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Abstract: Let X,,..., X, be observations from an AR(p) model with unknown order
p. A resampling procedure is proposed for estimating the order p. The classical
criteria, such as AIC and BIC, estimate the order p as the minimizer of the function

6(k) = In(62) + kChn

where n is the sample size, k is the order of the fitted model, 67 is an estimate
of the white noise variance, and C, is a sequence of specified constants (for AIC,
Cn = 2/n, for Hannan and Quinn’s modification of BIC, C, = 2(Inlnn)/n). Often,
the traditional order selectors overfit or underfit the model for a given realization. To
overcome this defect, a resampling scheme is proposed to estimate a suitable penalty
factor C,,. Conditional on the data, this procedure produces a consistent estimate
of p. Simulation results support the effectiveness of this procedure when compared
with some of the traditional order selection criteria for both Gaussian and a range of
non-Gaussian processes. A discussion of the merits of Yule-Walker estimation relative
to Burg and maximum likelihood estimation for order determination is also given.

Key words and phrases: Autoregressive processes, order determination, AIC, Yule-
Walker estimation, resampling.

1. Introduction

In this paper, we propose a resampling scheme for model selection of an
autoregressive time series. Let {X:} be the causal AR(p) process satisfying the
difference equations

Xe = Xe1— = ¢pXop = Zy, (1.1)

where {Z;} ~ IID(0, 0?) (i.e. {Z;} is an independent and identically distributed
sequence of random variables with mean zero and variance %), and where ¢(z) =
1 — ¢12 — --- — ¢pzP satisfies the causality condition ¢(z) # 0 for |z|] < 1. The
unknown parametérs for this model are then p, ¢1,...,¢p, and o?.

Most order selection criteria for autoregressive processes estimate the order
p by minimizing an objective function of the form

6(k) = log &% + C(n, k), (1.2)
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where n is the sample size, k is the order of the candidate AR model, 6% is an
estimate of the innovation variance for the fitted candidate model, and C(n, k)
is a sequence of constants depending on n and k only. Typical values for the
penalty factor in (1.2) are:

2k
On k) = =, AIC (Akaike (1969))
_ _2k+1) : :
C(n,k) = m, AICC (Hurvich and Tsai (1989))
C(n,k) = (—lqgni)li, (Schwartz (1978))
logl
C(n,k) = 2¢( ognog n)k’ (Hannan and Quinn (1979)).

The latter two choices lead to a consistent order selection procedure in the
sense that the minimizer of §(k) converges to p with probability one. Neither
the AIC nor the AICC share this property. The AIC and AICC were de-
signed to be approximately unbiased estimates of the Kullback-Leibler index
when the innovation distribution is Gaussian; and are asymptotically efficient
in the sense of Shibata (1980) (see also Brockwell and Davis (1991, Section
9.3)). (For both the AIC and AICC, one typically replaces the term log 62 in
(1.2) by -%log Lx(#1,...,¢k, 6%) where Lx(-) is the Gaussian likelihood and
b1, ... , @k, 62 are the maximum likelihood estimators of the parameters when
fitting an AR(k) model to the data.)

A shortcoming of all these order selection criteria is that the sequence of con-
stants C(n, k) completely ignores other potentially important information con-
tained in the distribution of the process. In our procedure, we obtain such infor-
mation from a resampling scheme based on the original data and use it to obtain
a better penalty factor. The procedure may be described briefly as follows: The
innovation distribution is estirnated using the residuals from fitting a high order
AR model to the original data, X3,...,X,. Resampling from the estimated in-
novations distribution, we generate sample realizations, YI(J ) ey Yn(J ) of AR(7)
processes with j = 1,..., K where K is some specified constant. (The param-
eters used to generate {Yt(j )} may be, but are not necessarily, those obtained by
fitting an AR(j) model to the original data, Xi,..., X,.) The constants C(n, k)
are then chosen in such a way that the objective function §(k) has a unique mini-
mum at k = j when applied to each of the generated series {Yt(j)}, J7=1,...,Kj.

In Section 2, we give a more detailed account of how to choose C(n, k). It is
also shown that conditional on the observed data, our method produces a consis-
tent estimate of the order. In Section 3, we discuss implementation of our method
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and compare its performance with other order selection criteria. In Section 4,
we discuss the merits of Yule-Walker estimation for order selection and demon-
strate, with an example, the extreme variability of the coefficient estimators and
the underestimation of the white noise variance which occur when highly over-
parameterized models are fitted by Burg (Burg (1967)) or maximum likelihood
estimation.

2. Choosing a Penalty Factor

Let {X:} be a zero-mean AR(p) process satisfying equations (1.1). For each
k=1,2,...,let Xpq1 = dp1Xg + -+ + drxX1 denote the best linear predictor

of Xi4+1 in terms of Xj,...,X;. If y(h) is the autocovariance function of the
process, then the coefficient vector ¢, = (éx1,...,drr)’ and mean square error
of prediction 02 = F(Xg11 — Xg+1)? are given by the Yule-Walker equations
¢r =5 'vs (2.1)
k
ok =7(0) = ¢hvi = 7(0) [J (1 - %) (2.2)
i=1

where Ty = [y(i — j)]¥,-; and 74 = (¥(1),...,7(k))' (see Brockwell and Davis
(1991, p.239)). The coefficient ¢;; is also the partial autocorrelation of {X;} at
lag 3. Since {X;} is assumed to be an AR(p) process (¢, # 0 in (1.1)), we have
the elementary properties:

d>k = (¢1a"'a¢p’0,"'70)la for k ZP; (23)
p
ol = 4(0) H(l - ¢%) =0?, for k>p, (2.4)
1=1
and
ol > % for k<p. (2.5)

The Yule-Walker estimates ¢, and 62 are obtained by replacing (k) with the
sample autocovariance function 4(h) = % Z?;llhl XXy n on the right hand side
of equations (2.1) and (2.2).

Throughout the remainder of this paper we take the penalty factor in (1.2)
to be linear in k ,i.e. C(n,k) = Crk where C, is a sequence of numbers to be

specified. To emphasize the dependence of §(-) on the penalty factor, we write
6(k,a) = logé? + ka (2.6)

so that 6(k) = 6(k, C). The following proposition plays a key role in determining
the penalty factor for our proposed scheme.
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The result is motivated by the following observation. If we define

logajz ~ log o
k-3 ’

Wik = k> j, (2.7)

then pj;r = 0 if j > p. Also, from (2.2) we can write

1 k
pik = —— > log(1l— ¢2), (2.8)
J—k. 5

so that pjr > 0 if ¢% > 0 for some i € (j,k]. In Proposition 2.1 we replace
Kjk by a corresponding estimator and make use of the strong consistency of the
Yule-Walker estimators.

Proposition 2.1. Suppose {X:} is the AR(p) process defined by (1.1) and let
K > p be a fized constant. Define, for observations X,..., X,

an = O’ 2 2 zf p = K’
" MmaXp< ;<K %, if p<K,
5, = 00, i i if p=0,
" | minogjcp EAER if p >0,

where 63 = 4(0). Then, as n — oo,
(a) an — 0 and B, — b >0 a.s. (If mini<;<p |@5;] > 0, then b > 0.)
(b) If an < Bn, then for any Cp, € [an, Bn),

6(p,Crn) = Og;glK{é(J, Cn)}-

Proof. (a) Since the Yule-Walker estimates are strongly consistent, (2.3)—(2.5)
imply that for p < K
log o2 — log o2

a.s.
oy — max - =0
p<j<K J—p

and forp >0

log 0% — log o2 0

a.s. .
Brn — b= min
0<5<p P17

The assertions for p = K and p = 0 are trivial.
(b) For any j (p < j < K) and all C,, > an,, we have

log 6% — log 62
j—p

Cn 2 an 2

’
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so that
log &J? +jCr > log &; + pCh. (2.9)

On the other hand, for j < p and C,, < 8,, we have

log 6% — log &2

Crn <P < .
p—7J

and hence (2.9) is also valid for j < p. This proves (b).

We call C, a correct penalty factor if the estimated order, defined as the
minimizer of §(-,Cy), is equal to the true order. If the order of the model is
known, then the above proposition tells us how to choose a correct penalty factor
— in fact, any value of Cy, in the interval oy, 8,] will result in selection of the
correct order. Our task now is to determine a suitable penalty factor when the
order is unknown and to show that, at least for n large enough, the set of suitable
penalty factors is not empty.

For any fixed k, we shall refer to the AR(k) model,

— kX1~ ~ Gk Xomk = Zi, {Z:} ~ IID(0, 62), (2.10)

where ¢, and 67 are the Yule-Walker estimators defined above, as the candi-
date AR(k) model for the data Xi,...,X,. We can compute the Yule-Walker
estimators from the data and resample from the estimated noise distribution to
generate a test series Y( ) Y( ) from the model (2.10) and then generate the
interval [an , ,(f)] for the test series by applying Proposition 2.1. This procedure
is carried out for k = 0,..., K; where K; is a specified constant whose value is
discussed in Remarks 2 and 3 at the end of this section. In this way we obtain
intervals I3 = = [an (k) (k)] k =0,...,K;. If the intersection of these intervals,
I, = ﬂ Zoln (k ), is nonempty, a value of C, in I, is chosen, which is a correct
penalty factor for the K; + 1 test series. The asymptotic properties of I,, are
examined in the following proposition.

Proposition 2.2. Suppose the conditions of Proposition 2.1 are satisfied and
that EZ} < co. Define
Zt =Xt'—§£K1Xt—1 - "'_QBKKXt-—K, t=K+1,,TL

Let K1 < p be a non-negative integer, and for each k = 0,...., K, let {Yl(k), ce
Y,fk)} be a sequence of observations from the AR(k) model

-~

Y - ¥ - = gy ®) = 2
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where {Z}} is an iid sequence whose distribution is the empirical distribution
(corrected to have mean 0) of {Z;}. (For k = 0 Yt(o) = Z;.) For each k =

LKy let I = {ag;k) (k)] denote the interval obtained when Proposition 2.1
(with p = k) is applied to the AR(k) series {Yt( }. Then for almost all sample
sequences of {Xt}

(a) an = max0<k<K1{an )} -0,

(b) B = minock<r, {6} £ > 0,

where £ denotes convergence in probability conditional on X1,...,X,. In par-
ticular, In = Ny IOI,(1 ) (= [an, Bn] if an < Brn) converges in conditional probability

to a nonempty set.

Proof. It suffices to show that
a® P20 and R Ep > 0. (2.11)

We first show that the conditional variance of the sample acf 4*(h) = =1 Y(k)

Yt(-i-})v denoted by Var,(¥*(h)), converges to 0 a.s. Since the Yule—Walker estimates

always produce a causal model (see Brockwell and Davis (1991, Problem 8.3)),
{Y, t(k)} has the representation

o0
y;(k) — Z ¢th_J
Jj=0

where 1o, 91, . . ., are the coefficients in the power series expansion of (1 — b1z —
.+ — ¢rrz¥)~! on |z| < 1. The conditional mean of 4*(h) is given by

v*(h) = En (Yt(k) t(-:cl)x) E%%Hﬂ (2.12)

where E,(-) denotes expectation relative to P, and 0*? is the sample variance of
the Z,’s. The strong consistency of the Yule Walker estimates implies that for
almost all sample paths, d)k — ¢, and 6 crk — crk It follows that ¢J — 1); as N — 00
(o, 1, . . . are the coefficients in the expansion of (1 - dr1z — — ¢rr2®)1),
and in particular, that there exist constants C > 0 and r <1 depending on the
sample path such that

il < Cr? (2.13)
for j = 0,1,... and all n large. Similarly, one can show that 0*? — o2 which,
combined with (2.12) and (2.13), yields

v*(h) = of > %itisn (2.14)

=0



ORDER DETERMINATION FOR AR PROCESSES 487

as n — oo. Now, using the above relations and Equation (7.3.5) in Brockwell
and Davis (1991) with v(-) and 1; replaced by v*(-) and 1); respectively, we find
that

lim sup nVar,(¥*(h)) < co.

n—0o0

Thus,
Varp (¥*(R)) — 0

and hence, by (2.14)
o0
o Pn
F*(h) = 07 > Vit
3=0

The weak consistency of the sample acf implies that the Yule-Walker estimates,
in fitting an AR(j) model to the Yt(k) data, are also weakly consistent relative to
P, from which (2.11) follows as in the proof of Proposition 2.1 (a). Consequently,

(k) Pn
Oglggl{% } =0

and b
oJin {81} = min {B} 20,
as required.
Theorem 2.1. Suppose that the conditions of Proposition 2.2 are satisfied and
min; <;j<k, |¢;5] > 0. Define

C_ an+_c_(lﬁ%lﬂ_n, ifan<ﬂn’
" (logn)Bn otherwise,

n bl

(2.15)

where ¢ > 0 is a constant such that C, € I, if an < Bn. If P is the minimizer of
6(k,Cr) for 0 < k < K, then for almost all sample sequences of {X:},

. P
p—p

as n — oo.
Proof. From Proposition 2.2, we see that for almost all sample paths,

nC, P,
==

Cn 20 and —°
loglogn

The consistency of p now follows directly from the argument given in Hannan
‘and Quinn (1979, p.191).
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Remark 1. Of course any sequence of constants {C,} satisfying C, — 0 and
fc%li%—'r{ — const > 2 will produce a consistent estimate of p. The point of the
resampling procedure is to produce a data-dependent sequence {C,} which gives
consistent estimates of p and at the same time performs optimally on each of the

test sequences.

Remark 2. Ideally, we would like to optimize over as large a class of test models
as possible in order to ensure that a model close to the true model is included in
the test set. This requires a large K. However, Theorem 2.1 requires that X; < p
and mini<;<k, |¢;;| > 0. Since p and ¢ are unknown we cannot be certain that
these restrictions hold in practice. If we start with a K; which happens to be
bigger than p, then it is likely that the set I, will be empty. In this case, we
reduce the value of K; by 1, continuing to do so until a nonempty I, is obtained.

Remark 3. In the statement of Proposition 2.2, we have assumed that the test
series {Yt(k)} has been generated from the candidate model. The conclusion of

the proposition remains unchanged, if instead, {Yl(k), e Y,Sk)} is generated from
the model
k k k X
Y - akly;(._% — = akkYt(_;)C = Zy,
where the coefficient vector (aki,...,akk)’ is nonrandom. The advantages of this

modification of the procedure are two-fold: (i) K can be any non-negative integer
less than or equal to K and (ii) the parameter vectors for generating the test series
can be chosen in such a way as to increase the probability of the event a, < 3.

3. Implementation and Simulation

Our order selection procedure may be implemented as follows. Assume that
Xi,...,Xn are observations from an AR(p) process defined in (1.1) and that
K > pis a fixed constant.

Step 1. Compute the Yule-Walker estimates J)Kl, . ,éSKK, &2{ for the observed
data‘) {Xt}?zl‘

Step 2. Compute the residuals,
Zy=Xe— g1 Xeo1 — - — drx Xe-x

for t = K +1,...,n. Center the residuals by subtracting the sample mean
L St k+1 2t Let Fy, denote the empirical distribution function of the centered
residuals.

Step 3. Set 63 = 4(0) and for k = 1,..., K compute the Yule-Walker estimates
¢, 6% from the observed data, {X;}7% ;.
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Step 4. Choose a positive integer K; < K. For k = 0,..., K; generate observa-
tions Yl(k), e ,Yn(k) from the model

Y = g V) = = Y = 22

where {Z}} is an iid sequence with distribution function F,,. The case k = 0

corresponds to Yt(o) = Z;. Such processes may be generated by setting k con-
secutive observations in the distant past equal to 0, i.e. for m a large negative
integer, put

* _J 0 for t <m,
e N O T S (S S N
¢k1}/t—1 + + ¢kky;_k + Zt 3 for t = m,...,n.

Step 5. For k = 0,..., K1, compute the Yule-Walker estimate of the innovation
variance in fitting an AR(j) model to {Yt(k)};‘=1 for j = 0,..., K. Denote this
estimate by 62 (k).

Step 6. For £ =0,..., K; compute

*) 0, if k=K,
(87 = 52 —log &2
" maXk<j<K logak(k}_i ga’(k), if k<K,
and
,B(k) 00, if k=0,
= S0\ g A2
" min05j<k logoj(ki_;ogak(k)’ if k> 0.
Step 7. Compute
= (k)
an Ogg?}ﬁ{an }
and
= ; (k)
Bn Osrgg;{l{ﬁn }-
Step 8. If a,, < B, set
!
O o s 0BT,

n
where ¢ > 0 is such that C, < 8,. If a, > Bn, then reduce the value of K; by 1
and return to Step 7.

Step 9. The estimated order p is defined to be the minimizer of

6(k,Cp) = log 6% + kC,,
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for0<k<K.

Due to samphng error, it is often necessary to obtain many rephcates of the
test series {Y }t , in Step 4. The computed values of ol and ,B in Step 5
are then replaced by their respective averages over the replications.

We also considered the modification of this procedure alluded to earlier in
Remark 3. The only difference in the modification is that the test series {Y( )}
in Step 4 are generated with qbk replaced by a prespecified sequence of parameter
vectors (ak1,...,axk), k=1,..., K.

We compared the above procedure and its modification with 4 other well
known order selection criteria defined by minimization of the following objective
functions:

2
AIC —-%logLX(d), &%) + —’3
2 . 2(k +1)
AICC  —=log Lx($,58) + — )
2logl k
HEQ logol + (Z1oglogn)k D n)
BIC (n - k)log[néZ/(n — k)] + klog K - nok>/k}

where Lx is the Gaussian likelihood based on the observed values. (The expres-
sion for BIC is taken from Akaike (1978, p.18), with p + ¢ replaced by k.)
We generated 100 sample paths of various lengths from each of the following

AR models:

X = 40X+ 2 (3.1)
X = 14X — 49X4-0 + Z; (3.2)
Xt = 48Xy g — .34X4—9+ .38X;_3 — 48Xy 4 + 42X 5 + Z, (3.3)
X: = 48Xy 1+ .30X;-2 —.30X;_3 —.38X;_4 + .32X;_5

—-.51X;_6 —:30X;—7 + .38X,_g + .43X;_9 — .56 X190 + Z; (3.4)

where {Z;} is an iid sequence of N(0,1) random variables. The frequencies of
the estimated orders for each of the 6 criteria are summarized in Tables 1-4
(the method described above and its modification are listed as DC and MDC
respectively). In all of our simulations we took K = 20, K; = 2, and ¢ = .6.
The aﬁfc) and ,8,(1“ were computed as an average based on 50 replicates of the test
series. For the modified procedure (MDC), the parameter vectors were a;; = .8
and (ag1,a22) = (.5,—.96). From the defining equations for o) and ﬁ(k), we
see that a large partial autocorrelation at lag k increases the likelihood that
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k) < ﬂf},k) for k =0,...,K;, and hence that we obtain a well defined set I,, from
which to choose C,,. We found that in terms of the frequency of correct order
selection, MDC is relatively insensitive to the values of a1, a1, a2z provided |a;1|
and |agz| are not too close to zero, say greater than .6. The frequency distribution
of the selected order is more dependent on the choice of coefficients with larger
values of |a11| and |a22| giving more low order models.

Table 1. Frequencies of estimated order in 100 replications from the AR(1) model given
by (3.1) with sample sizes 50 and 100 (in parentheses)

estimated order

Criterion 0 1 2 3 4 5 6-10 11-20
AIC 33(23) 48 (57) 9(9) 3(1) 2() 2(1) 1(4) 2(0)
AICC  34(23) 52(60) 9(9) 2(3) 1(1) 0(0) 1(4) 1(0)
H&Q  19(1) 64(87) 11(6) 2(5) 3(1) 0(0) 0(0) 1(0)
BIC* 0(0) 51(65) 7(5) 1(1) 2(1) 3(1) 10(9) 16 (11)
DC 15 (1) 59(78) 12(8) 3(4) 4(3) 3(2) 2(4) 2(0)

) ) (0)

MDC  33(6) 64(93) 3(1) 0(0) 0(0) 0(0) 0(0) 0(0

(* row totals are less than 100 since for some realizations, BIC is not calculable due to a

negative value of 31, X7 — ng?.)

Table 2. Frequencies of estimated order in 100 replications from the AR(2) model given
by (3.2) with sample sizes 50 and 100 (in parentheses)

estimated order

Criterion 0 1 2 3 4 5 6-10 11-20

AIC  0(0) 13(0) 74(77) 7(7) 3(7) 1(2) 1(5) 1(2)
AICC 0(0) 13(0) 76(81) 8(7) 3(7) 0(3). 0(2) 0(0)
H&Q 0(0) 9(0) 84(95) 5(3) 2(2) 0(0) 0(0) 0(0)
BIC 0(0) 25(1) 73(9) 2(2) 0(1) 0(0) 0(0) 0(0)
DC  0(0) 8(0) 80 (94) 7(3) 4(1) 1(2) 0(0) 0(0)
MDC  0(0) 16(1) 82(98) 2(1) 0(0) 0(0) 0(0) 0(0)

Although DC and MDC are computationally intensive the cpu time required
to run these procedures is certainly not a limiting factor in most applications.
For example in a sample of size 100, DC and MDC take approximately 1.31 and
1.28 seconds, respectively, to run on a SPARC IPC workstation. This includes
generating the 100 data values and generating 50 replicates of the test series in
Step 4 of the procedure. In contrast, AIC takes only .1 seconds to identify the
order of the model from a sample of size 100.
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Table 3. Frequencies of estimated order in 100 replications from the AR(5) model given
by (3.3) with sample sizes 100 and 200 (in parentheses)

estimated order

Criterion 0-1 2-3 4 5 6 7-10 11-20
AIC  1(0) 1(0) 0(0) 77(68) 8(10) 11(21) 2 (1)
AICC 1(0) 1(0) 1(0) 81(75) 8(11) 7(14) 1 (0)
H&Q 1(0) 1(0) 1(0) 87(88) 8(7) 2(5  0(0)
BIC 2(0) 0(0) 1(0) 77(83) 8(6) 7(9) 5(2)
DC 1(0) 0(0) 1(0) 82(85) 8(7) 5 (8) 3 (0)
MDC 7(0) 2(0) 5(0) 85(97) 1(3) 0 (0) 0 (0)

Table 4. Frequencies of estimated order in 100 replications from the AR(10) model given
by (3.4) with sample sizes 100 and 200 (in parentheses)

estimated order

Criterion <8 8 9 10 11 12 > 12
AIC 0(0) 0(0) 0(0) 80(74) 11(10) 3(3) 6 (13)
AICC 1(0) 0(0) 0(0) 90(82) 6(11) 2(2) 1(5)
H&Q 4(0) 3(0) 0(0) 82(89) 8(5) 3(4) 0(2
BIC 11(0) 0(0) 0(0) 8 (97) 2(2) 1(1) 0(0)
DC 5(0) 0(0) 0(0) 79(8) 11(6) 3(3) 2(6)
MDC 7(0) 2(0) 1(0) 89(99) 0(1) 1(0) 00

Table 5. Frequencies of correct order selection in 100 replications from the models (3.1)-
(3.4) using MDC. '

sample size

Model 30 50 100 200 400

AR(1) 46 64 93 99 100
AR(2) 59 82 98 98 99
AR(5) 26 45 85 97 98
AR(10) 2 33 8 99 100

The frequencies reported in these tables are highly dependent on the choice
of model parameters. For example, in the AR(1) case with sample size 30, a
change in the AR parameter from .4 to —.8 increases the correct order selection
frequency for MDC from 46 to 94 (see also Table 1 in Hannan and Quinn (1979)).
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In terms of the frequency of correct order selection, MDC generally performed
best. As can be seen in Table 5, MDC estimates the true order well even for
moderate sample sizes. All of the procedures did surprisingly well in identifying
the AR(10) model (Table 4) with MDC achieving success rates 99% and 100%
for sample sizes 200 and 400 respectively. At a sample size of 30, DC and MDC
were the only criteria to correctly estimate the order of the AR(10) model at
least once. For smaller sample sizes, AIC and AICC were often competitive with
the consistent criteria especially when the true order is large. This is due in part
to the small penalty factors in AIC and AICC which tend to favor higher order
models.

The superior performance of MDC over DC is somewhat counter-intuitive
in model (3.1). However model (3.1) has small partial autocorrelations at all
lags and so the test series generated from the estimated model will be difficult
to distinguish from white noise. On the other hand, this is not an issue with
MDC since the test series are generated from models chosen to have large partial
autocorrelations. In model (3.2), the partial autocorrelations at lags 1 and 2
are large and both DC and MDC give good results. In models (3.3) and (3.4),
the fitted models of orders 0, 1, and 2 bear little relation to the true models so
there is no reason to expect DC to perform as well as MDC. Also, the partial
autocorrelations at lags 1 and 2 for these two models are relatively small.

Table 6. Frequencies of correct order selection in 100 replications from model (3.2) with
different noise distributions. Sample sizes are 50 and 100 (in parentheses).

Distribution Exp Laplace tos Ul-1,1]

AIC 76 (71) T3 (72) 79 (75) 72 (72)
AICC 83 (79) 79 (77) 84 (81) 77 (77)
H&Q 82 (89) 82(88) 88(89) 79 (88)
BIC 79 (94) 74 (96) 78 (97) 72 (97)
DC 80 (84) 82 (85) 82 (83) 78 (86)
MDC 83 (99) 80 (97) 90 (96) 80 (96)

We also compared the performance of the order selection criteria over a wide
range of noise distributions: exponential, two-sided exponential, ¢-distribution
with 2.5 degrees of freedom and uniform on [—1,1]. MDC continued to perform
the best across these distributions. A summary of these results, using the AR(2)
model given in (3.2), is reported in Table 6.

Finally we considered the AR(3) model

X:=.TXi_3+ 21, {Z¢} ~IID(0,1)
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which does not satisfy the condition min;<;j<k, |#;;| > 0 of Theorem 2.1 if
K; > 1. As a result the DC method does not produce a consistent estimate of p
unless K; = 0. Nevertheless, for simulated series of length 50, DC still correctly
identified the true order 76 out of 100 times (MDC managed 80 out of 100).
It appears that the performance of DC is not adversely affected if some of the
partial autocorrelations are zero. Of course, this is not an issue with MDC since
it produces consistent estimates regardless of the values of the parameters in the
true model.

The appealing feature of DC and MDC is that they attempt to choose, in a
data driven fashion, an optimal penalty factor. Here, optimal is in the sense of
correctly identifying the true order. Since, in practice, there is rarely such a thing
as the true order of the model, one might compare order selection criteria relative
to a different notion of optimality. For instance, if the modelling objective is to
obtain h-step-ahead forecasts, then one might choose an order selection procedure
which gives a model with minimum mean square error of the h-step forecast. In
future work, we will explore extensions of our resampling scheme designed to
obtain suitable penalty factors for a given optimality criterion.

4. Yule-Walker vs. MLE and Burg

While the three estimation procedures for finite order autoregressive pro-
cesses, maximum likelihood, Burg, and Yule-Walker are asymptotically equiv-
alent, it is generally accepted that for small to moderate sample sizes with p
known, maximum likelihood and Burg are the preferred estimation procedures.
Yule-Walker estimates tend to have larger biases which are even more pronounced
when the autoregressive polynomial has one or more roots near the unit circle.
However, when they are used to fit an overparameterized model to the data, as
in any order selection procedure, maximum likelihood and Burg can produce ex-
tremely poor parameter estimates. On the other hand, Yule-Walker estimates
tend to be well behaved even when the order of the fitted model approaches the
sample size.

To illustrate this point, we generated 10,000 replicates of time series with
length 23 from the AR(2) model,

Xy = .99X,_1 — 8Xi_9+ Z;, {Z:i} ~IID(0,1).

This model and sample size were used in the simulation study of Hurvich and
Tsai (1989). Figures 1-3 contain boxplots of the parameter estimates obtained in
fitting an AR(15) model to the data using Yule-Walker, Burg, and maximum like-
lihood respectively. In this case the true coefficient vector is (.99, —.8,0,...,0)".
As is clearly evident, Yule-Walker outperforms Burg and maximum likelihood by
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a wide margin. The ‘box’ for the mle of ¢15 ranges from —.45 to .45, an incredibly
wide range when one considers that ¢;5 is constrained to the region (—1,1). The
sample standard deviations for the Yule-Walker, Burg and maximum likelihood
estimates of ¢;5 are .107, .392, and .544 respectively.

Figure 4 contains boxplots of the estimates of ¢ using Yule-Walker, Burg
and maximum likelihood. As can be seen in Figure 4, the mle estimate of o2
can be much too small when a high order model is fitted. In contrast, the Yule-
Walker estimate of o2 is more stable as the order of the model increases and
has much smaller bias than either the mle or Burg estimator. This partially
explains why order selection criteria using mle or Burg estimation, rather than
Yule-Walker estimation, tend to select more overparameterized models. Table 7,
which compares the results of order selection using AIC for the AR(2) example
above, bears this out.

Table 7. Frequencies of estimated order in 100 replications for the AR(2) model given
above and using AIC (sample size is 23)

estimated order

Est. procedure 0 1 2 3 4 5 6-10 11-15 16-20
YW 0 0 79 14 5 2 0 0 0
Burg 0 0 63 17 3 2 7 5 3
MLE 0 0 60 18 3 2 7 5 5

For these reasons we have consistently used Yule-Walker estimation for or-
der selection. While Yule-Walker may not provide the best estimates of the
parameters when the order of the model is known, it is more reliable for fitting
overparameterized models than maximum likelihood and Burg estimation.
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