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Abstract: Length-biased data are common in various fields, including epidemiology

and labor economics, and they have attracted considerable attention in survival

literature. A crucial goal of a survival analysis is to identify a subset of risk factors

and their risk contributions from among a vast number of clinical covariates. How-

ever, there is no research on variable selection for length-biased data, owing to the

complex nature of such data and the lack of a convenient loss function. Therefore,

we propose an estimation method based on penalized estimating equations to ob-

tain a sparse and consistent estimator for length-biased data under an accelerated

failure time model. The proposed estimator possesses the selection and estima-

tion consistency property. In particular, we implement our method using a SCAD

penalty and a local linear approximation algorithm. We suggest selecting the tun-

ing parameter using the extended BIC in high-dimensional settings. Furthermore,

we develop a novel multistage SCAD penalized estimating equation procedure to

achieve improved estimation accuracy and sparsity in the variable selection. Sim-

ulation studies show that the proposed procedure has high accuracy and almost

perfect sparsity. Oscar Awards data are analyzed as an application of the proposed

method.

Key words and phrases: Accelerated failure time model, high-dimensional variable

selection, length-biased data, multi-stage penalization.

1. Introduction

Length-biased sampling, a special case of left truncation, is a frequently used,

convenient, and economical sampling technique used to collect data in fields such

as epidemiology and labor economics. For length-biased data, we assume that

the incidence of event onset follows a Poisson process (Zelen and Feinleib (1969);

Simon (1980)), known as the stationarity assumption, which is often suitable in

practice. Equivalently, we can assume that the truncation time follows a uniform

distribution, and hence occurs when the probability that an item is sampled is

proportional to its length. As a result, the observed time intervals from initiation

to failure tend to be longer than those in the target population in a prevalent
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cohort study. An example of such data can be found in the Canadian Study of

Health and Aging (CSHA) on dementia among elderly people (Asgharian, M’Lan

and Wolfson (2002); Addona and Wolfson (2006); Shen, Ning and Qin (2009); Qin

and Shen (2010)). The study recruited and screened more than 10,000 Canadians

over the age of 65 for the prevalence of dementia. The approximate initial date

of dementia and the subsequent time of death and censoring were recorded for

individuals found to have dementia. Those individuals who had dementia and

did not survive to the examination time were excluded from the investigation.

Thus, only those individuals who had dementia and were still alive during the

CSHA could be observed, which could lead to length-biased sampling.

Extensive methodology development has focused on estimating the unbiased

target distribution in the presence of length-bias. One approach is based on the

conditional distribution of the observations, given the sampling process (Lagakos,

Barraj and De Gruttola (1988); Wang (1991)). Another approach is based on the

unconditional distribution (Vardi (1982, 1985); Gill, Vardi and Wellner (1988);

Asgharian, M’Lan and Wolfson (2002); Asgharian and Wolfson (2005)), which

requires the stationarity assumption. Recently, the analysis of right-censored and

length-biased data has attracted the attentions of many researchers. Informative

censoring, that is, the dependence between the right-censoring time and the fail-

ure time, can make analyses of such data difficult. Another significant difficulty

is that the observed length-biased data may change the model structure that has

been assumed for the target population. Shen, Ning and Qin (2009) developed

estimating equation methods for semiparametric transformation and accelerated

failure time (AFT) models to obtain consistent estimators of the regression coef-

ficients. Qin and Shen (2010) proposed two estimating equation approaches for

using the Cox model to analyze covariate effects. Ning, Qin and Shen (2011)

presented a generalized Buckley–James-type estimator under an AFT model.

A crucial goal of survival analyses is to identify the risk factors and their risk

contributions. Modern data-collection technologies are making vast amounts of

data on clinical covariates accessible, including patients’ personal characteris-

tics, biomarkers, and genotypes. A necessary, but challenging task is to select

a subset of important variables upon which the hazard function or the survival

time depends. This helps medical researchers build comprehensible models to

predict outcomes without information loss, leading to better disease diagnoses

and treatments in the long run. The process, called variable selection or fea-

ture selection, has been widely studied for linear models with uncensored out-

comes, including subset selection, the least absolute shrinkage and selection oper-
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ator (LASSO) (Tibshirani (1996)), bridge regressions (Fu (1998)), the smoothly

clipped absolute deviation (SCAD) (Fan and Li (2001)), elastic nets (Zou and

Hastie (2005)), the adaptive LASSO (Zou (2006)), and the minimax concave

penalty (MCP) (Zhang (2010)). In the context of survival data analyses, some

of the aforementioned techniques have been extended to variable selection with

censored outcomes. For Cox’s proportional hazards model, Tibshirani (1997)

applied the LASSO to a partial likelihood function, Fan and Li (2002) employed

a SCAD penalty to derive the oracle property for its estimator, and Zhang and

Lu (2007) utilized the adaptive LASSO to obtain its theoretical properties. For

other models, Lu and Zhang (2007) studied the proportional odds model, where

they maximize the penalized marginal likelihood of ranks. Zhang, Lu and Wang

(2010) investigated semiparametric linear transformation models by penalizing a

profiled score from the martingale estimating equation. Huang and Ma (2010)

modeled the relationship between covariates and survival using AFT models, with

bridge penalization for the variable selection and parameter estimation. Liu and

Zeng (2013) presented an estimation method for semiparametric transformation

models that minimizes a weighted negative partial loglikelihood function plus an

adaptive LASSO penalty. However, we cannot select variables for length-biased

data using the above techniques, because an estimation or inference that treats

the censored length-bias data as regular censored data will lead to substantial

bias and inaccuracy (Shen, Ning and Qin (2009)). Hence, it is necessary to

develop a new method for such data.

To the best of our knowledge, there is no existing work on variable selection

for length-biased data, especially when the dimension of the covariates is high. As

mentioned earlier, this is due to the information censoring and biased sampling

changing the model structure assumed for the target population. Another reason

is that most estimation procedures for length-biased data are based on estimating

equations. Such procedures are quite different from the likelihood-based methods,

such as the estimator for Cox’s proportional hazards model. The complex nature

of length-biased data and the lack of a convenient loss function hinder the existing

variable selection methods from being applied directly to such data.

We propose a simple, yet powerful method for obtaining sparse and consistent

estimators for length-biased data under an AFT model. Our first contribution

is to construct a working loss function based on complex estimating equations

for length-biased data, after which, we minimize the working loss function using

a sparse penalty. Owing to the complex structure of length-biased data, we find

that the typical penalization method does not produce a very good estimator for
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a finite sample size, although the asymptotic theory supports such an estimator.

Our second contribution is a novel multistage sparse penalization procedure (e.g.,

the SCAD) that achieves a more efficient estimation and better sparsity during

variable selection.

The remainder of the paper is organized as follows. In Section 2, we describe

length-biased data and derive an asymptotically unbiased estimating equation.

The estimator for length-biased data under an AFT model is proposed in Section

3. Section 4 describes the implementation. Here, we introduce the local linear

approximation algorithm and discuss the tuning parameter selection problem.

Section 5 derives the theoretical properties for the proposed estimator. Simula-

tion studies and a real-data analysis are presented in Section 6. All proofs and

detailed simulation results are given in the Supplementary Material.

2. Notation and Model

2.1. Length-biased data

Let T̃ be the uncensored survival time measured from the initiating event

to failure without length-bias, A be the time from the initiating event to exami-

nation, V be the duration measured from examination to failure, and C be the

censoring time from examination. Here, T̃ is left truncated by A, which means

we can only observe T of T̃ > A in a length-biased sample, where T = A + V

is the observed survival time. Here, A is also known as the truncation variable

(or backward recurrence time) and V as the residual survival time (or forward

recurrence time).

With right censoring, we have a random sample (Yi, Ai, δi, Xi), for i =

1, 2, . . . , n, where Yi = min(Ti, Ai + Ci), Ti = Ai + Vi, δi = I(Vi ≤ Ci), Xi is

a (p + 1) × 1 vector of covariates for the ith subject, usually with an intercept,

and n is the sample size. In addition, we assume Ci is independent of (Ai, Vi),

given Xi, following the literature. We further assume that the right-censoring

variable C is independent of the covariates X.

Denote fU as the unbiased density function of T̃ , the density function for

the length-biased data T , conditional on T̃ > A, given that the covariates X = x

have the following form (Shen, Ning and Qin (2009)):

g(t|x) =
tfU (t|x)

µ(x)
, µ(x) =

∫ ∞
0

sfU (s|x)ds,

where fU (t|x) denotes the unbiased density, given the covariates x, and µ(x) <∞.
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2.2. Accelerated failure time models

Consider the following AFT model (Kalbfleisch and Prentice (1980); Cox and

Oakes (1984)), which assumes that the logarithm of the survival time is linearly

related to the covariates of interest:

log T̃ = XTβ + ε, (2.1)

whereX is a covariate vector with intercept, and β is a (p+1)×1 parameter vector

to be estimated, and ε has an unknown distribution with mean zero. According to

Shen, Ning and Qin (2009), the equations for estimating β can be derived using

the inverse probability of censoring weighting techniques. Let SC(t) = P (C > t)

be the survival function of C. Under the stationarity assumption, the joint

distribution of (A, V ) and (A, T ), given the covariates X, has the following form:

fA,V (a, v|X = x) =
fU (a+ v|x)I(a > 0.v > 0)

µ(x)
,

as discussed in the literature (Zelen (2006); Asgharian and Wolfson (2005)). The

probability of observing the failure data is

P (A = a, Y = y, C ≥ y − a|X = x) = P (A = a, V = y − a,C ≥ y − a|X = x)

=
fU (y|x)SC(y − a)

µ(x)
.

Based on the joint distribution of (A, Y ) and C, conditional on the covariates X,

we have

E

[
δ

π(Y )
(log Y −XTβ)

]
= E

{
E

[
δ

π(Y )
(log Y −XTβ)

∣∣∣∣X = x

]}
= E

{
1

µ(x)

∫ ∞
0

[
1

π(y)

∫ y

0
SC(y − a)da

]
fU (y|x)(log y − xTβ)dy

}
= E

{
1

µ(x)
E

[
(log T̃ −XTβ)

∣∣∣∣X]} = 0,

where π(t) =
∫ t
0 SC(u)du. Then, the estimating equation can be constructed as:

Ũ(β) =

n∑
i=1

Xi
δi

π(Yi)
(log Yi −XT

i β) = 0.

Because the censoring distribution is often unknown in practice, researchers often

to replace the unknown censoring distribution by its consistent Kaplan–Meier

estimator
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ŜC(t) =
∏
s≤t

(
1− ∆NC(s)

Y (s)

)
,

where NC(t) =
∑n

i=1N
C
i (t), NC

i (t) = I(Yi − Ai ≤ t, δi = 0), Y (t) =
∑n

i=1 Yi(t),

and Yi(t) = I(Yi − Ai ≥ t). Thus, the following is an asymptotic unbiased

estimating equation:

U(β) =

n∑
i=1

Xi
δi

π̂(Yi)
(log Yi −XT

i β) = 0,

where π̂(t) =
∫ t
0 ŜC(u)du is a consistent plug-in estimator for π(t).

Denote

ỹ(p+1)×1 =
1

n

n∑
i=1

δiXi log Yi
π̂(Yi)

=
1

n
XTDy,

X̃(p+1)×(p+1) =
1

n

n∑
i=1

δiXiX
T
i

π̂(Yi)
=

1

n
XTDX (2.2)

as working data, where D = diag(δ1/(π̂(Y1)), . . . , δn/(π̂(Yn))), X = (X1, . . . ,

Xn)T , and y = (log Y1, . . . , log Yn)T . Then, the asymptotic unbiased estimating

equation can be written as

U(β) = n · (ỹ − X̃β) = 0. (2.3)

Consequently, a closed-form solution for β is

X̃
−1
ỹ = (XTDX)−1XTDy. (2.4)

Note that (2.4) only holds in low dimensions, because X̃ is not invertible when

its dimension is greater than the rank of D.

3. Methodology

3.1. Penalized estimating equations

In order to apply a modern penalization estimation method for variable

selection in high-dimensions, we need to have a loss function because the common

formulation of such methods is a loss plus a sparse penalty. For survival analyses

using Cox’s proportional hazard model, the loss function is the negative log

partial likelihood. For our study, owing to the lack of a convenient loss function,

variable selection is more challenging. To overcome this obstacle, we change (2.3)

into a working loss function. Note that finding the roots of (2.3) is equivalent to

solving the following minimization problem:
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min
β

(ỹ − X̃β)TW (ỹ − X̃β), (3.1)

where W is a positive-definite matrix, free of β. For example, a natural choice

for W is the identity matrix. Next, we treat the quadratic function in (3.1) as a

working loss function and minimize the loss, using a sparse penalty to encourage

sparsity:

min
β

(ỹ − X̃β)TW (ỹ − X̃β) + λ

p+1∑
j=2

Pλ(|βj |). (3.2)

In this work, we consider a general folded concave penalty Pλ(|t|), defined in

Section 5. Note that the intercept is not penalized in (3.2).

The working loss function idea is related to the recent penalized general-

ized method of moments estimation studied by Caner (2009) and Fan and Liao

(2011) in the econometrics literature, which is seldom seen in statistics. A related

scheme contains the penalized generalized estimating equations studied by John-

son, Lin and Zeng (2008) for semiparametric regression models, and by Wang,

Zhou and Qu (2012) for longitudinal data. These studies reported encouraging

results. We tried the first approach, and our results provided theoretical sup-

port. However, our numeric study showed that the resulting estimator, despite

reducing the dimension, is still not satisfactory. This issue is not identified in

the aforementioned works (Caner (2009); Fan and Liao (2011); Johnson, Lin and

Zeng (2008); Wang, Zhou and Qu (2012)), owing to the more complex structure

of censored length-biased data. This difficulty motivates us to develop a new

procedure, which is presented in the next section.

3.2. Multistage penalized estimating equations

We propose an iterative multistage penalized estimating equation method.

Multistage variable selection is discussed in Bühlmann and Meier (2008); Zou and

Li (2008b) for the penalized likelihood to reduce the number of false positives,

which can be serious in biological applications, because follow-up experiments

can be costly and laborious.

Let the initial estimator be

β̂(1) = arg min
β

(ỹ − X̃β)T (ỹ − X̃β) + λ(1)
p+1∑
j=2

Pλ(|βj |). (3.3)

Suppose that at the kth iteration we have the estimator β̂(k). Denote the

active set Ak = {j : β̂
(k)
j 6= 0}, where β̂

(k)
Ak is the vector constituted by the

nonzero components of β̂(k), and XAk is the dimension-reduced design matrix
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with columns selected by Ak. To compute the next iteration estimator β̂(k+1),

we first compute the dimension-reduced working data (ỹAk , X̃Ak) using XAk and

(2.2). Then, we consider the following optimization problem:

β̂
(k+1)
Ak = min

β
(ỹAk − X̃Akβ)TWAk(ỹAk − X̃Akβ) + λ(k+1)

∑
j∈Ak;j 6=1

Pλ(|βj |), (3.4)

where WAk is a working matrix, computed based on β̂(k) and Ak. Specifically,

given β̂(k) and the data y,X,

WAk =

[
1

n

n∑
i=1

Xi

(
δi

π̂(Yi)

(
log Yi −XT

i β̂
(k)
))2

XT
i

]−1

=

[
1

n
XT
Akdiag

( (
D
(
y−XAkβ̂

(k)
Ak
))2 )

XAk

]−1
.

The interpretation of WAk is that it is an estimate of the inverse of the covariance

matrix of the estimation equation. Note that we use the identity matrix as the

preliminary weighting matrix in the first step because we have no information

about the covariance matrix of the estimation equation.

The penalization parameters λ(k) are not required to be the same. Regardless

of our choice of λ(k), the active set sequences Ak are always nested; that is,

Ak ⊇ Ak+1.

Therefore, we stop the iteration when we observe convergence of the current

active set; that is,

if Ak = Ak+1, stop the iteration.

By the nested property, convergence is guaranteed.

After convergence, the active set is the selected subset of important variables.

We also try to refit the coefficient by solving the unpenalized estimation equation

with the selected subset. This final step reduces the estimation bias generated

in the iterative penalization stage.

4. Implementation

4.1. LLA algorithm and two-step LLA solution

Our estimation method can work with all sparse penalties. In this work, we

focused on folded concave penalties, which include the SCAD and MCP as special

cases. Because the penalty function is folded concave and nondifferentiable at

point 0, the optimization objective function can be difficult, and sometimes has

multiple local minimizers. We adopt the local linear approximation (LLA) algo-
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rithm proposed in Zou and Li (2008a) to compute the proposed estimator. Fan,

Xue and Zou (2014) proved that the local solution computed by the LLA is the

desired theoretical local solution. Here, we present the LLA algorithm for solv-

ing (3.2). The same algorithm is applied repeatedly in the iterative multistage

penalized estimating equations procedure. For its derivation and explanations,

refer to Zou and Li (2008a).

First, we compute the initial estimator as the LASSO penalized estimator

β̂lasso = arg min
β

(ỹ − X̃β)TW (ỹ − X̃β) + λlasso

p+1∑
j=2

|βj |. (4.1)

Given the LASSO estimator, we compute

β̂lla1 = arg min
β

(ỹ − X̃β)TW (ỹ − X̃β) +

p+1∑
j=2

P ′λ(|β̂lassoj |)|βj |.

Given β̂lla1, we compute

β̂lla2 = arg min
β

(ỹ − X̃β)TW (ỹ − X̃β) +

p+1∑
j=2

P ′λ(|β̂lla1j |)|βj |.

Following Fan, Xue and Zou (2014), we stop with β̂lla2 as the solution.

4.2. Tuning parameter selection

In a penalized estimation method, the choice of penalization parameter is

very important. The tuning parameter selection method in Caner (2009) is based

on subset selection that is only feasible for a very low dimension. Fan and Liao

(2011) did not consider the tuning parameter selection problem. Johnson, Lin

and Zeng (2008) applied a generalized cross-validation statistic, and Wang, Zhou

and Qu (2012) conducted cross validation to tune the parameter, neither of which

is applicable for length-biased data because the prediction error is difficult to

define.

In order to tune the regularization parameter λ, we apply the extended BIC

of Chen and Chen (2008) for a linear regression model to the estimation equation

setting. In the context of a linear regression, the extended BIC is defined as

RSS

σ̂2
+ d log n+ 2γ log

(
p

d

)
, 0 ≤ γ ≤ 1,

where n denotes the sample size, d denotes the number of free parameters, RSS

is the residual sum of squares from the OLS fit, and σ̂2 is an estimator of error

variance computed by the full model. Moreover, γ = 1
2 for p = n, as suggested
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by Chen and Chen (2008).

For the estimator from (3.4), we define the extended BIC as

n · (ỹAk − X̃Akβλ)TWAk(ỹAk − X̃Akβλ) + ‖βλ‖0 · log n+ log

(
|Ak|
‖βλ‖0

)
, (4.2)

where ‖ · ‖0 is the L0-norm. The idea is to treat nWAk in the same way as 1
σ̂2 in

the original extended BIC for a linear regression model.

For the estimator from (3.3), the working inverse covariance matrix is the

identity matrix. If we consider the full model in order to get an analogue of σ̂2 in

the linear regression, “sample size” is p+ 1 and “model size” is ‖ βλ ‖0. Hence,

the “residuals” become zero because the number of parameters is equal to the

sample size of the working data. To avoid dividing by zero, we define a similar

extended BIC, as follows:

(ỹ − X̃βλ)T (ỹ − X̃βλ)

(
1 +
‖ βλ‖0 log(p+ 1) + log

( p+1
‖βλ‖0

)
p+ 1− ‖βλ‖0

)
. (4.3)

We use (4.3) in the first stage of the multistage penalized estimating equation

procedure to obtain the first estimator. Then, in the subsequent multistage

procedure, we have nWAk and can apply (4.2) to tune the estimator. This

practice is tested in our simulation studies, and works well.

5. Theoretical Properties

In this section, we present the asymptotic results of our estimators for high-

dimensional variable selection and estimation. Denote the true parameter in

(2.1) as β∗, the support set as A = {j : β∗ 6= 0}, and its cardinality as s = |A|.
The sparse estimation problem often assumes that s is much smaller than the

dimension of β∗.

Denote the problem we consider in (3.2) as

min
β
`n(β) + Pλ(|β|),

where `n(β) = ‖W 1/2ỹ−W 1/2X̃β‖22 is a convex loss, and Pλ(|β|) =
∑p+1

j=2 Pλ(|βj |).
A true oracle estimator knows the true support set, and is obtained by (2.4) using

this set; that is,

β̂oracle
A =

(
XT
ADXA

)−1
XT
ADy, β̂oracle

Ac = 0.

Before presenting our theorems, we first state several conditions:

(A) ‖β∗A‖min > (a+ 1)λ, where ‖ · ‖min is the minimum entrywise absolute value,

and a is a constant defined in Condition (E);



VARIABLE SELECTION FOR LENGTH-BIASED DATA 203

(B) ε = (ε1, . . . , εn) are independent and identically distributed (i.i.d.) sub-

Gaussian(σ), for some fixed constant σ > 0; that is, E[exp(tεi)] ≤ exp(σ2t2/

2);

(C) There exists a constant M > m > 0, such that 1/M < |π(Y )| < 1/m;

(D) κ = minδ∈Rp+1;δ 6=0:‖δAc‖1≤3‖δA‖1 ‖W 1/2X̃δ‖22/‖δ‖22 ∈ (0,+∞);

(E) Assume a folded concave penalty Pλ(|t|), defined on t ∈ (−∞,∞), satisfying

following assumptions:

(i) Pλ(t) is increasing and concave in t ∈ [0,∞), with Pλ(0) = 0;

(ii) Pλ(t) is differentiable in t ∈ (0,∞), with P ′λ(0) := P ′λ(0+) ≥ a1λ;

(iii) P ′λ ≥ a1λ, for t ∈ (0, a2λ];

(iv) P ′λ = 0, for t ∈ [aλ,∞), with prespecified constant a > a2;

where a1 and a2 are fixed positive constants.

(F) X is a (p + 1) × 1 vector of bounded covariates, not contained in a p-

dimensional hyperplane;

(G) sup[t : Pr(V > t) > 0] ≥ sup[t : Pr(C > t) > 0] = t0 and Pr(δ = 1) > 0;

(H)
∫ t0
0

{
[(
∫ t0
t SC(u)du)2]/[S2

C(t)SV (t)]
}
dSC(t) <∞, where SV (t) is the survival

function for the residual failure time;

(I) det
(
E[δXA(log Y −XT

Aβ
∗
A)/π(Y )]⊗2

)
<∞, where for a vector v, v⊗2 = vvT ;

(J) det
( ∫ t0

0

{
H⊗2(s)/[S2

C(s)SV (s)]
}
dSC(s)

)
<∞,

where H(t) = E
{

[δXAI(Y ≥ s)
∫ Y
t SC(u)du(log Y −XT

Aβ
∗
A)]/[π2(Y )]

}
;

(K) ΓA ≡ limn→∞(1/n)XT
ADXA is nonsingular.

Conditions (A)–(B) can be found in Fan, Xue and Zou (2014), who calculate

the probability bound to ensure the convergence of the LLA solution. Condition

(D) is similar to the restricted eigenvalue condition considered by Bickel, Ritov

and Tsybakov (2009) in a sparse linear regression. The assumptions in condition

(E) can be found in Fan, Xue and Zou (2014), who summarize previous works

on the SCAD and MCP. The derivatives of the SCAD penalty and MCP penalty

are

P ′λ(t) = λI{t≤λ} +
(aλ− t)+
a− 1

I{t>λ} for some a > 2,
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P ′λ(t) =

(
λ− t

a

)
+

for some a > 1,

respectively. Clearly, a1 = a2 = 1 for the SCAD, and a1 = 1 − a−1, a2 = 1 for

the MCP.

Conditions (F)–(K) are the same as those in Shen, Ning and Qin (2009).

Under regularity conditions (F)–(K), they proved that
√
n(β̂oracle

A − β∗A) con-

verges weakly to a normal distribution with mean zero and covariance matrix

Γ−1A ΣAΓ−1A , where ΣA is the asymptotic covariance matrix of n−1/2UA(β∗A) =

n−1/2(XT
ADy −XT

ADXAβ
∗
A). Furthermore, ΓA and ΣA can be estimated con-

sistently by

Γ̂A =
1

n
XT
ADXA, (5.1)

Σ̂A =
1

n

n∑
i=1

{
δiXAi

(log Yi −XT
Aiβ̂

oracle
A )

π̂(Yi)
+

∫ t0

0

Ĥ(t)dM̂i(t)

η(t)

}⊗2
, (5.2)

respectively, where

Ĥ(t) =
1

n

n∑
i=1

I(t ≤ Yi)δiXAi
∫ Yi

t
ŜC(u)du

(log Yi −XT
Aiβ̂

oracle
A )

π̂2(Yi)
,

M̂i(t) = I(Yi −Ai ≤ t, δi = 0)−
∫ t

0
I(Yi −Ai ≥ u)dΛ̂C(u),

η(t) =
1

n

n∑
i=1

I(Yi −Ai ≥ t),

and Λ̂C(u) is the Nelson–Aalen estimator for the cumulative hazard function of

C.

To connect the true oracle estimator with our LLA estimator, we define a

so-called “working data oracle estimator,” as

β̃oracle = (β̃oracle
A ,0) = arg min

β:βAc=0
`n(β).

Because `n(β) is convex, the above solution is unique; that is,

β̃oracle
A =

(
X̃
T

AW X̃A
)−1

X̃
T

AWỹ,

where X̃A denotes the columns of X̃ corresponding to the support set, and

∇j`n(β̃oracle) = 0, ∀j ∈ A,

where ∇j denotes the subgradient with respect to the jth component of β.

Denote Xo, Xo
A and Xo

Ac as the submatrixes formed by the rows in X, XA
and XAc , respectively, where Ti is being observed; that is, δi = 1. For simplicity,
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write

λAAmax = λmax

(
1

n
XoT
AXo

A

)
, λAAmin = λmin

(
1

n
XoT
AXo

A

)
,

λA
cAc

max = λmax

(
1

n
XoT
AcX

o
Ac

)
,

where λmax(·), λmin(·) denote the maximum and minimum eigenvalues, respec-

tively, of a matrix.

We state the following asymptotic results for the estimator obtained by (3.2).

Theorem 1. Consider the folded concave penalized problem (3.2) for any given

positive-definite matrix W with a SCAD or an MCP penalty. Denote λWmax, λ
W
min

as the maximum and minimum eigenvalues of W , respectively. Initialize the LLA

algorithm using β̂lasso, which is obtained from (4.1). Given conditions (A)–(E)

and letting a0 = min{1, a2}, if we pick λ ≥ (3
√
sλlasso)/(a0κ), the solution of

the LLA algorithm β̂ converges to β̃oracle after two iterations, with probability at

least 1− δlasso0 − δ1 − δ2, where

δ1 = 2(p+ 1− s) exp

(
− na21λ

2

8σ2M2(λWmax)2λAcAcmax (λAAmax + λAcAcmax )2

)
,

δ2 = 2s exp

(
−
n ·m4(‖β∗A‖min − aλ)2

2σ2M2

λAAmin
4

λAAmax(λAAmax + λAcAcmax )2

(
λWmin

λWmax

)2)
,

δlasso0 = 2(p+ 1) exp

(
−

nλ2lasso
32σ2(λWmax)2M2(λAAmax + λAcAcmax )3

)
.

Thus, we have Pr(supp(β̂) = A)→ 1 as n goes to infinity, with supp(β̂) denoting

the support set of β̂. Moreover, for any ξ > 0, θ ∈ (0, 1/2), we have

Pr
(
‖β̂ − β̂oracle

A ‖max ≤ ξn−θ
)
≥ 1− δlasso0 − δ1 − δ2 − δ3,

where

δ3 ≤ 2s exp

(
− n1−2θξ2

16σ2
1

λAAmax

[
m2λAAmin

2
+
M4

m2

λAAmin
4

(λAAmax + λAcAcmax )2

(
λWmin

λWmax

)2])
.

Remark 1. Fan, Xue and Zou (2014) suggest using zero to initialize the LLA

algorithm. If β̂initial = 0, the first LLA iteration gives a LASSO estimator with

λlasso = P ′λ(0). For both the SCAD and the MCP, P ′λ(0) = λ. If λlasso = λ and

a0κ ≥ 3
√
s, then after two further LLA iterations, or equivalently, after three

iterations when initialized by zero, the solution of the LLA algorithm β̂ has the

same asymptotic results as those described in Theorem 1, as long as we replace

δlasso0 with
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δ00 = 2(p+ 1) exp

(
− nλ2

32σ2(λWmax)2M2(λAAmax + λAcAcmax )3

)
.

6. Numerical Studies

6.1. Simulations

In this section, we assess the performance of our proposed methods using

several numerical experiments and a real-data analysis. We report the average

numbers of correct and incorrect nonzero coefficients, along with the average

mean squared errors based on 1,000 simulated data sets, a sample size of 200 and

p = 20, 100, 400 variables for the penalized estimators with a LASSO penalty and

a SCAD penalty in (3.3), and a multistage SCAD penalty in (3.4). Here, the mean

squared errors are calculated as (β̂ − β∗)TΣ(β̂ − β∗), where Σ is the population

covariance matrix. To examine the inference results of the nonzero coefficients

in the final estimate, we report the biases (Bias), standard errors (SE), means

of asymptotic standard errors (ASE), and coverage probabilities (CP) of the

nominal 95% confidence intervals for the multistage SCAD penalized estimating

equations estimator. Note that the asymptotic standard errors are calculated

using the sandwich formula, with (5.1) and (5.2) using nonzero coefficients in

the final estimate, and the coverage probabilities are computed based on these

asymptotic standard errors.

The length-biased and right-censored data are generated according to the

method in Shen, Ning and Qin (2009). First, we generate independent pairs

(Ai, T̃i), and keep the pairs that satisfy T̃i > Ai, where Ai is from a uniform

distribution U(0, τ) and T̃i are generated from the models below. Here, τ is

chosen to be larger than the upper bound of the support of T̃ to satisfy the

stationarity assumption. The censoring time C is generated from a uniform

distribution U(0, ω0), where ω0 is chosen to achieve the desired censoring ratio.

We consider censoring rates of 10%, 30%, and 60% in our simulation. The tables

shown here present part of the simulation results. For the full detailed results,

see the online Supplementary Material.

Example 1. The first example is adopted from Shen, Ning and Qin (2009).

Consider the AFT model

log T̃ = XTβ + ε,

where X = (1, X1, X2, . . . , Xp)
T and β = (1, 1, 1, 0p−2). Here, X2k−1 are i.i.d.

Bernoulli variables, with P (X2k−1 = 1) = 0.5, and X2k are i.i.d. uniform vari-
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Table 1. Average numbers of correct and incorrect nonzero coefficients and average of
mean squared errors from 1,000 simulated data sets for Example 1, with their standard
errors shown in parentheses.

LASSO SCAD MS-SCAD
error p censoring C I MSE C I MSE C I MSE
unif 100 10% 2.00 28.68 0.036 2.00 36.48 0.041 2.00 0.78 0.005

(0.03) (8.89) (0.015) (0) (8.96) (0.009) (0) (1.60) (0.007)
30% 2.00 28.37 0.038 2.00 36.35 0.045 2.00 0.76 0.006

(0.05) (9.53) (0.016) (0) (9.41) (0.010) (0) (1.48) (0.007)
60% 2.00 30.66 0.047 2.00 38.61 0.061 2.00 1.28 0.013

(0.03) (11.03) (0.020) (0) (9.91) (0.014) (0) (2.29) (0.017)
400 10% 2.00 54.94 0.055 2.00 72.06 0.056 2.00 2.07 0.011

(0) (17.96) (0.018) (0) (15.72) (0.007) (0) (2.97) (0.012)
30% 2.00 57.94 0.053 2.00 77.25 0.061 2.00 2.14 0.014

(0) (19.63) (0.018) (0) (17.22) (0.008) (0) (3.16) (0.015)
60% 2.00 106.30 0.063 2.00 117.13 0.072 2.00 4.00 0.031

(0) (40.09) (0.023) (0) (33.27) (0.010) (0) (7.24) (0.054)
normal 100 10% 2.00 29.56 0.038 2.00 37.41 0.043 2.00 0.40 0.004

(0.03) (9.31) (0.016) (0) (9.25) (0.011) (0) (0.94) (0.005)
30% 2.00 29.41 0.040 2.00 37.22 0.048 2.00 0.56 0.005

(0) (9.49) (0.016) (0) (9.21) (0.012) (0) (1.32) (0.007)
60% 2.00 31.50 0.049 2.00 39.28 0.065 2.00 0.84 0.010

(0) (10.75) (0.021) (0) (9.93) (0.016) (0) (1.85) (0.016)
400 10% 2.00 56.87 0.058 2.00 73.03 0.058 2.00 1.02 0.007

(0.03) (18.16) (0.019) (0) (15.66) (0.008) (0) (2.20) (0.010)
30% 2.00 59.95 0.058 2.00 78.39 0.063 2.00 1.43 0.010

(0.03) (20.14) (0.019) (0) (17.35) (0.009) (0) (2.93) (0.015)
60% 2.00 103.52 0.069 2.00 116.18 0.075 2.00 3.61 0.026

(0) (38.9) (0.025) (0) (32.38) (0.012) (0.03) (8.56) (0.037)

ables on (0, 1), for k = 1, 2, . . . . The random error ε is generated from: (1)

U(−0.5, 0.5), (2) Exp(5)− 0.2 , and (3) N(0, 0.32) .

Table 1 summarizes the average numbers of correct and incorrect nonzero

coefficients, along with the average mean squared errors. It can be inferred that

all the true variables are selected by the three methods with almost 100% fre-

quency. It can also be observed that the LASSO and SCAD estimators select

far more incorrect nonzero coefficients than the multistage SCAD does. Thus,

the multistage SCAD is needed to achieve an almost perfect selection accuracy.

In addition, we examine the inference results for the multistage SCAD penalized

estimator in Table 2. The empirical biases are mostly less than 3%, and 5.62%

in the worst case, indicating that the proposed estimator achieves outstanding

accuracy. Note that although the exponential random error setting violates the

subGaussian error assumption, the simulation results presented in the Supple-
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Table 2. Estimates of coefficients for multistage SCAD, their biases, standard errors,
mean of asymptotic standard errors, and coverage probabilities for nominal 95% confi-
dence intervals from 1,000 simulated data sets for Example 1.

unif normal
p censoring Bias SE ASE CP Bias SE ASE CP

100 10% b1 -0.0022 0.0534 0.0496 92.3 -0.0050 0.0556 0.0531 92.8
b2 -0.0068 0.0947 0.0856 90.4 -0.0007 0.0992 0.0911 91.8

30% b1 -0.0040 0.0565 0.0532 92.5 -0.0047 0.0603 0.0560 91.6
b2 -0.0135 0.0997 0.0913 92.5 -0.0111 0.1047 0.0958 92.1

60% b1 -0.0059 0.0698 0.0626 90.5 -0.0061 0.0738 0.0664 91.8
b2 -0.0197 0.1277 0.1083 88.7 -0.0137 0.1254 0.1142 91.3

400 10% b1 -0.0104 0.0542 0.0470 89.5 -0.0075 0.0558 0.0514 91.4
b2 -0.0250 0.0967 0.0808 87.4 -0.0136 0.1016 0.0883 89.5

30% b1 -0.0124 0.0600 0.0503 87.5 -0.0085 0.0576 0.0542 91.8
b2 -0.0226 0.1072 0.0867 85.8 -0.0278 0.1055 0.0929 88.8

60% b1 -0.0235 0.0762 0.0567 81.0 -0.0189 0.0780 0.0609 83.2
b2 -0.0529 0.1575 0.0982 76.1 -0.0562 0.1551 0.1054 80.1

mentary Material are still quite good. However, it is interesting to observe that

the asymptotic standard errors calculated using the sandwich formula (5.1) and

(5.2) are always slightly smaller than the Monte Carlo standard errors, leading

to an approximate decrease in the empirical coverage probabilities from the 95%

nominal level, especially when the dimension is high. The underestimation of

estimated standard errors from sample standard errors can also be observed in

the variable selection literature for survival data (Lu and Zhang (2007); Zhang

and Lu (2007); Johnson, Lin and Zeng (2008); Zhang, Lu and Wang (2010); Li

and Gu (2012)). Note that the discrepancy between the ASE and SE decreases

when the sample size becomes large (Zhang and Lu (2007); Li and Gu (2012)).

Example 2. Consider the following underlying population distribution of T̃ :

log T̃ = XTβ + ε,

where X = (1, X1, . . . , Xp)
T and Xi denote marginally standard normal ran-

dom variables with pairwise correlations Cor(Xi, Xj) = ρ|i−j|, that is, the au-

toregressive correlation structure AR(ρ). We consider ρ = 0.5, 0.8. We set

β = (2, 0.3, 0.3, 0, 0, 0.3, 0p−5), and ε is generated from N(0, 0.22).

From Table 3 we see that the multistage SCAD estimator is still encouraging,

though there is a small chance of missing true variables when the censoring rate

is 60% and the dimension is high. This false negative rate can be acceptable

when comparing a decrease of false positives with the LASSO and SCAD. The
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Table 3. Average numbers of correct and incorrect nonzero coefficients and average of
mean squared errors from 1,000 simulated data sets for Example 2, with their standard
errors shown in the parentheses; AR(ρ) is the autoregressive correlation structure for
predictors.

LASSO SCAD MS-SCAD
p censoring C I MSE C I MSE C I MSE

AR(0.5) 100 10% 3.00 68.70 0.018 3.00 70.39 0.033 3.00 2.99 0.005
(0) (10.74) (0.005) (0) (7.51) (0.009) (0) (6.95) (0.008)

30% 3.00 66.87 0.022 3.00 68.68 0.044 3.00 5.27 0.009
(0) (10.16) (0.007) (0) (7.82) (0.015) (0) (8.82) (0.013)

60% 3.00 65.43 0.036 3.00 68.89 0.131 2.99 7.36 0.023
(0) (8.77) (0.011) (0) (7.69) (0.065) (0.11) (9.66) (0.029)

400 10% 3.00 230.92 0.030 3.00 263.35 0.437 3.00 3.98 0.006
(0) (29.47) (0.005) (0) (24.64) (0.096) (0.08) (8.22) (0.011)

30% 3.00 243.69 0.034 3.00 251.83 0.507 2.99 2.65 0.006
(0) (25.98) (0.006) (0) (24.77) (0.1) (0.12) (5.53) (0.011)

60% 3.00 213.96 0.036 3.00 218.36 0.551 2.91 1.98 0.015
(0) (25.11) (0.01) (0) (25.66) (0.091) (0.34) (4.59) (0.051)

AR(0.8) 100 10% 3.00 40.19 0.010 3.00 44.45 0.019 3.00 1.80 0.004
(0) (11.61) (0.003) (0) (9.43) (0.005) (0.03) (4.06) (0.005)

30% 3.00 39.78 0.012 3.00 44.58 0.023 3.00 2.15 0.005
(0) (11.59) (0.004) (0) (9.63) (0.006) (0.03) (4.24) (0.006)

60% 3.00 43.01 0.020 3.00 47.42 0.042 2.99 4.36 0.014
(0) (10.89) (0.007) (0) (9.68) (0.016) (0.12) (5.84) (0.017)

400 10% 3.00 154.67 0.022 3.00 190.94 0.14 2.99 6.57 0.010
(0) (30.32) (0.004) (0) (27.58) (0.047) (0.08) (11.15) (0.014)

30% 3.00 169.42 0.026 3.00 211.08 0.218 2.98 3.00 0.007
(0) (32.17) (0.006) (0) (27.18) (0.072) (0.13) (6.26) (0.011)

60% 3.00 187.90 0.037 3.00 194.92 0.383 2.86 1.80 0.012
(0) (27.73) (0.01) (0) (27.81) (0.134) (0.39) (2.95) (0.017)

asymptotic standard errors in Table 4 are still underestimated, as the coverage

probabilities.

6.2. Real data

The proposed approach is applied to Oscar Awards data analyzed and com-

piled by Redelmeier and Singh (2001). The data set can be found in Han et al.

(2011), where a detailed description is given. It is a list of all 766 nominees for

Oscar awards from 1929 to 2000, of whom 327 died before the study ended. This

means that the censoring ratio is about 57.3%.

Several authors (Redelmeier and Singh (2001); Han et al. (2011); Chen, Shi

and Zhou (2015); Ma, Qiu and Zhou (2016)) are interested in finding out whether

winning an Oscar Award causes the actor or actress’ expected lifetime to increase.

Redelmeier and Singh (2001) fitted a Cox’s proportional hazards model, and
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Table 4. Estimates of coefficients for multistage SCAD, their biases, standard errors,
mean of asymptotic standard errors, and coverage probabilities for nominal 95% confi-
dence intervals from 1,000 simulated data sets for Example 2; AR(ρ) is the autoregressive
correlation structure for predictors.

AR(0.5) AR(0.8)
p censoring Bias SE ASE CP Bias SE ASE CP

100 10% b1 -0.0020 0.0211 0.0188 90.7 -0.0019 0.0338 0.0290 90.4
b2 -0.0003 0.0228 0.0191 87.4 0.0003 0.0370 0.0307 90.6
b5 -0.0017 0.0189 0.0166 89.4 -0.0023 0.0248 0.0203 87.3

30% b1 0.0008 0.0236 0.0196 88.6 0.0001 0.0350 0.0301 90.3
b2 -0.0030 0.0244 0.0197 86.6 -0.0035 0.0373 0.0319 89.9
b5 -0.0022 0.0220 0.0172 86.9 -0.0026 0.0276 0.0216 87.6

60% b1 -0.0025 0.0358 0.0222 78.4 0.0012 0.0496 0.0333 84.0
b2 -0.0056 0.0384 0.0224 78.2 -0.0078 0.0574 0.0357 81.8
b5 -0.0062 0.0376 0.0196 75.0 -0.0103 0.0426 0.0249 79.6

400 10% b1 0.0028 0.0242 0.0186 88.5 0.0024 0.0362 0.0268 84.7
b2 -0.0033 0.0278 0.0186 88.6 -0.0028 0.0406 0.0285 85.0
b5 -0.0018 0.0218 0.0163 87.5 -0.0060 0.0301 0.0193 82.7

30% b1 -0.0002 0.0247 0.0201 90.0 0.0005 0.0387 0.0293 87.5
b2 -0.0029 0.0303 0.0201 88.9 -0.0004 0.0436 0.0312 87.4
b5 -0.0030 0.0316 0.0174 86.4 -0.0055 0.0409 0.0204 85.5

60% b1 -0.0066 0.0580 0.0246 83.7 0.0012 0.0675 0.0353 83.0
b2 -0.0041 0.0568 0.0250 83.3 -0.0064 0.0832 0.0370 82.6
b5 -0.0158 0.0657 0.0208 82.9 -0.0271 0.0861 0.0233 79.5

claimed that the life expectancy was 3.9 years longer for Oscar Award winners

than for other less recognized performers. Han et al. (2011) stated that previous

studies have suffered from a healthy performer survivor bias. Thus, candidates

who are healthier can act in more films and have a greater chance of winning

an Oscar Award. They adapted Robins’ rank preserving structural accelerated

failure time model and g-estimation method, and concluded there is no strong

evidence that winning an Oscar increases life expectancy. Both Chen, Shi and

Zhou (2015) and Ma, Qiu and Zhou (2016) treated the survival time of per-

formers as length-biased right-censored data, and they conducted a monotone

rank estimation method for transformation models and an estimation method

for semiparametric transformation models. They all concluded that a performer

winning Oscar may not have longer lifetime span than those without winning.

However, we also wish to study the association between the survival time

and nine other variables of performers’ information in the data set, including

wining an Oscar Award. These indicators include gender (male=1, female=0),

born in USA (yes=1, no=0), white (yes=1, no=0), change name (yes=1, no=0),
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Table 5. Variable selection results for Oscar data.

Coef SE 95% CI
Gender -0.1106 0.0328 (-0.1749, -0.0463)
USA -0.1232 0.0263 (-0.1747, -0.0716)
NOTF 0.0666 0.0155 (0.0362, 0.0970)
NOFF 0.0359 0.0112 (0.0140, 0.0578)

† Note: Gender: male = 1, female = 0; USA: whether born in
USA, yes = 1, no = 0; NOTF: number of total films; NOFF:
number of four-star films.

genre is drama (yes=1, no=0), and count variables with number of total films in

career, number of four-star films, number of times the performer won an Oscar,

number of times the performer was nominated for an Oscar.

Denote T as the time from birth to death, and A as the truncation variable,

that is, the time from the performer’s birth year to the first Oscar nomination

year. Based on the formal test proposed by Addona and Wolfson (2006), the

p-value of this test is 0.3, suggesting the data set satisfies the stationarity as-

sumption and can be treated as censored length-biased data.

We standardize the count variables and apply our proposed the multistage

SCAD penalized estimator to the data set. The results of nonzero coefficient

variables are shown in Table 5, along with their standard errors and 95% con-

fidence intervals. The indicator of whether the performer has won an Oscar is

not selected, implying winning an Oscar has nothing to do with life expectancy

increase. Other significant variables shows that female nominees tend to live

longer than male nominees, US performers are likely to live shorter lives than

others, and the number of films and the number of four-star films in career have a

positive effect on performers’ life expectancy. Parts of these results are consistent

with those in Ma, Qiu and Zhou (2016). The refitted model is

log T̃ = 4.2004−0.1106∗Gender−0.1232∗USA+0.0019∗NOTF+0.0058∗NOFF.

To further explore the data and reduce the possible modeling bias, we add

all possible interactions of variables and the quadratic terms of count variables

to the initial model, yielding 59 predictors. Table 6 presents the scaled variables

selected by the multistage SCAD penalized estimating equations estimator. The

refitted model is

log T̃ = 4.2029+0.0065∗NOFF−0.1519∗Gender∗USA+0.0021∗USA∗NOTF.

The binary variable denoting winning an Oscar is still outside of the active set.
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Table 6. Variable selection results for Oscar data with quadratic and interaction terms.

Coef SE 95% CI
NOFF 0.0406 0.0092 (0.0226, 0.0585)
Gender*USA -0.1519 0.0375 (-0.2253, -0.0785)
USA*NOTF 0.0721 0.0166 (0.0396, 0.1046)
† Note: Gender: male = 1, female = 0; USA: whether

born in USA, yes = 1, no = 0; NOTF: number of
total films; NOFF: umber of four-star films.

Again, the number of four-star films is selected, suggesting that it is a crucial

predictor for the lifetime of movie stars, and that there is a positive association

between being in good physical condition and many high-quality films.

7. Discussion

In this paper, we proposed an estimation method based on the penalized esti-

mating equations to achieve a sparse estimation with high-dimensional covariates

for length-biased data under an AFT model. The theoretical results guarantee

the selection and estimation consistency property of the proposed estimator.

Moreover, a multistage penalized estimating equations procedure is developed

to improve the estimation accuracy and sparsity. Numerical results demonstrate

the excellent performance of our estimator for both variable selection and model

estimation.

We assume that C is independent of X because we may not know in advance

which covariates C depends on. However, generalizing derivations to the setting

with a covariate-dependent censoring distribution is not conceptually difficult,

such as fitting a semiparametric or parametric model and substituting a covariate-

specific censoring distribution Sc(·|x) into the estimating equations (Shen, Ning

and Qin (2009); Chen and Zhou (2012)), as long as we know the dependent

covariates in advance.

As suggested by a referee, we may consider an augmented-based estimator

(Gorfine, Goldberg and Ritov (2017)), treating the censoring indicator as a spe-

cial case of the missing indicator. This estimator has a doubly robust advantage,

because the estimator is consistent regardless of whether the censoring distribu-

tion depends on the covariates, or whether the posited model for the conditional

expectation is correct. This is a welcome feature because we assume that the

censoring distribution does not depend on the covariates for the variable selec-

tion. However, the corresponding computation can be much more intensive, thus,
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choosing a posited model for the conditional expectation term is worth studying.

This is an interesting problem that deserves further investigation.

Supplementary Material

The Supplementary Material contains the proofs of the theorems and detailed

tables for the simulation studies.
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