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APPROXIMATE RELIABILITIES OF
m-CONSECUTIVE-k-OUT-OF-n: FAILURE SYSTEMS

Anant P. Godbole

Michigan Technological University

Abstract: An m-consecutive-k-out-of-n: F reliability system consists of n linearly
arranged, independently functioning (or Markov-dependent) components, and fails
iff k consecutive component failures occur (disjointly) m or more times. We employ
the Stein-Chen method to obtain Poisson approximations for the reliability of such
systems. The i.i.d., independent but non-identical, and stationary (rth order, 7 < k)
Markov dependent cases are considered.
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1. Introduction

A consecutive k-out-of-n: F reliability system consists of n linearly arranged,
independently functioning components, and fails if and only if at least k of these
fail in succession. Extensions have been given to the case where the components
exhibit some form of Markov dependence (see Chiang and Niu (1981), Fu (1986)
and the references cited therein). A generalization of this set-up was formulated
by Griffith (1986), who considered a system for which m(> 2) strings of con-
secutive failures were needed for system failure. In this paper, we will focus on
a study of these systems, called m-consecutive-k-out-of-n: F systems, and shall
refer to them, for brevity, as m/C/k — n/F systems.

Denote the number of recurrent and non-overlapping failure runs by N =
N(n, k); the reliability of an m/C/k — n/F system clearly equals P(N(n,k) <
m —1). An exact formula for P(N(n,k) < m — 1) was obtained independently
by Godbole (1990a) and Papastavridis (1990). Our main goal in this paper is
to derive Poisson approximations for the distribution of N(n, k) which are valid
when the maximal component failure probability is small.

In the i.i.d. case, Godbole (1990b) and Fu (1993) proved that the system
reliability P(N(n,k) < m — 1) converges to the cumulative Poisson probability
Yot exp(—A)N /5!, provided that ngt — ), where ¢, is the component fail-
ure probability. We shall extend the i.i.d. case to the case of (i) independent
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but not necessarily identical components and (ii) stationary rth-order (r < k)
Markov-Bernoulli chains in Sections 2 and 3 respectively. For m =1 and the in-
dependent case, our results coincide with those obtained by Chryssaphinou and
Papastavridis (1990).

2. Independent Components

We consider, in this section, components that operate independently of each
other. The limit theorem of Godbole (1990b) will follow from Theorem 2.1 below,
but we will be more interested in the problem of deriving total variation error
bounds for a Poisson approximation. Let R = R(n,k) be the number of occur-
rences of the pattern SFF ... FF (k F’s preceded by an §) and @ = Q(n, k) be
the number of occurrences of failure runs of length k or more; note that

ﬂQR)=;gJHQ€M—Pm€ANSHQ#R)

= PXi=Xo=-=Xp=1)=qa @ <, (2.1)

where X1, Xo, . .. is Bernoulli sequence with parameters q1, g2, - . - and ¢ = max;>1
g;. Also,

d(N,Q) < P(N # Q) = P(there is a failure run of length 2k)

< Z gj—2k+1"" "5 < ng*. (2.2)
j=2k

The inequality d(X,Y) < P(X # Y) follows since for any subset A of zZt,
|P(X € A) - P(Y € A)| < P(X #Y). Since

R= )Y I (2.3)
j=k+1

where I; = 1iff the trials j—k,j—k+1,...,J consist of the pattern SFFF ... FFF,
it follows that

E(R) = Z Dj—kGj—k+1-- g5 (= (n—k)p(l -~ p)F in the i.i.d. case) (2.4)
and, by (2.1) and (2.2) that

d(N,Po(E(R))) d(N,Q) + d(Q, R) + d(R,Po(E(R)))

d(R,Po(E(R))) + q* + ng*; (2.5)

IA A
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so that it remains to estimate d(R,Po(E(R))). It follows from Theorem 2 in
Barbour and Eagleson (1984) (and a result in their earlier paper (1983)) that

d(R, Po(E(R)))
1-e BR)
< Spm LG
r—1

+5S° 5 P(I; =1)P(Ix = 1) + P(I; I = 1)} (2.6)
s=1 k

the last summation above is taken over the set of all k’s in 7 satisfying the
condition #(A(j) N A(k)) = s, where A(j) denotes the set of integers associated

with the index j: in our case, we have A(j) = {j —k,...,j}andr =k +1. Thus,
d(R, Po(E(R)))
1 - e BR) 2 2 2, <
<— > {pj—-kq]'—k:-H S Pk Gkt GiPik ik "Qi}
<1 - e BB (gF + 2kg*) < (2k +1)¢", (2.7)

as P(I;I; = 1) = 0 (the pattern SFFF...FFF is non-overlapping), so that by
(25),
d(N,Po(E(R))) < (2k + 2 + ng")¢". (2.8)

We have proved the following theorem.

Theorem 2.1. Consider an m/C/k —n/F system where the jth component has
reliability p; =1 —gq;, j = 1,2,...,n, and the components operate independently.
Then the system reliability un, = P(N(n,k) < m — 1) satisfies

- Z exp(=An)An/z!| < (2k+ 2 + ng®)q", (2.9)

with ¢ = max;>1 ¢; and A, = E(R) given by (2.4).

3. Markov-Dependent Components

We start by assuming that the behaviour of the n components is governed by
the sequence of ergodic Markov-Bernoulli random variables X3, X, ..., Xn that

satisfy
P(Xj=1)=¢q=1~-p, j=12,...,n (3.1)

and which evolve according to the stationary transition matrix P determined by

PXjn=1X;=1) =0 PXjn=1X;=0)=5 (3.2)
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ergodicity implies that‘
g=B/1-a+p); p=01-a)/(1-a+h) (3.3)

We assume, without loss of generality, that a > B. It is easy to verify that
the correlation between successive trials is « — 8. Under the above conditions,
it will follow from Theorem 3.1 below that the system reliability approaches
the corresponding Poisson (A) probability if 8 and « both tend to zero so that
nBaF~1 — X. We will always be assuming, in the reliability framework, that
g (and thus 8) are small, but there is no reason to suppose a priori, that o is
small as well. If  is not small, and k is not large, a Poisson approximation is
no longer valid, and the system reliability is better estimated by a compound
Poisson r.v. (with geometric compounding distribution); general results along
these lines are proved in Geske et al. (1993), while Godbole and Schaffner (1993)
address the question of Poisson approximation for non-overlapping occurrences
of word patterns under similar Markovian hypotheses as the ones considered in
this section. .

In Godbole (1991), a result similar to Theorem 3.1 below was proved, but
only vielded an approximation of order O(max{c, 8}); we will improve this rate
to O(max{Bca*~1,aF}).

Theorem 3.1. The reliability pn of a m/C/k —n/F system governed by a sta-
tionary two-state Markov chain (with initial distribution and transition structure
determined by (3.1) through (3.3)) satisfies

m—1
Un — Z exP(_)‘n)()‘n)x/x!
=0

IN

k=1 k—1
B o1 19 0 a-p } Ba nBa .
(1-e )pBa {(k+1)+ l-a+0 1_a+ﬁ+1—a+ﬁa

(1 _ .—E(R) o a-p Bak—1 .
~ (1—e~B(R)pgak 1{(2k+1)+21_a+ﬁ}+1_a+ﬁ+E(R)a", (3.4)

where A, = E(R) = (n — k)pBa*~.

Proof. If Q(") denotes the r-step transition matrix, qg) its (¢,7)th element, and
1 the stationary distribution of the above chain, then it follows from Theorem
8.H in Barbour, Holst and Janson (1992) that, with A = {SFFF ... FFF} and
E(R) = (n - k)pBa*~1, we have

d(R, Po(E(R))) < (1 - e—E<R>>{pﬁa’°—1 223 1) —poet),(39)

721
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so that we need to estimate the probabilities q,(.’;). It is clear that qﬁ) = 0 for

each j < k; furthermore, for j > k + 1,

) = pli=F) gok-1 (3.6)

rr

where p(lio) denotes the (1,0)th element of the i-step transition matrix P, Now,
a straightforward transition matrix diagonalization reveals that for: > 1,

P =(-a)/1l-a+f{l-(a-B)}=p{1-(a-B}, (7
so that by (3.6), for 7 > k + 1,
¢t =p(1 - (a - BY "B (3.8)
Substituting (3.8) and utilizing the fact that ¢} = 0 (j < k) in (3.5) yields
d(R,Po(E(R)))
< (1- e‘E(R)){pﬂak'l + 2kpBa*~! + Qpﬁdk‘l

> (= pY¢

j>k+1
= (1- e’E('R)){(% + 1)pBa* ! + 2pfaF N (a - B)/(1—a+ B)}. (3.9)

Now, as in (2.1) and (2.2), we have d(R, Q) < Ba*"1/(1 — a+ ) and d(N, Q) <
{nBa*1/(1 — a + B)}aF, which, together with (3.9), yield the required result.

Next consider rth order Markov dependence (r < k). We analyze the rth
order one-dimensional process as a simple (r + 1)-dimensional Markov chain by
using the following device (see Cinlar (1975, p.142)): Given a discrete process
that satisfies for each j > 7 +1

P(Xj = 1| Xo, X1, .- - ,Xj_1) = P(Xj = iIXj_,-, - ,Xj_l), (3.10)
we consider the associated process {Z;};>r+1 defined by
Z; = (Xj—r,..., Xj_1,Xj). (3.11)

Assume, without loss of generality, that » = k. It is clear that {Z;} is simple
Markov with state space consisting of 287! points and we need to analyze the
number of visits by it to the state (0,1,...,1) (k ones) under the hypothesis
that the chain is stationary. Observe that the only possible transition from a
state (a1, as,...,ax41) is to either (ag,...,ag+1,0) or (a2,...,ag4+1,1) and that
each state is immediately accessible from just two others, so that the transition
probabilities form a 25*! x 25+1 matrix P with each row (or column) contain-
ing just two non-zero entries. Denote the stationary distribution of {Z;} by
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(T, Ty Moy Tdy Tey -+ -y Ws)y § = 9k+1 where a = (0,1,...,1), b = (1,0,1,...,1),
¢ =(0,0,1,...,1), d = (1,1,...,1,0) and e = (1,1,...,1,1) will be counted,
respectively, as the first five elements of the stationary distribution.

We now exhibit the fact that the salient information contained in P can
be expressed in terms of the 2 x 2 transition matrix Q of a Markov chain with
state space {a,a’}, with a as above and o’ representing all other states. Clearly,
Jaa = 0, goor = 1 and

P(Zj41=0,2;=b)+ P(Zj11 =4a,Z; = ¢)

va = P(Zis1 =4a|Z; =
q ( 7+1 alZ] 7& a’) P(z] ?é a)
= (Wbpba + chca)/P(Zj # a) = {(Trb + 7rc)p-m}/(]‘ - 7Ta) = ﬁ (312)
since ppe = Pea = P.o Dy k-dependence. Since we need to obtain a Poisson
approximation for the number of visits to state a, it suffices to use the matrix
0 1
Q= ( ) (3.13)
B1-p
with stationary distribution (8/(1 + 8),1/(1 + 3)) and satisfying
¢ =B/(1L+B){1~ (-8} (3.14)

As before,

URPo(E(R) < (1-e 5 5/0+ ) +2 3 |al] - 1551}
i>1

_ - e—E(R)){ 1 fg o _ﬁgz} (3.15)

by (3.14), where E(R) = (n—k)B/(1+p). Since d(Q, R) < mg+me and d(Q,N) <
nme(pee)* !, the following result holds:

Theorem 3.2. The reliability pn of an m/C/k — n/F system operating under
the rth order Markovian hypotheses (r < k) of this section satisfies

m—1
_ —An T —E(R) /8 /8 k-1
Un E e /\n/:L" <(1-e ){ + }+7rd+7re+'n7re(pee) )
= 1+8 1-p32

where B is defined by (3.12) and A\, = E(R) = (n - k)B/(1 + B).

Remark. Theorem 3.2 can be extended to the case where the Markov chain is
non-stationary (but time homogeneous). We omit the cumbersome details.
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