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Abstract: Families of balanced incomplete block designs with nested rows and columns
are developed for multistage experimentation. In some designs the stages, or distinct
treatment sets, are orthogonal to one another, and in others totally balanced. For
given numbers of treatments, blocks, stages, and block size, the technique leads to a
variety of totally balanced designs, from which the most efficient is selected.
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1. Introduction

Multistage experiments, or experiments for multiple sets of treatments, are
experiments for which more than one treatment set is applied to the same experi-
mental material. These applications can be either simultaneous or successive, and
the different treatment sets are referred to as stages. From the design viewpoint
and assuming different treatment sets do not interact, one problem is to find the
treatment assignments so that estimates of treatment effects from different stages
are either orthogonal or totally balanced with respect to one another and to all
blocking factors. This is the problem we shall attack in the nested row-column
setting.

Nested row and column designs, introduced by Singh and Dey (1979), are
designs for v treatments in b blocks of size k = pgq, each block being a p x ¢ array
of p rows and ¢ columns. Let )\g, )\g, and )\5 be respectively the number of
times treatments ¢ and j appear together in rows, columns, and blocks. Then
a balanced incomplete block design with nested rows and columns is a binary,

equireplicate nested row-column design for which
PAT +aA = A =

it will be denoted by BIBRC(v, b, ,p, ¢, A). Here r is the replication number and
A =r(p-1)(g-1)/(v~-1). Constructions for BIBRC’s have been given by
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Street (1981), Agrawal and Prasad (1982, 1983), Cheng (1986), Sreenath (1989),
and Uddin and Morgan (1990, 1991). The main results of this paper show how
additional sets of treatments may be applied to the series of BIBRC’s given by
Uddin and Morgan (1991), which include many parameter combinations found in
the previous papers. Efficiencies relative to single stage designs are also derived.

For a list of references on multistage experimentation in a variety of situa-
tions the reader is referred to the review paper of Preece (1976). Row-column
designs for more than two stages include sets of orthogonal Latin squares (see
Raghavarao (1971) for a summary) and analogous Youden designs (e.g. Hedayat,
Sieden and Federer (1972), Saha and Das (1988)). Generalizations include sets of
mutually orthogonal Youden or F-hyperrectangles (Cheng (1980)) and mutually
orthogonal F-hyperrectangles with variable numbers of symbols (Mandeli and
Federer (1984)). The only result for multistage nested row-column designs we
have found is that of Street (1981). Her Theorem 8, improved on below, gives
BIBRC'’s for two sets of treatments.

2. Multistage BIBRC’s

Suppose there are t sets of v treatments each to be applied in b blocks of size
p X q. Let n = bpg be the total number of experimental units; one treatment from
each of the sets is to be applied to each unit. The model under consideration is

Y=ul,+BB+Rp+Gy+ At +e¢

where Y is a n x 1 vector of observations, p a bp x 1 vector of row effects, v a bgx 1
vector of column effects, 8 a b x 1 vector of block effects, 7 = (74, 79,...,7{)" and
7; i1s a v X 1 vector of treatment effects for the ith stage, and ¢ is a n X 1 vector
of experimental errors (E(e) = 0, var(e¢) = o%I). Using j to denote a vector
of ones, then with appropriate ordering of the observations, R = I} ® j, ® I,
G=1,®I;®jp, and B = I} ® j, ® j, are the plot-row, plot-column, and plot-
block incidence matrices. Finally, A = (4, 4s,...,A;) where A; is the n x v
plot-treatment incidence matrix for treatment set i, A;j, = jn,. With fixed,
unknown 8, p, and v, the appropriate (least squares) analysis is the within-rows-
and-columns, or bottom stratum, analysis. Recovery of information from other
strata is discussed in Section 3.

Least squares estimation of 7 in the above model yields the reduced normal
equations C7 = @Q where C is the partitioned matrix C = (C;;) with

! 1 / 1 ! 1 /
C,'j = A; I--RR - -GG'+ —BB Aj
q p pq

1 1 1
= A;AJ‘ - ENR"'N}LJ' -~ ;NG,,'N(’;’J' + ;éNB,iNIB,j’ (2.1)
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and Ng;, Ng;, and N B,i the treatment-row, treatment-column, and treatment-
block incidence matrices for stage .

Let J be a matrix of ones. We will say we have a set of ¢ mutually orthogonal
BIBRC'’s if each block is binary in treatments, if C;; = al +bJ for some constants
a,b and all 4 = 1,...,¢, and if Cij =0foralli # j =1,...,t. We say we
have a totally balanced set of BIBRC’s if the condition on C;; is replaced by
Cij = yI + zJ for some constants (y,2) # (0,0) and all § # j = 1,...,t. In
either case the conditions on the Cy;’s say that each stage is a BIBRC. The latter
condition on the Cj;’s generalizes to more than two stages the property of some
two stage designs such as the BIBD’s for two sets of treatments of Preece (1976),
and is stricter than that of the multistage Youden designs of Hedayat, Seiden and
Federer (1972). In the terminology of Preece (1976), this says that not only is
each stage totally balanced with respect to each other stage, but that they possess
total overall balance. The term “orthogonal” is used in the sense of Eccleston and
Russell (1975). Their concept of orthogonality is now usually phrased “adjusted
orthogonality”, a terminology not used here as it has come to specifically refer
to a property of row-column and of nested row and column designs that does not
hold for the designs of this paper (cf. Eccleston and John (1986, 1988)). Simply
put, the orthogonality condition C;; = 0 implies that contrasts from different sets
are orthogonally estimated in the bottom stratum.

Let z be a primitive element for the finite field GF, of order v. Our con-
structions require the following two results due to Uddin and Morgan (1991):

Lemma 1. If v = mg+ 1 is a prime or prime power and 2 < p < m, then the
m blocks -

gi-l  gmFi-l L p(e=1)m+i-1
z;i $m+i .“ee z(q-l)m+i
B; = : : , : ;
xp+i_2 :L.m+p+i—2 v m(q_l)m+P+i_2

1=1,2,...,m, are initial blocks for a BIBRC(v, mv, mpq,p,q,p(p — 1)(q — 1)).

Lemma 2. If v =2mgq + 1 is a prime or prime power, ¢ odd and 2 < p < 2m,
then the m blocks

giml  gImti-1 | 2(g-1)m+i-1
7t p2m+i . p2(g=1)m+i
B,’ = )
ppti-2 pimtpti-2 x2(q—1)m+p+i—2

1=1,2,...,m, are initial blocks for a BIBRC(v, mv, mpq,p,q,p(p - 1)(g—1)/2).
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The construction technique is simple: treatment assignments for additional
stages are defined by obtaining new sets of m initial blocks given by row per-
mutations of the initial blocks of Lemma 1 or 2. The problems are in choosing
the form of the permutations and demonstrating their existence. It will be seen
that permutations yielding orthogonal sets are always to be preferred but do not
always exist.

The result based on Lemma 1 will be derived first and in detail (it is less
problematic than that for Lemma 2 and will allow us to jump to some of the
results in that case). Let m = (71, m,...,7,) be any permutation of (1,...,p)
such that m, = h for exactly s values of h € {1,...,p}, and let 7(B;) be the
block derived by permuting the rows of B; according to m; the same 7 will be
used for each ¢ = 1,...,m. Then if B; + g, ¢ € GF, is a block for treatment set
1, m(B;) + g is the treatment arrangement in that block for treatment set 2.

In Appendix I it is shown that for such a ,

Cra=m(s—1)(¢—1)I - (s - ll(q—l)(J—I)

so that a totally balanced BIBRC for two sets of treatments has been constructed.
If s =1, i.e. 7 fixes exactly one row of the B;’s, then C15 = 0 and the result is
an orthogonal pair of BIBRC's.

It is now easy to see how additional sets of treatments can be added: each
additional set requires another row permutation, which for total balance must
be such that each pair of permutations puts s rows in the same position. For ¢
stages, ¢ permutations are required, where the first may be taken as the identity

permutation.

Ezample 1. Take v = 13, m = 4, ¢ = 3, and z = 2 in Lemma 1. Using
the permutations (1,2,3,4), (1,4,2,3), and (1,3,4,2) of the ordered sequence
(1,2,3,4), initial blocks for a set of 3 orthogonal BIBRC(13, 52, 48, 4, 3, 24)’s are:

1 3 9 2 6 5 4 12 10 8 11 7
2 6 5 4 12 10 8 11 7 3 9 1
STAGE 1 4 12 10 8 11 7 3 9 1 6 5 2
8§ 11 7 3 9 1 6 5 2 12 10 4
1 3 9 2 6 5 4 12 10 8 11 7
8 11 7 3 9 1 6 5 2 12 10 4
STAGE 2 2 6 5 4 12 10 8 11 7 3 9 1
4 12 10 8 11 7 3 9 1 6 5 2
1 3 9 2 6 5 4 12 10. 8§ 11 7
4 12 10 8 11 7 3 9 1 6 5 2
STAGE 3 8 11 7 3 9 1 6 5 2 12 10 4
2 6 5 4 12 10 8 11 7 3 9 1
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Which value of s is to be preferred can be determined from the C-matrix.
For the design of Lemma. 1

¢ =0n=mip-1(g- 11 - E=2=Dy )

So for a totally balanced ¢-stage design

C =5L&Ch+(J—1)®Ci2

- 9-.;..1. (p— )L + (s — 1)) ® [(mg + 1)I, — J]

by using Cip = ECH and rearranging terms. That C must be nonnegative
definite with rank (v — 1) (required for full estimability) implies that s < p,
and for s = 0, ¢ < p. Otherwise the only restriction is the obvious s > 0. A
generalized inverse of C is

C™ = 5l =)L+ (s~ D7 @ (mg + Iy = "
_ q B s—1 _ 1
BT rEr ke e A L
tqzm[p— s+(t-1)(s-1)]

vig-1@-s)p-s+t(s-1)]

which is a constant times the average variance of an elementary treatment con-
trast. The quantity s can now be chosen to minimize (2.2).

= tr(C7) = (2.2)

Lemma 3. The minimum of (2.2) over 0 < s < p—1, witht < p for s = 0,
occurs at s = 1.

Proof. Ignoring tg°m/(g — 1)v, (2.2) at s = 1is 1/(p — 1). Then

p—s+(t-1(-1) 1 _ (s —1)%(t-1)
(p=s)p—s+t(s-1)] p-1 (p-s)p—-s+t(s-1)]p-1)

for s # 1.

>0

Lemma 3 says that in terms of efficiency an orthogonal set is always preferred.
The analysis is also simplest in this case, as C~ has diagonal block form and the
treatment sum of squares will orthogonally decompose into components for each
stage.

How many stages can be accommodated? Consider a p x t array A on the
symbols 1,... p and say that A has s-pair balance if
(i) each column contains each symbol once
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and

(i) each pair of columns has exactly s like pairs in rows.

An array A with s-pair balance will be denoted by A(p,t,s). The columns of
an A(p,t,s) will be the permutations needed to define the stages of the BIBRC.
Summarizing the above results:

Theorem 1. Let v = mq + 1 be a prime or prime power with m > p > 2.
The ezistence of A(p,t,1) implies the existence of a set of t mutually orthogonal
BIBRC(v, mv, mpq,p, ¢,p(p — 1)(g — 1)) s.

Corollary 1. There erists a set of p—1 mutually orthogonal BIBRC(v, mv, mpq,
p,¢,p(p —1)(g—1))’s for v=mgqg+1 a prime or prime power and m > p > 3.

Corollary 1 follows since A(p,p—1, 1) can always be constructed by adjoining
the row (p,p,...,p) to a Latin square on the first p—1 symbols. No more columns
can be added to this array, but there do exist arrays A(p,t,1) with ¢ > p. Some
trial and error constructions appear in Table 1. These show that, in addition
to the arrays of Corollary 1, 5 stages can be accommodated for p = 5, 8 stages
for p = 6, and 10 stages for p = 7. For p = 3,4, and 5 enumeration shows the
maximum ¢ has been obtained.

Table 1. Examples of A(p,t,1)for3<p<7

1 1 4 2 2
1 1 3
1 1 2 3 3 1 3
2 4 1
2332234145
3 2 4 5 2 3 4
4 3 4
5 2 5 5 1
1 1.6 3 2 5 2 5
2 3 2 4 11 3 3
3 4 4 5 5 4 1 6
4 2 5 2 4 3 5 4
5 6 1 1 6 2 4 1
6 5 3 6 3 6 6 2
1 1 7 6 5 1 6 4 1 1
2 5 6 1 6 6 5 6 3 7
3 2 2 5 4 5 1 3 7 4
4 3 1 4 3 7 2 2 6 2
5 4 5 2 2 3 3 1 2 6
6 7 4 7 1 2 4 7 4 5
7 6 3 3 7 4 7 5 5 3



ORTHOGONAL SETS OF BIBRC’S 441

Now consider the lemma 2 designs. Again additional stages will be defined
by permutations, but here another condition must be imposed. Say an array
A%(p,t,s) has symmetric s-pair balance if it has s-pair balance with the further
property that if a pair (a, b) is formed by the rows of any two given columns, so
is the pair (b,a). For A%(p,t,s), s is odd if and only if p is odd, which will be an
important consideration with regard to efficiency and orthogonal sets. Defining
a t-stage BIBRC by permuting the rows of the B;’s of Lemma 2 according to the
columns of an A%(p,t,s), the result of Appendix II gives

C = It®Cu+(Jt—It)®C12
-1
- %[(p — $)I; + (s — 1)Ji] ® [(2mgq + DI, — J,).

Mimicking the g-inverse preceding (2.2) gives

_ 2¢*mt p—s+(t—1)(s-1)
vg-1)(p-s)l p—s+i(s—1)
It follows from Lemma 3 that the average variance is again minimized for s = 1,

which is the orthogonal case. However if p is even then s must be even, so other
values must be considered.

tr(C™) (2.3)

Lemma 4. The minimum of (2.3) over even s for 0 < s <p—1, witht < p for
s=0, s ats=2.

. —s4+(t-1)(s—-1 . .
Proof. Write W = (;’_ s)(;_s ﬁt((s_l))). Then after some manipulation,

(s=2D-Dlstp+t=3-(=20 oo,
(p-2)p+t-2)p-s)lp—s+it(s—1)
Hence we use A?(p,t,1) if p is odd, and A%(p, t,2) if p is even. These arrays
are constructed by building up from A%(p,t,0)’s with smaller p.

W, - Wy =

Lemma 5. Let p be even, that is, p = 2“d where d is odd and w > 1. Then for
t < 2% there exists A°(p,t,0), A%(p+1,t,1), and A%(p + 2,1, 2).

Proof. Given A?(p,t,0) on the symbols 1,2,...,p, A°(p+1,t,1) is obtained by
adding arow (p+1,p+1,...,p+ 1), and A%(p + 2,t,2) by also adding the row
(p+2,p+2,...,p+2). So A%(p,2¥,0) must be constructed.

Let d = 1 and write A, = A(2%,2%,0). Then

1234
1 2 2143
A = and A =
21 3412
4 321
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Continuing this sequence,

A, A,+2¥
Ayt = .

Now for p = 2“d with d > 1

Aw

A, +2¢
A%(p,2¢,0) = ,

A, +(d—-1)2¢

Lemma 5 becomes much more interesting when it is stated that the maximum
value of ¢ in A%(p + s,t, s) has been achieved for each s = 0,1,2. The proof of
this fact may be found in Appendix III. We can now state our final construction
results.

Theorem 2. Let v = 2mq+1 be a prime or prime power where q is odd, and let
odd p be such that3 < p < 2m—1. Then there ezists a set of t mutually orthogonal
BIBRC(v, mv, mpq,p,q,p(p — 1)(qg — 1)/2)’s where t < 2% forp=2“d+1 and d
is odd.

Theorem 3. Let v = 2mq+1 be a prime or prime power where q is odd, and let
even p be such that 4 < p < 2m. Then there ezists a set of t BIBRC(v, mv, mpgq, p,
q,p(p — 1)(g — 1)/2)’s totally balanced for t sets of treatments, where t < 2% for
p=2“d+2 and d is odd.

For Theorem 2 the design of Lemma 2 is permuted according to the columns
of A%(p,t,1), and in Theorem 3 according to those of A9(p,t,2). Although there
are other combinatorial possibilities here (and in Theorem 1) for totally balanced
designs, efficiency arguments have driven the choices of permuting arrays. The-
orems 2 and 3 improve Theorem 8 of Street (1981), which is restricted to even
p<mandt=2.

Ezample 2. Take v =13, m = 2,¢ = 3, and z = 2 in Lemma 2. Initial blocks for
a pair of totally balanced BIBRC(13, 26, 24,4, 3,12)’s are

~

1 3 9 2 6 5
2 6 5 4 12 10

STA
CE1 4 12 10 8 11 7
8 11 7 3 9 1
2 6 5 4 12 10
1 3 9 2 6 5

A
STAGE 2 4 12 10 8 11 7
8 11 7 3 9 1
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3. The Information in Other Strata

In this section the questions of the information in higher strata, and that in
the t-stage versus the single stage design, are addressed. The reader is referred to
Speed (1982) and Houtman and Speed (1983) for definitions and notations per-
taining to strata efficiencies, treatment decompositions, etc. The four strata, 1-4
respectively, for a nested row and column design are the block, row, column, and
within-rows-and-columns strata. Explicit expressions for the strata projectors
may be found in e.g. Cheng (1986). In the following, any normalized contrast
comparing effects within the same treatment set will be referred to as a standard
contrast. All references to t-stage designs assume ¢ > 1.

The BIBRC’s of Lemmas 1 and 2 have the desirable property that the
block component, row component, and column component designs are each bal-
anced incomplete block designs. It follows easily that these designs are gen-
erally balanced with respect to the treatment decomposition Ty + 77 where
Tg = 1J, and T} = I, — 1J,. The strata efficiencies for contrasts in T} are

f = (v - pg)/lpa(v — V], X = v(p — 1)/[pg(v — 1)}, A3 = v(g — 1)/[pg(v — 1)},
and A} = v(p — 1)(¢ — 1)/[pg(v — 1)]. Interestingly, the t-stage designs are
not generally balanced with respect to the analogous decomposition for ¢ treat-
ment sets. The coarsest decomposition with respect to which the t-stage de-
signs are generally balanced is given by Ty = %Jvt, T, = %Jt ® (I, — %Jv),
and T» = (I; — %Jt) ® (I, — %Jv). The corresponding strata efficiencies are
i = (v —pglt/gf1, A = o[(p — 1) + (¢t — 1)(s — 1)l/af1, As1 = v(g — 1)t/qf1,
Ay =v(g—1)[(p—1)+ (s —1)(t—1)]/qf1 for T}, and A2 = A32 =0, A3z = 1/g,
A2 = (g — 1)/q for Ty, with f; = p(v — 1) + (t — 1)(sv — p). Since they lie in
T + T, standard contrasts are not estimable in the block or column stratum,
as they would be in a single stage design. It is then of interest to ask what
proportion of information is lost in the t-stage design relative to a single stage.

First, the variance of a standard contrast I'(Ty +T5)7 estimated in the bottom
stratum of any t-stage design of Section 2 is, aside from the stratum variance,

Ty Tb)lzqﬂp—3%+@—1ﬂw—4)+ds—UH

Var = ll()\41f1 * As2fa vi(g - 1)(p — s)[(p — 5) + £(s — 1)]

(fo = v(p — s) and f; are eigenvalues of A’A). That of a single stage design is
Vg = 5—(;_—13@—_?). Thus the t-stage versus 1-stage relative efficiency for stratum
4 is

Va1 _ t [ 1 + t—1 -1
Voo p-1llp-s)+t(s—-1) p-s] =
No information is lost in the bottom stratum when this is 1, which occurs if and

only if s = 1, the orthogonal case. For totally balanced designs with s = 2 and

t = 2 (e.g. Example 2) the efficiency is %’j—;@.
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Looking now at just a t-stage design, and assuming for simplicity in compar-
ing across strata that the strata variances are all equal (= o2, say), the variance
of the overall estimator of a standard contrast obtained by combining stratum 2
and stratum 4 information is

V, = P-8)+(@-1(s-1) 2
v(p-s)p-1)+(t-1)(s ~1)]

Hence the proportion of available information on standard contrasts that occurs

in the bottom stratum is

Vi _g-1

Vee q
For moderate to large ¢ the bottom stratum analysis will usually be satisfactory,
but may not be so for ¢ small. This ratio additionally shows that maximizing
with respect to s the information in the bottom stratum, as was done in Section
2, simultaneously maximizes the information in the row stratum. It can also be
shown that s = 1 gives orthogonality in stratum 2.

In a single stage design all strata may be used and the combined estimator

has variance V; = -, so

Vi _u(p-s)ip-1)+(t-1)(s-1)]

Vi plo=Dlp-s)+(t-1)(s - 1)

- is the overall ¢-stage versus single stage relative efficiency. When s = 1 this is
;(5 :}) and is independent of ¢.

Given the great savings of experimental material afforded by a t-stage design
and the fact that the stratum 4 variance will usually be smallest, these results

appear to be satisfactory.
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Appendix I: C1; for a Lemma 1 Design

From (2.1) it is clear that Cj2 is determined by the plot, row, column, and
block differences between B; and 7(B;) for i = 1,2,..., m. Of these only the plot
and row differences are affected by the choice of 7, and then only by s = #{h :
7 = h}. Denoting the hth row of B; by

By, = (mz+h—2, x1+h+m—2’ o ,zz+h+(q—1)m—2),
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if 7, = [ then the plot differences for the hth rows of the m blocks are
(Bip — By) = aith=2 — gi+l-2 githtm=2 _ pitl4m-2

.
Lith+g-1m=-2 _ xz+l+(q—1)m-2, 1=1,2,...,m

= (%}, 2™ )@z - @ (2% 2™, . .. ,x(q_l)m)

which are every non-zero element of GF, exactly once for h # [, and v — 1 copies
of 0 for h = 1. Likewise the row differences for the hth rows are

Bin — Bij, Bin — 2™ By, ..., By — 297U By =

mi—l(xh—l —:Bl_l, zh-1 __xm-l—l—l, . ,.'Eh—l _ x(q——l)m—{-l—l)@(xo, ™, ... ’m(q-l)m)

for: =1,2,...,m, which are each non-zero element ¢ times if A # [, or each non-
zero ¢ — 1 times and v — 1 copies of 0 if A = [. The block and column differences
are unaffected by row permutations, so are the same as in the proof of Theorem
1 of Uddin and Morgan (1991), except that here plot differences are included. So
with the proof there and letting h = 1,2,...,p in the above lists, we have

differences | frequencies of nonzeros | frequencies of 0
plots p— S smq
rows pg— s smq
columns p(p—1) mpq
blocks p(pg —1) mpq

Hence AjA; =smgl+(p—3s)(J—-1I)
Ng1Np, = smql +(pg - s)(J — I)
Ng1Ng o = mpgl +p(p — 1)(J = 1)
Np1Np, = mpql + p(pg — 1)(J — I)

= Cup = m(s = (g = )T = (s = Dlg =D = ).

Appendix II: Ci; for a Lemma 2 Design

Again we look at the differences between B; and 7(B;), where now #{h : ), =
h} =s, m =1= m =h, and p — s is even. Write B;, = (¢*th=2, g*th+2m=2
gith+2(ea=1)m=2) for row h of B;.

Consider rows h and ! where 7, = | and m; = h. The plot differences for
these two rows over all squares are

(Bin — Bii, Bii — Bin)
= +(z'h 2 - 2 @ (20, 227, .. ,:1:2(‘1"1)’"), 1=1,2,...,m

— (.’Eh—2 - xl-—Z)(mO,xl, N .’meq——l)

..y
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since —1 = 2™ and ¢ is odd. Since there are (p — 5)/2 such pairs of rows defined
by m, the plot differences are each non-zero element (p — s)/2 times and 0 with
frequency smyq. _

The row differences for rows h and [ are

£(Bin — Ba), (B — 2™ By), ..., £(Bip — 220" DmpBy =1, 2,...,m

which simplifies to

h-1 -1 _h- — - - -
(17 -1 ¢ 1_$2m+l 1 ,:Bh 1_$2(q 1)m+l1 1)®($0’$1"”,x2mq_1)

g0

l.e. each non-zero element g times. If h = I, the row differences for row A are
(Bin = Bin), (Bin = "™ Byn), ..., (Bin — 220 U™By) i=1,2,... m.

Since the B;’sfori = 1,2,...,m form the difference set of Sprott (1954, Theorem
2.1), these are 0 mgq times and each non-zero (g—1)/2 times. So the row differences
for all rows are 0 smgq times each non-zero (pg — s)/2 times. _

Taking the column and block differences from the proof of Theorem 2 of
Uddin and Morgan (1991) (and adding 0 differences for plots),

AL Ay = smql + ’L;—S(J -

NgiNp, = smql + pqz_ (-1

-1
NG,lNé;J = mpql + ‘?—(p—z————)(J - 1)
-1
Np1Np, = mpql + 3@5——)(‘7 -1
= Cn=m(s-1)qg-1)|I- —(-n|="1c
12 = m(s q 9mq _p—l 11-

Appendix III: Maximum t in A%(p,t,s),s =0,1,2

It is simple to prove that every A%(p,t,1) has a constant row, so that anal-
ogous to the construction of Lemma 5, its existence is equivalent to that of
A%(p - 1,t,0). Likewise one may easily prove that for ¢ # 3 or 4, A%(p,t,2) has
two constant rows, so that its existence is equivalent to that of A%(p — 2,1, 0).
The exception for ¢ = 4 is that an A%(p, 4,2) that does not have two constant
rows must be of the form

(%)
Ay
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where

A =

T W = N

S UT W B DD
13 A B = ST QY SO \C R
13 T~ N JCRN N PO

6

and A is an A?(p—6,4,0) on the symbols 7,8,...,p. For ¢t = 3 the noncompliant
A%(p, 3,2) must be three columns of the A9(p, 4, 2) just described. Since the work
below implies that an A?(p —6,3,0) or A?(p — 6,4,0) must have p — 6 a multiple
of 4, these exceptions are of no consequence for the existence of A7(p,t,2) of
maximum ¢t : they do not give larger ¢ than already obtained in Lemma 5.

Thus the conjecture following Lemma 5 amounts to proving

Theorem Al. Write p = 2¥d where d is odd and w > 0. A%(p,t,0) ezists if and
only if t < 2v.

Given Lemma 5, only the nonexistence for t > 2“ remains to be demon-
strated, and the case w = 0 is trivial, so here w > 1 and p is even. This will be
done via a series of steps, the key to which is showing that every A7(p,t,0) can be
put in standard form. Before defining this notion some notation is needed. The
elements of the matrix array A = A%(p,t,0) are denoted by a;;. The columns of

A are ay,...,at where a; = (alj, a2j, ..yapj)’. The partition of a; into successive
2-tuples is written a; = (a”, a%js - - )' where af; = (@2i-1,j,a2i,;)- The af;’s
are the elementary 2-tuples of column j. The reversal of an elementary 2- tuple
is azj = (a2ij, a2i— 1,1) The reversal of column j is found by reversing all of its
elementary 2-tuples, a = (aij ,aEf’ , . ,a’gf" ).

Now define A = A”(p, t,0) to be in standard form if for every odd j <t -1,
aj4+1 = af

Note that A retains the properties of an A?(p,t,0) under permutatlons of
rows and of columns, and that standard form is unaffected by permuting pairs of
rows corresponding to elementary 2-tuples. It follows that the first two columns
can always be put into standard form, i.e. a3 = af. Assummg that this has been
done, it is straightforward to prove that

Result 1. For fized j > 3, aj; = ay, or a;f for some l' # 1.

Simply put, Result 1 says that every column of A contains the same set of un-
ordered elementary 2-tuples, though in possibly different sequences. Generalizing
this,



448 JOHN P. MORGAN AND NIZAM UDDIN

Result 2. If for some | and some j,5'(j # j), aj; = a,];, then for k such that

k #3 and k ;é j' there ezists m # l such that either ay . = aj, a:n]-, = a{kR,

J
* — %R * _ *R

Result 2, easily proven using Result 1, says that if three columns contain the

2 x 3 subarray ( Z Z ccl ) then the same three columns also contain one of the

2x3subarrays<§ g Z)or(ccl ; z)

Result 3. The ezistence of A%(p,t,0) implies the eristence of A%(p,t,0) in
standard form.

Proof. Write A = A%(p,t,0). Permute the rows and columns of A so that for
some s > 0 the first 2s columns of A are in standard form, and for all 7,5’ > 2s,
aj # a ; for a given A, s is a unique number. It will be shown that A can
be modlﬁed so that the first 2s + 2 columns are in standard form (25 + 2 < t).
Consider ags1.

Case 1. Suppose for all j > 2s+1 and all [, a} % 2541 7 a7 ;. Then replacing as,7 by
afl | gives an A?(p,t,0) with the first 25+ 2 columns in standard form. To show
this, a stronger claim will be proved, namely that (A4,af ;) is an A7(p, ¢ + 1, 0)
for which the first 25 + 2 columns can be put in standard form. Sufficient is that
B = (a2:41,a5,a% 1) is an A°(p,3,0) for each j > 25 + 1. Consider the 2 x 2
subarray (ajy,41,6;) in the first two columns of B. Since A is an A%(p,t,0)

containing the first two columns of B there is also a 2 x 2 subarray (af 9541, 03)
with {af 5.4, = @} and o}y = q f2s41) OF {afi 554y = ajf* and a}; = q 2s+1}
Hence in the last two columns of B, for any 2 x 2 subarray (a},a}%,.1) there
is a 2 x 2 subarray (a};,a} 2s+1) = (af 3541, 037) or (a}% ‘9s+1>@j), Which is what
needed to be shown.

Case 2. Suppose for some fixed j > 25 + 1 and some but not all [, a}% 2641 = 0] ;-
Switch columns 25 + 2 and j so that now a }22_9 +1 = 0] g, for some but not all
I. Then permute pairs of rows (meaning that elementary 2-tuples are permuted
but not changed) so that in the resulting A, a{f}s 41 =g fori=1,...,¢, say
and for no larger I. This allows the resulting A bo be partitioned as (j;) where
Al is 2q X t.

It will now be shown that the symbols in A; are disjoint from those in A,.
The first 2g rows of (ags+1, a2s42) are clearly disjoint from the last p — 2¢, since
the first 2¢ rows are a standard form A°(2g,2,0). Now consider any a}, with i < g
and I 5 25 +1,2s + 2, i.e. any a}; € A; but not in (as41, @2542). By Result 2
it must occur in standard form in columns (2s + 1,25 + 2) and therefore only in
the first 2¢ rows of those columns. It follows that every column of A, contains,
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in some order, the same g unordered elementary 2-tuples. Since each unordered
elementary 2-tuple occurs exactly once in a given column, A; and A, are disjoint.
Since A; and Aj are symbol disjoint, A must be an A?(p ~ 2¢q,t,0). Fur-
thermore, permuting the columns of A, will not change the fact that A is an
A%(p,t,0). Also A, has its first 2s columns in standard form and A; has its first
2s + 2 columns in standard form. The problem is now to modify A so that its
first 2s + 2 columns are in standard form. This is the problem that the proof
started with, except that now the number of rows (symbols) has been reduced.
The procedure is to treat A, as if it were the A at the start of the proof and go
through the same arguments. Since p is finite this process must reach an end.

A consequence of Case 1 in the proof of Result 3 is that A?(p, t,0) in standard
form for which ¢ is odd can be extended by addition of another column to give
A%(p,t +1,0) in standard form.

Result 4. The ezistence of A%(p,t,0) is equivalent to the existence of A7 (2p, 2t,0).
Proof. Given A = A%(p,t,0) on the symbols 1,...,p, B = A?(2p,2t,0) can be

constructed by
A A
B= TP
A+p A

Now let B = A?(2p, 2t,0) be given. By Result 3 it can be taken in standard
form, and so without loss of generality its ﬁrst two columns are (By, By, ..., Bp)
where B; is the 2 X 2 matrix B; = (2"2—1.1 oir 1) Furthermore if for the purposes
of this proof we take (21'2i1 2"2'2.1) to be the “same” matrix as B;, then columns
(4,7 + 1) are an arrangement of the B;’s for each odd j. Using Result 2, the
pattern of the B;’s is that of an A%(p,t,0). That is, replacing the 2 x 2 matrix

B; in B everywhere by the scalar i,7 = 1,...,p gives an A%(p,t,0).

We can now prove Theorem Al. Let A = A%(p,t*,0) with maximun ¢t = ¢* be
given, and remember that p = 2“d for some w > 1 and odd d. By Result 3, A can
be taken in standard form and t* is even. Applying Result 4, A; = A"(g, g ,0)
can be constructed. By Result 3, A; can be taken in standard form and is even,
for if not an additional column could be added to A; and then Result 4 used to
construct A° (p t* + 2,0), a contradiction. Continuing for i = 2,. , construct

A"(2,, z7,0) by applying Result 4 to A;—;. Now A, = A"(d, 2“,, ) where d
is odd. Such an array with an odd number of symbols can have only 1 column,
and the result is proved.
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