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A PENALIZED MAXIMUM LIKELIHOOD ESTIMATE OF
7(0+) WHEN £ IS NON-INCREASING
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Abstract: The problem of estimating the value at 0+ of a non-increasing density f
(on (0,00)) is considered. It is shown, by example, that the problem is interesting,
and it is noted that the nonparametric maximum likelihood estimator is inconsis-
tent. A penalized maximum likelihood estimator is derived as an alternative, and its
properties studied through simulations and asymptotic analysis. In particular, the
penalized maximum likelihood estimator is shown to be consistent.
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1. Introduction

- Let f denote a left continuous density for which f (z)=0forall —-co<z<0
and is non-increasing in 0 < z < oo; and consider the problem of estimating
f from a random sample, say Xi,...,X,. For this problem, the nonparametric
maximum likelihood estimator, f, say, of f is well known and may be described as
follows: letting 0 = 9 < z; < -+ < z, < oo denote the ordered values of 0 and
Xi,..., Xn, fnisa step function for which fn(:v) = fo(zx) forall z;_; < z < 2y,
where

. i s—r

o) = s B e 2 W
forallk =1,...,n, and fn(x) = 0 for other values of z. See, for example, Prakasa
Rao (1983, p.354) and/or Robertson, Wright and Dykstra (1988, pp.326-328),
hereafter RWD.

It is known that f, is a consistent estimator of f in that f,(z) — f (z) w.p.1
for all 0 < £ < oo at which f is continuous. See, for example, Prakasa Rao
(1983, p.352) or RWD, p.330. It does not follow, however, that fn(O-}-) = fn(xl)
1s a consistent estimator of f(0+) = lim,\ g f(z). In fact, it is easily seen that if
0 < f(0+) < o0, then i

fn(04)
f01) 7 1Skt T

(2)
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where I'1, Ty, ... are partial sums of i.i.d. standard exponential random variables
and = denotes convergence in distribution. See Remark 3 at the end of Section 5
for an outline of the derivation. Observe that f,(0+) is simply too big, since
P{sup;<k<co k/Tx > 1} =1, by the Strong Law of Large Numbers. For example,
the probability that fn(0+) > 27(0+) approaches P{sup;cr<oo k/Tx > 2} 2

P{1/T;1 >2}=1- e~ % 2 .393. The simulations presented in Section 4 provide
more detail on the inconsistency.

One way to decrease the size of fn(0+) is to penalize the nonparametric
likelihood function for large values of f(0+), following the general approach of
Good and Gaskins (1971). This approach is developed here. It is shown that
appropriate penalized nonparametric maximum likelihood estimators of f do lead
to consistent estimators of f(0+) and are not much more difficult to compute
than fn.

The paper proceeds as follows. In Section 2, reasons are offerred to con-
vince the reader that estimating f(0+) is an interesting problem. The penalized
maximum likelihood estimator is presented in Section 3, and studied through
simulations in Section 4. Consistency is established in Sections 5 and 6, and an
asymptotic distribution is derived in Section 7.

2. Why the Problem is Interesting

In the present context, f(0+) is the (right hand) value of the density at
the mode, assuming that f is non-increasing. Wegman (1970) considered the
problem of estimating a mode; assuming only that f is unimodal, by fitting a
non-decreasing density to the left and a non-increasing density to the right of
z) for each k, and then maximizing the likelihood over k. In the process, he
discovered a spiking problem. The estimated value of the density at the mode
was simply too big. It is expected that penalized maximum likelihood estimators,
such as those considered here, may ameliorate this spiking problem.

Additional reasons for wanting to estimate f(0+) are included in the following
examples. For the first example, recall that a distribution function G is said to
be arithmetic if it is supported by some positive multiple of the integers.

Example 1. Suppose that the times between breakdowns of a system are i.i.d.
positive, random variables Y3,Ya,... having a common non arithmetic distribu-
tion function G with a finite positive mean 0 < ¥ < co. Suppose further that the
system is inspected at time ¢ > 0 and the time since the last breakdown (prior
to t) is available; that is, suppose that X =t — (Y1 +--- + Yn) is observed,
where N = N, is the largest n for which Yj + .- +Y, < t. If t is large, then the
distribution of X may be approximated by the distribution with density



A PENALIZED MAXIMUM LIKELIHOOD ESTIMATE OF f(0+) 503

f(z) = %[1 -G(z-)], V 0<z<o0,

since the distribution of X converges to the latter distribution as ¢ — co. See, for
example, Feller (1971, pp.355-356). Clearly, f is non-increasing. In this example,
there is natural interest in the mean time v between breakdowns; and v is related
to f by v =1/f(0+).

This example is adapted from Vardi (1989), who considers a more general
model. It is reconsidered in Section 3.

Example 2. Lynden-Bell (1991) has described a model in which the probability
with which a galaxy is observed depends on its observable angular diameter D in
an unknown way. Suppose that consideration is restricted to galaxies for which
D > D > 0; and let Y = D/D denote the normalized angular diameter. If
a uniform distribution of galaxies is assumed and the galaxy’s distance R from
earth is assumed to be independent of its true angular diameter RD, then Y
has density g(y) = 3/y*, V1 < y < oo, as in Woodroofe’s (1991) discussion of
Lynden-Bell’s paper. Suppose now that a galaxy is observed with probability
w(y), where w is a non-decreasing function for which limy_,.c w(y) = 1. Then
the conditional density of Y given that it is observed is

. 3w(y)
= 27Ny 1<
(y) )y 1<y < oo,
where = 3u( )
w
c(w) = / 4y dy,
1 Yy

the unconditional probability that a galaxy for which D > D is included in the
sample. There is natural interest in c¢(w), since 1 — c(w) is the proportion of
galaxies which were not observed.

To see how to estimate c(w), let Y denote a random variable with density g*
and let X = 1/Y3. Then X has a non-increasing density f(z) = w(z™13) /c(w)
for 0 < £ < 1; and c(w) = 1/f(0+).

3. Penalized Maximum Likelihood Estimators

Derivation. Since n and 0 = zg < 71 < -+ < T, are fixed throughout this
section and the next, the subscript “n” is omitted from the notation. (It will
reappear in Section 5.)

Let G denote the collection of all left continuous densities g for which g(z) = 0
for —oco < z < 0 and g(z) is non-increasing in 0 < £ < oo. Then the penalized
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nonparametric log likelihood functions considered here are of the form

ta(g) = 3 log g(z:) — nag(0+), Vge€QG, (3)

i1=1

where o > 0 is a smoothing parameter. It is easily seen that the maximum occurs
when g is a step function for which g(z) = g, say, for all zx—1 <z < zk and all
k=1,...,nand g(z) = 0 for other values of z. So, only such functions need be
considered. The condition that f0°° gdz = 1 may be written

n

Z(:Ei — xi_l)gi =1. (4)

1=1

So, the problem is to maximize £o(g) with respect to co > g1 > --- 2 gn > 0,
subject to the constraint (4).
Forafixed0<a<ooandall 0 <~vy<1,let

. (s—r+1)/n
gr(y) = min max
1<r<k k<s<n w, + -+ - + W;

(5)

where wg = 0, w1 = wi(y) = @ + yz1, and wx = wi(y) = Y(zx — T4-1) for all
k=2,...,n. Observe that

() = max s/n

g1\ = 1<s<n a + YZTs

is non-increasing and convex in 0 < v < 1 and that g1 () is non-decreasing in
0<~< L

Lemma 1. If z, > a, then the equation v = 1 — agi(vy) has a unique solution
0<4<1;and

3 in 1(1 (1)-+ ( 2 )24- > (1 23) + 1 (6
= m - - — —-—— - 7.
i 1531§n 2 T 2z 2T n 4 )

Proof. The equation may be written v = minj<s<n 9°(7), where g°(y) = 1 -
as/[n(a + vzs)] for 0 < v < 1 and s = 1,...,n. Clearly, each g* is increasing
and concave. Also ¢g°(1) < 1foralls < n, ¢g°(0) =1-5/n >0 for s <n, and
(g")(0) = zn/a > 1. So, for all s < n : the equation v = ¢g°(y) has a unique
solution, say vs € (0,1); 7s is given by the term in braces in (6); and v < g°(v)
for all 0 < v < 7,. Define 4 by (6). Then 4 < ¢°(%) for all s = 1,...,n with
equality for some s. That is, ¥ = minj<s<n 9°(9).
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Theorem 1. Suppose that z, > a and define 5 by (6). If f is a step function
for which

~

f(z)=gr(d), Vap-1<z<mp,, VE=1,...m, (7)
and f(z) = 0 for other values of z, then f e G and f mazimizes £y(g) with
respect to g € G.

Proof. Letting 8y = log gx and introducing a Lagrange multiplier, called nv,
leads to the problem of maximizing

n

L,(8) = Z 9; — nae® — ny Z(ml —z;_q)e¥
1=1

1=1
n
= z [0,- - nwi('y)eo"]
i=1
over 0 € Q={w €R": 00> wy -+ 2wy > —0o} (with no constraint). Since

L., is concave and differentiable on all of R™, a necessary and sufficient condition
for L., to attain its maximum at a given 6 € Q, is that 7L OICE 6) < 0 for all
6 € Q where 7 denotes gradient. See, for example, Rockafellar (1970, pp.270-
271). Letting gx = exp(fx) and observing that 6L,(0)/06r =1 — nwi(y)gr for
all k = 1,...,n, this condition may be written as

n

ST - nwi(n)@)(6: — 6:) <0, ¥ 6€Q,

=1
or
(h-g,6-6)<0, V 8€Q, (8)
where .
S S
nwi(7) nwn ()
and

(y,z) = > wi(V)yizi, Y y,z€R"
=1

From Theorem 1.4.4 of RWD, it is known that [g1(7), ..., 9n(7)] is the projection
of b on Q) with respect to (-,-) and that, moreover, [g1(7), .-, gn(7)] satisfies (8).
So, £4(g) = L,(0) is maximized by letting g = gr(y) forallk =1,...,n for each
fixed 7.

It remains to find a v for which g(v) = [91(7),---,gn(7)]’ satisfies the con-
straint (4). Since g(v) is the projection of h on Q,

n

agi(v) + i')’(mi - z;-1)gi(7) = D_wi(Mgi(7) = sz(v)h (V) =1,
=1

i=1 1=1
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or .
1—agi(y
31 - mia)gil) = = 200)
i=1 v
using Theorem 1.3.6 of RWD. Thus, the constraint (4) is satisfied iff v = 4 and,
the theorem follows easily.

Remark 1. Once ¥ is found, computing the penalized maximum likelihood esti-
mator f is no more difficult than computing the unpenalized maximum likelihood
estimator f . In fact, the penalized maximum likelihood estimator is equal to a
maximum likelihood estimator with a deformed data set a + Yzk, k =1,...,7n.

Remark 2. Using (7) and Lemma 1 leads to f(0+) = (1 — 4)/a, where ¥ is as
in (6).

Example 1. Revisited. The times (in weeks) since the last reboot of eight
work stations at the University of Michigan were recorded on Aug. 30, 1991 and
are listed in Table 1. These are of the form considered in Example 1. With
the notation of that Example and a = logn/2n, the unconstrained and penal-
ized maximum likelihood estimators of f are listed in Table 1. The penalized
maximum likelihood estimate of v is then & = 1/f(04) = 5.43 weeks.

Table 1. Times since last reboot

T Pen. MLE MLE

.585 184 214
1.262 .184 185
2.138 155 152
3.142 155 152
3.979 155 152
4.560 155 152
7.151 .049 .048

10.261 .041 .040

Notes: time in weeks since last reboot for eight workstations;
a = logn/2n; ¥ = 5.43 weeks.

Of course, the data set is too small for the estimate to be very reliable.

4. Simulations

In Table 2, f is compared to f for a samples of size n = 25,50,100, and
200 from a half standard normal density (the density of the absolute value of a
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standard normal random variable) and from a standard exponential density. Ten
thousand samples of each size were simulated from both distributions. Average

values and standard deviations of the L distances [5° | f—fldz and [°|f - fldz
are reported in columns 2-4, and average values and standard deviations of

F(0+)/f(0+) and F(0+)/(0+) are reported in columns 5-7, both for selected
values of a.

Table 2. Simulations

/Ooolf'—fldm /Ooo!f—fldx F04)/(04)  FO+)/5(0+)

n a = logn n—PY a = 1_9:@. -pg
n n
The Standard Normal Case (p = 3)

25 .280 .226 224 9.985 1.066 1.042
.097 .076 074 119.3 .223 .209

50 227 191 .188 8.310 1.061 1.027
.068 .057 .055 65.07 .188 .165

100 .182 159 .156 7.904 1.059 1.014
.048 .041 .040 54.96 .155 131

200 .144 130 127 7.637 1.060 988
.033 .030 .028 55.12 130 102

The Standard Exponential Case (p = 2)

25 315 275 275 8.56 .864 .886
.088 .069 .070 88.20 214 - .226

50 .258 231 231 8.61 887 .900
.062 052 .054 67.60 184 .190

100 .209 191 191 14.26 913 912
.044 .038 .038 352.74 157 .156

200 .168 .156 .156 12.17 .942 .923
.031 .028 .028 218.74 137 130

Notes: Columns 2, 3, and 4 list Monte Carlo estimates of the mean and standard
deviation of the L! distances for f and f for selected a. Columns 5, 6, and 7 list Monte
Carlo estimates of the means and standard deviations of f(0+)/f(0+) and f(0+)/F(0+)
for selected . The upper figure is the mean, and the lower is the standard deviation.

The large average and huge standard deviation of F(0+)/f(0+) are to be ex-
pected since the limiting distribution (2) has an infinite mean. The corresponding
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values for f(0+)/f(0+) are encouraging. Differences between averages and stan-
dard deviations of the L, distances of the estimators are much less dramatic; but
f is consistently better. At the very least, the simulations suggest that penalizing
the likelihood improves the estimation of f(0+) by orders of magnitude, while
not worsening global performance. This suggestion is established in Sections 5,
6, and 7 below.

5. Consistency at 0+

In the remainder of the paper, the quantities called %, gx(7), and § in (5),
(6), and (7) above are denoted by 4n, gnx(7), and fn. It is assumed throughout
that

0< fo=f(0+)<o0, O0<a=a,\,0 and na oo (9)
as n — o0o. Use is made of the fact that [F(z1),..., F(zn)] has the same distribu-
tion as [['1,...,n]/Tn41 for each n, where F denotes the distribution function

of f and I', T, ... are partial sums of independent standard exponential random
variables. Let

k/n
B = B3X Tlon)’

Then A, = A = supy>; k/T'x as n — oo. In particular, A, is stochastically
bounded.
The consistency of f,(0+) is deduced as a corollary to

Theorem 2. For any 0 < vy < 1,

p-lim sup |ygn1(v) — fo| = 0.
n—00 90<7<1

Proof. Since 7ygn,1(7) is non-decreasing in 0 <y <1

P{ sup |79n,1(7)—fo|26}

76<7L1
< P{gn1(1) = fo > €} + P{vogn,1(70) — fo < —€}

for all ¢ > 0. So, it suffices to show that p-lim,_,[g9n,1(1) — fo]" = 0 and
p-lim,, . [vgn1(7) —fo]~ = O for all fixed 79 < v < 1, where [—]T and [-]”
denote the positive and negative parts of [—].

For the second relation,

vk/n vk/n
= ma >
V9n1 (7) 15k§(n a+yry - a+ YTk
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for all k = 1,...,n. Let k = k, be the least integer for which k/n > va. Then
F(zi)/(k/n) has the same distribution as nl'x/kTs41, which approaches one in
probability as n — co. So,
fozr
—_——— —
k/n
as n — oo, since k > ny/a — oo and k/n < y/a+1/n — 0 as n — co. Next,
since a = o(k/n), it follows that

1

and, therefore, that p-lim,,_,[Ygn,1(7) — fo]~ = 0.
For the first relation,

F k/n k/n
gn1(1l) = max (z) X / < max fozi X / :
’ 1<k<n a+xp  Flzg) ~ 1<k<na+zr F(zk)
Now,
k
max fozx /n < A, X max MLO
1<k<m @ + Tj F(:L'k) 1<k<m no 4+ nTk

as n — oo for any fixed integer m, independent of n, since na — o0 and
maxi<m Nk is stochastically bounded inn =1,2,...; and gn1(1) 2 Y0gn,1(70) >
fo+0p(1), since vgn,1(7) is non-decreasing in . So, with probability approaching
one,

Jozk 9 k/n k/n

K
1) < ma < —— = fo sup +—
gna(1) < max -~ X oy S fo max poony T fosi g

asn — oo for allm =1,2,.... That p-lim,_,.[gn1(1) — fo]* = 0 now follows by
letting n — oo and then m — oo. "

Corollary 1.
. 1_5’71.
-1 = fo.
prlim —2 = fo

n—00

Proof. If z, > a and agni(3) < 3, then 1 — agn1(3) > % and, therefore,

4, > 3. Since P{z, < a} + Plagni(3) 2 3} = 0,asn — 00, 1 =%, =

agn1(¥n) < agn,1(%) -2, 0 and, therefore,

1'_;5'71_

— = gn1(Fn) = fo.

Corollary 2. A
. fn(0+)
-lim =
R f(0+)
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Proof. This is clear from Remark 2.

Remark 3. The derivation of (2) is similar to the proof of Theorem 2. For any
fixed m, |

min F(mk) X max k/n

7 k/n
< <
1<k<m Tk 1<ksm F(zg) = fa(0+) £ fo X max

1<k<n F(:L‘k) ;

and (2) follows by letting n — oo and then m — oo.

6. Global and Pointwise Consistency

It has been shown that f(0+) and f(0+) differ substantially. That fn(z) and
fn(z) do not differ very much for > 0 is shown in this section.

Let F, denote the empirical distribution function, and F,, the least concave
majorant of F,,. Then fy(z) = F!(z), the left hand derivative of E, at z, for all
0 < z < co. Let h denote the Hellinger metric, so that

n(91,92) = /Ooo (Ve - va3) da = 2{1 - /000 ‘/“’_@dx}

for densities g1,92 € G.
Theorem 3.
hz(fnafn) < a[fn(0+) - fn(0+)]'

Proof. Since fn maximizes the penalized likelihood function,

0 < Lo(fn) — Lalfa)
= n{/o logden—/O logden}+na[fn(0+)—fn(0+)].

From Theorem 1.2.1 of RWD, fn decreases only at values z for which ﬁ’n(xk) =
Fo(zy). It follows that [;°log fndF, = [y* log fndFn, and, therefore, that

~

0 < /O * log %dﬁn + /0 (B = Fo)dlog fn + alfa(0+) — fa(0+)]

n

< "hz(.fn, fn) + a[fn(0+) - fn(0+)]a

where the final inequality follows by noting that F, — F, > 0, writing logz =
2log vz < 2(y/T—1) for 0 < < o0, and using the second expression for squared
Hellinger distance. The theorem follows immediately.

Corollary. If a = a, — 0 as n — oo, then h(f, fn) — 0 n probability.
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The easy proof is left as an exercise.
Pointwise behavior is considered next.

Proposition 1. If f is strictly decreasing near zero, then ful(z) — fulz) = Op(@)
asn — oo for all0 <z < 0.

Proof (Outline). If f is strictly decreasing near zero, then it may be shown that
min) <r<x may be replaced by ming<r<k in (5) for all k& > ne with probability
approaching one as n — oo for any € > 0. It then follows from the definition
of wi(7y) that fa(z) = fn(zx)/An with probability approaching one as n — 00 for
fixed z > 0, so that

Fulz) = Falz) = (;Yl— - 1>fn(w> = 0y(a).

Corollary. If @ = o(n™*/3) as n — oo, then n'/3[f.(z) — f(z)] has the same
limiting distribution, if any, as n3[fnu(z) — f(z)] for all z > 0.

The latter distribution was found by Prakasa Rao (1969) and Groeneboom
(1985), under modest additional conditions.
7. Asymptotic Distributions

In this section it is required that
F(z) = for — fizP +o(z?) as =\, 0, (10)

where 0 < fo = f(04) < 00,0 < fi < o0, and 1 <p <o0. It is further required
that

a=cn P, . (11)
where g=1/(2p—1)and 0 <c<oo. Letr=(p—1)g= (p—1)/(2p—1). Then
0<r< % <pg <l

Theorem 4. Let 8 = flfg—l. Then

z W(t) — [c+ BtP
W {Fa(04)  fo} = Sep = sup Lot P
O<t<oo t
as n — oo, where W(t), 0 <t < oo, denotes a standard Brownian motion and
= denotes convergence in distribution.

The proof of Theorem 4 is similar to that of Theorem 2.1 of Groeneboom
(1985). The details are omitted here, but available in Woodroofe and Sun (1991).

Kernel estimates of the density of f(0+)/f(0+) are presented in Figures 1
and 2 for the same sample sizes and f’s described in Section 4 and selected a.
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Remark 4. If f; = 0, then the limiting distribution is exponential with failure
rate 2¢. For then P{S.q > 2z} = P{W(t) > ¢+ 2zt, 30 < t < 0o} = ™2 for all
0 < z < 00. See, e.g., Breiman (1968, pp.287-290).

Remark 5. For 8> 0, S, 5 < Scp, so that P{S.5 > z} < e 2 forall z > 0. In
fact, it is not difficult to see that for any 8 > 0,

P{S.p >z} ~e % as z— oo.

Remark 6. From the simulations of Table 2 and others not reported here, it
appears that the global performance of f is insensitive to o, while that of f(0)
is sensitive to a. Further, it appears that setting @ = n™P? provides a good
choice for the half normal (and presumably other cases with p = 3). For the
standard exponential (p = 2), setting @ = n~P? appears to oversmooth, and
letting o = .7n"P9 provides a much better choice.
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Figure 1. Kernel density estimates of fn(0+)/7(0+) (window width = default in S)

Note: f is the half normal density. fn is penalized MLE with penalizing parameter a
based on data of size n from f. The simulation size is 10000 for all cases.



514 MICHAEL WOODROOFE AND JIAYANG SUN

a=log(n)/n a= n~™m
Q
Q o ]
o~
w 2
[~}
n=25 2 - < 1
Qﬂ.- n.d
o o
O_ (-]
o v c ’ . - -
05 1.0 15 20 2s 05 10 15 20 25
o Q
o o~
w 2 -
n=50 2 Q .
E D‘-
o
Q
S 1= — — g 1=
04 o8 12 18 0s 1.0 15
e a
o~ o~ ]
n=100 o | o |
s 1= : . Sl
05 1.0 15 04 08 12 18

Figure 2. Kernel density estimates of fn(0+)/f(0+) (window width = default in S)

Note: f is exponential density. fn is penalized MLE with penalizing parameter a based
on data of size n from f. The simulation size is 10000 for all cases. S is a statistical

package supplied by AT&T.
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