∈ A.

Lemma A6. Suppose that Assumptions (A1) and C hold; that the respondent

probability model π(U, Y,α0) is correctly specified; and that α̂ is computed by SEL

approach. Then, we have |Gn(β̂
S
, α̂)| = Op(n

−1/2).

Proof of Theorem 3. The proof for Theorem 3 essentially involves establishing

bootstrap version of Lemma A2 and Theorem 2. We only establish the boot-

strap version of Lemma A2 here. Let X∗i , Y ∗i and δ∗i be the counterparts of

Xi, Yi, and δi in the bootstrap sample, respectively. Let η̂∗ = (α̂∗>, ω̂∗, γ̂∗>)>

be the bootstrap estimator of η0 = (α>0 ,ω0,γ
>
0 )>. We use E∗ to represent the

conditional expectation given the original data. Define π∗i (α) = π(X∗i , Y
∗
i ,α),

m̂∗g(U,β,α) =
∑m

i=1W∗i0(U,α)g(X∗i , Y
∗
i ,β), and

G∗m(β,α) =
1

m

m∑
i=1

{
δ∗i

π∗i (α)
g(X∗i , Y

∗
i ,β)− δ∗i − π∗i (α)

π∗i (α)
m̂∗g(U

∗
i ,β,α)

}
,

in which W∗i0(U,α) = δ∗iO
∗
i (α)Kh(U − U∗i )/{

∑n
k=1 δ

∗
kO
∗
k(α)Kh(U − U∗k )} with

O∗i (α) = O(U∗i , Y
∗
i ,α). Then there exists α† between α̂∗ and α̂ such that

G∗m(β̂
S
, α̂∗)− Gn(β̂

S
, α̂) = G∗m(β̂

S
, α̂)− Gn(β̂

S
, α̂) + ∂G∗m(β̂

S
,α†)/∂α>(α̂∗ − α̂).

Similar to the proof of Proposition 2 but replace the functions and the param-

eters with their corresponding bootstrap analogs, we can show n1/2(η̂∗ − η̂)
L∗→

N (0,A−1B(A−1)>), where µ∗n
L∗→ µ means Pr∗(µ

∗
n ∈ B)−Pr(µ ∈ B)

p→ 0 for any

Borel set B, and Pr∗ denotes a probability under the bootstrap distribution con-

ditional on the original data set. We establish the bootstrap version of Lemma

A2 by the following two steps.

Step 1. Show that ∂G∗m(β̂
S
,α†)/∂α>

p→ Ξ. By Assumption C and similar

arguments to those used in the proof of Lemma A2, as n→∞ and m→∞, we

can obtain the result.
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Step 2. Show that n1/2{G∗m(β̂
S
, α̂)−Gn(β̂

S
, α̂)} L

∗

→ N (0, V1). To prove this

result, we only need to prove that n1/2{G∗m(β̂
S
,α0) − Gn(β̂

S
,α0)} L

∗

→ N (0, V1)

because ∂G∗m(β̂
S
,α††)/∂α> = ∂Gn(β̂

S
,α††)/∂α>+ op(1) as n→∞ and m→∞

and α̂ − α0 = Op(n
−1/2). Here α†† lies between α̂ and α0. Next we note that

G∗m(β̂
S
,α0)− Gn(β̂

S
,α0) = Kmn1 +Kmn2 +Kmn3, where

Kmn1 =
1

m

m∑
i=1

[
δ∗i

π∗i (α0)
g(X∗i , Y

∗
i , β̂S)− δi − πi(α0)

π∗i (α0)
m0
g(U

∗
i , β̂S,α0)

− 1

n

n∑
i=1

{
δi

πi(α0)
g(Xi, Yi, β̂S)− δi − πi(α0)

πi(α0)
m0
g(Ui, β̂S,α0)

}]
,

Kmn2 =
1

m

m∑
i=1

[{
1− δ∗i

π∗i (α0)

}
{m̂0

g(U
∗
i , β̂S,α0)−m0

g(U
∗
i , β̂S,α0)}

− 1

n

n∑
i=1

{
1− δi

πi(α0)

}
{m̂0

g(Ui, β̂S,α0)−m0
g(Ui, β̂S,α0)}

]
,

Kmn3 =
1

m

m∑
i=1

{
1− δ∗i

π∗i (α0)

}
{m̂∗g(U∗i , β̂S,α0)− m̂0

g(U
∗
i , β̂S,α0)}.

For Kmn1, we can apply the central limit theorem for bootstrap samples (Shao

and Tu (1995)) to derive n1/2Kmn1
L→ N [0, E∗{g̃i(β̂S,α0)g̃i(β̂S,α0)>}]. Use sim-

ilar argument to In2 in Lemma A2 to show Kmn2 = op(n
−1/2). Also it can

be shown Kmn3 = op(n
−1/2). Then the desired result is obtained by noting

E∗{g̃i(β̂S,α0)g̃i(β̂S,α0)>} → V1 as n→∞ and m→∞. The bootstrap version

of Lemma A2 could be established by combining above arguments.
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