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Abstract: In this paper we propose an efficient method for estimating seemingly
unrelated multivariate regression models. The gain in efficiency can be partially
assessed by Hotelling’s canonical correlations. We apply this method to the estimation
problem and the concomitants selection problem in growth curve models.
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1. Introduction and Notation

1.1. Introduction

We study the following seemingly unrelated multivariate regression models

(SUMR Model):
Y. =X;B;+E; :1=1,2 (1.1)

where X; (n x r;) are possibly different matrices with rank r;, Y; and E; are
(n x p;), B; are r; x p; matrices of regression coefficients (i = 1,2), and if E =
(E1,B2) (n X p;p = p1 + p2), then the rows of E are independently distributed
with zero mean vectors and a common covariance matrix:

Y1 X
2:( n ”). (1.2)
Yo X2

Various authors have considered the estimation problems for model (1.1) by
treating it as Zellner’s seemingly unrelated regression equations (with p equations
but only two different design matrices) (see Zellner (1962,1963) and Srivastava
et al. (1987)). In this paper, however, we regard model (1.1) as an SUMR model
and purpose a new method to estimate the matrices of regression coefficients. It
will be shown that this method is efficient whether ¥ is known or unknown. As



422 ATYI LIU

an application we first investigate the concomitants selection problem in growth
curve models in order to make adjustment when the estimation method proposed
by Potthoff and Roy (1964) is inefficient. Then the estimation problem for the so
called seemingly unrelated growth curve models, which apparently have not yet
been studied in the literature, is considered. We believe this model is very useful
in biological science, for example in analyzing two results on different animals
which may have some dependence on each other.

1.2. Notation and useful results

We list the following notation and some results useful in this paper.

1. Let A, D be two matrices, tr(A),r(A), A’ and A denote respectively the
trace, rank, transpose and vectorized form (by stacking the columns under each
other) of A, and A ® D = (a;;D) denotes the Kronecker product of A and D.

2. Suppose W, Z are two random matrices. The covariance matrix of W is
defined as cov(W) = cov(W'). (Throughout this paper, the notation W' denote
an operation on W first by a transpose then by vectorized form) We write
W ~ N(M, A ® D) if W' has a multivariate normal distribution N(M',A®D).
With the above notations, the following results are easy to verify:

21 22 ’

then for any nonrandom matrices A, D1, A2, Do,

COV(A1WD1 + AzZDz)
= (A; ®D})V1i(A] ® D1) + (A1 ® DY) Via(A; ® D) (1.3)
+ (A2 ® D})Vy(A] ® D1) + (A2 ® D3)Vaa(Aj ® Dy).
(2) If X ~N(M,C ®D) and A, B are two nonrandom matrices, then
E(XX') = MM + (tr(D))C, (1.4)

AXB ~ N(AMB,ACA’' ® B'DB). (1.5)

3. Suppose A ~ W,,(k,V), the Wishart distribution with k degrees of

freedom, and A and V are partitioned as A = ( ﬁ;i ﬁ;i ); V = ( x;i X;i ),
where A11 and V11 are kl X kl. Then

(1)
1

E(Ahl) k—m-1

v-L (1.6)
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(2)
Ay~ Wi (k, Vi1), Aga~ W (k, Vo). (1.7)

(3) Given Ay, the conditional distribution of A;s is
A|Ag ~ N(V12 Vi Agy, Vins ® Ag) (1.8)

where Vi19 = Vi1 — V12V2—21V21-

4. Definition. Let T; and T3 be two estimators of a parameter matrix ©. We
say that T is superior to T3 if MSE(T;) < MSE(T3), where MSE(T;) = E(('f‘;—
®')(T: — @')) stands for the generalized mean square error of the estimator T
of &'

It is obvious that if T; and T are two unbiased estimators, then cov(T;) <
cov(T3) (i.e. cov(T)) < cov(T})) implies that MSE(T;) < MSE(T2), that is Ty
is superior to T3. For two positive definite matrices Q; and Qg2, the ordering
Q: < Q2 here means that Q; — Q; is non-negative definite.

2. Estimation with Known ¥

For simplicity we begin our discussion of the method of estimation with
known . In the next section the more complicated case when ¥ is unknown will
be investigated. Assume that X1 # 0.

Lemma 1. Let T; be an unbiased estimator of a parameter matriz ©, and,
T

suppose that Ty is a random matriz with zero mean matriz and cov( %,1 ) =

2

( X; X;; ) Then among the class of all linear unbiased estimators

T*(X1,Z1,X3,Z2) = X1T1Z; + X5T2Zy

the BLUE 1is
T*(Xo, Zg) =T + XoT2Zg (2.1)
where Xo and Zg satisfy
Xo® Z6 = —V12V2_21, (2.2)
cov (T*(XO, zo)) = Vii2 = Vi — V13 V5V, (2.3)

The proof of Lemma 1 follows by using the Gauss-Markov theorem in the

following linear model:
T | A
T2 0 €2
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E(€1>=0 COV(Q):(VM V12>.
€9 €2 Va1 Vo

The BLUE of © is

where

é*/ = Tll - V12V;21rf’2. (24)
If Xo and Zg satisfy (2.2), then (2.4) is equivalent to
0" =T; — XoT2Zo.

The proof is complete.

Lemma 1 is an extension of Rao’s covariance adjustment theory (see Rao
(1967)). Wang (1989) investigated its application and proposed a new method
of estimating the regression coefficients in the seemingly unrelated regression

equations.

We now consider the SUMR model (1.1) with known . As is well known, the
BLUE of B; obtained from the first equation of (1.1) is. By = (X[X)"1X1Yy,
an inefficient estimator because it does not consider the correlation between the
two equations. Denote T = T5Y 3, where T3 is any matrix with full-column rank
such that X, Ty = 0. Observe that E(T) = 0, and

cov ( B/ ) _ ( (XiX)teSn (X(X)TIXIT: ® Zio (2.5)
T T'2X1 (X’1X1)‘1 ® o1 (T’2T2) ® Y99 ’ .

where (2.5) is obtained by straightforward manipulations utilizing

Y! I®T;; I®T
cov<_.,1)=< ®in ® 12). (2.6)
Y, I®%Yy I®Xo
According to Lemma 1, note that the BULE of B; among the class of linear
unbiased estimators having the form

B1(T2, X1, 21, X2, Z2,) = X1B1Z1 + X, TZ,
1s )
Bl(Tg) = B1 -+ X()TZ()
where X and Zg satisfy
Xo ® Z) = —(X1X1) I X To(ThT2) ' ® £12255

that is,
Xo = —(X1X1) 7' X To(T5T2) ™7,
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Zo = 2;21221.
Therefore,
B (T2) = By — (X X1) !X Prp, Y255 S (2.7)

where PT2 = TQ(T%TQ)_ITQ and

cov(ﬁl(Tg)) = (X’1X1)'1 ® Y11
(XXX P, X (X X1) 7 ® $12T5; Dot (2.8)
Obviously the best choice of P, is Ny = I — Xp(X5X3)7'X); this is so
because for any matrix T such that X3Ts = 0, u(T2) C u(N3), where pu(-)

denotes the column space of a matrix. Therefore, P, < N2. We have obtained
an efficient estimator for By:

B, = (X,X1)"1X} Y — (XiX1) XN, Y255, T (2.9)
This estimator reduces to Zellner’s estimator when p; = p2 =1 (see Zellner

(1962)).

Theorem 1. For the estimator ]:"»1, we have
1. )
EBl = B17

2.

cov(B1) = (X4X1)t @ Tu - (X1 X1) T XN X (X3 X1) ™ ® B1o 835 By
< cov(B1);

that is, By is superior to B., the LSE of B;.

It is practical to assess how much is gained by using our efficient estimator in
comparison with the less efficient least squares estimator. To do so, first define
two kinds of measure to assess quantitatively the gain in efficiency.

Definition. Let T; and Ty be two unbiased estimators of a parameter matrix
@. Suppose T, is superior to Tj, then the gain in efficiency in using T in
comparison with T is defined as

e1(T2|T1) = |cov(T1) — cov(T2) | o, (2.10)

where | - |o is defined as the product of the non-zero eigenvalues of a matrix.
The second measure is

e2(T2 | T1) = tr(cov(T1)) — tr(cov(T2)). (2.11)
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The definitions here seem natural and meaningful. In fact, since T} is unbi-
ased for &/, lcov(T1)|o and tr(cov(T;)) are respectively the generalized variance
and the mean square error of ’f"l In general, the larger the e;s are, the more gain
in efficiency by using T2. Now consider the estimator (2.9).

The expression of cov(I~31) in Theorem 1 can be rearranged as follows:

~ 1
cov(B1) = (T@32)((XX1) 1@ T - (X4 X1) X No Xy (X X,) 7
=1 -1 1
® 5 TT5 T D7 ) (18 3 ). (2.12)

The expression (2.12) seems more meaningful than that in Theorem 1. Let p? >
R pi be the k non-zero eigenvalues of the matrix

1 1
] =1 ~2
211 212222 221211 .

It is well known that their positive square roots p; > --- > px > 0 are Hotelling’s
population canonical correlation coefficients (see Muirhead (1982)) arising from
the matrix ¥ defined in (1.2). Let 62 > --- > 62, be the m non-zero eigenvalues

of the matrix
(X’1X1)”1X'1N2X1(X'1X1)‘1.

Then, from the definitions (2.10) and (2.11), it follows that

e1(B1[By) = (f[é?) (i{lp?)p:m, (2.13)

i=1

where | - | stands for the determinant of a matrix.

It is clear from (2.13) that the gain in efficiency using B; depends on three
parts, of which only the third part (i.e. |¥11]) depends solely on the response
matrix Y;. The first part (i.e. []2; 6?) reflects the dependencies between the
two design matrices X; and X5. In fact, if the two matrices are least independent
(this is the case when X; = X, and hence [[%, 51-2 =0and B; = El), there is
no gain in using B; in comparison with B;. On the other hand, if the two ma-
trices are extremely independent (this is the case when the two spaces generated
respectively by the columns of each matrix are orthogonal, that is XX, = 0),
this yields the maximum gain in using T for a given ¥ (see Theorem 2 of this
section).

The second part in (2.13) (i.e. [T¥.; p?) has a well known statistical meaning.
It is Hotelling’s population correlation coefficient (see Hotelling (1936)), which
measures the dependencies of the two seemingly unrelated response matrices Y,
and Yy. For the given matrices X; and X, a larger correlation coefficient brings
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more gain in efficiency. On the other hand, if the canonical correlations are very
weak, in which case Hotelling’s correlation coefficient can be very small, the gain
in efficiency may be little.

Similar statements can be drawn for the second measure of gain in efficiency
defined in (2.11). We may see this from the bounds of the gain obtained below.
From the definition,

Cz(éllﬁl) = (Z 53)(’;1‘(21222—21221).

=1

Now use the fact that for any two non-negative definite matrices Q; and Q9,

AQtr(Qa) < tr(Q1Q2) < A(Q1)tr(Q2), (2.14)

where A(-) and A(*) stand respectively for the smallest and largest eigenvalues of
a matrix. It follows that

A(Eu)(ié?) (iﬂf) < e2(B1|By) < X@n)(i@z) (Ek:lpf> (2.15)
i= i= i=1 i=

In (2.15) the two terms Y_i%; 67 and Sk, p? also reflect respectively the depen-
dencies between the two matrices X; and X, and the dependencies between the
two response matrices Y and Y.

In practice T is often unknown. In that case we may substitute the sample
canonical correlation coefficients derived from an estimator of £ (see Section 3 of
this paper) for p; in (2.13) and (2.15) and evaluate roughly the gain in efficiency
as consistent estimates. This is a guide for determining if the estimator B, is
worthwhile.

The following theorem gives a necessary and sufficient condition for B to be

the BLUE of B; in the SUMR model (1.1).

Theorem 2. B; is the BLUE of By in model (1.1) if and only if PP, =PyP,,
where P; = X;(X!X)71XL (1=1,2).

Proof. Model (1.1) can be rewritten as

Y I®X, O B E
Y1) o ® X3 1?1 LB (2.16)
Y, 0 I®X, B, E,

1131 _(Z11®1 £12®1 I_T.:’l = ' x
Note that cov( E, ) = ( To1 @1 Sgp @1 ) and E( E, ) = 0. Denoting B]

and B} as the BLUE of B; and By, respectively, B} and B; satisfy the following
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equation
SHeXiX; D?eXiX;\ (B
SR QXX TR@X,X, ) \ By
(e Xx) =2eX!) (Y (2.17)
221 ® X12 222 ® X/2 37'2 )
11 12
where ( 721 §22 ) =y1

Left-multiplying both sides of (2.17) by

( I -2 @X[X,) (22 ®X,X,) ! )
0 I ’

it is easy to show as a matter of straightforward calculation that B} satisfies the
following equation

[S1 @ X(X; - £1¥(£2) 15 @ X P;X;|Bj
= (Z" @XPY1 + (S¥ @ X{N,y)¥, — [S(2%) 7152 @ X[ P, ¥1.(2.18)
After careful study of (2.18) we consider the following equation
(E1 e X(X1)B;] = (SH @ X)) Y, + (512 @ X[ N,) Y. (2.19)
The solution of B: is then
Bl = (X{X1)1X, Yy + (X, X1)" XN, Y, 22 (3) -1, (2.20)

Utilizing the result of the inverse of a partitioned matrix, we may verify that
SRS~ = —=15(222)71; hence B} is identical to the estimator By; therefore
B; = Bj if and only if

(Z*(E®) 72" @ X PoXy ) By = [B¥(S?)IsR @ X(Py ¥y (2.21)
Substituting the right side of (2.20) for B} we obtain
[22(22)715% @ (X{PoP; — X\ P,)| ¥y
= [¥(2?)7'%5nTg © X} PPNy | ¥s. (2.22)

Note that X’1P2P1 = Xin implies X/1P2P1N2 = X,IPQNQ = 0; thus, (2.22)
holds if and only if
X\ P,P; = X! Py. (2.23)
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It is easy to show that (2.23) is equivalent to P;P; = P;P2, and the proof
follows.

It can be concluded directly from this theorem that for a given ¥ our esti-
mator B; gets its maximum gain in efficiency in comparison with the LSE B if
and only if PoP; = P, Ps.

3. Two Stage Estimation when ¥ Is Unknown

When ¥ is unknown, the estimator B; is not feasible since it contains the

unknown ¥. In that case we replace ¥ by an observable matrix ?f—rl(—X)S and

obtain the so called two stage estimator of B, namely,

B1(S) = (XX1) 'X4 Y — (X)X1) ' XN, Y2855 Sa1 (3.1)

where S = (g; gg) = Y'NY,Y = (11,5), N = I - X(X'X)"X/, X =

(X1,X2) and A~ denotes the generalized inverse of A. Denote by Bi(S) the
solution of the equation (2.17) with ¥ replaced by S. Similar to Theorem 2 we
may show that B;(S) = BJ(S) if and only if P1P2 = P,P;. We focus our
attention on investigating the finite sample property of B;(S). In order to do so
assume further that E = (E;, F3) ~ N(O,I® X). Under this assumption it is
easy to show that S = Y'NY ~ W,(n—r(X),Z) and S is independent of X;Y;
and X;N,Y5. Moreover, since E(X{N,Y3) = 0, and E(S;;'S12) = £3, Ta1 (see
(3.3) below), it follows that
E(B1(S)) = B((X1X1) 'X1Y: - B((X{X1) ' X]N; Y585, S21)
= B; — (X{X1) 'E(X]N2Y?2)E(S;;'S21) = By;

that is, B;(S) is an unbiased estimator of B;. We now establish the following
theorem.

Theorem 3. The two stage estimator B1(S) is superior to LSE By if n is
sufficiently large.

Proof. By straightforward calculation it can be shown that the conditional
covariance matrix of B;1(S) given S, is

cov(B1(S)|S) = (X[X) '@y — (X)X XN X (X X;) ™!
® (12552821 + 812855 Ta1 — S12S57 $22S55 S21)-
Hence, the covariance matrix of B1(S) is
cov(B1(8S)) = (X} X1)7! ® By — (X)X1) X N Xy (X3 Xy) ™!
® |T12E(S3; Sn1) + E(S1287; ) D1 — E(8128;2122282‘21821)]. (3.2)
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Note that Sgp ~ Wy, (n — r(X) T92) and given Sjg the conditional distribu-
tions of Sia, 812522 and 812822 222 are N(212222 S22, B11.2 ® Sa2), N(Em):{zl,
T2 ® S5,) and N(212222 T2 ® 22252; ,), respectively, where £112 =
Y11 — 212222 ¥91. Using the results listed in Sectlon 1.2 we get

E(S12877) = E(E(S1255; [S22)) = 1253, (3.3)

E(S1285, 92555 S21)
= E(E(81282‘2122282‘21821|822))
= E(zuz;;zn+tr(>:225;21)211,2) (3.4)
= T1255, 50 + (tr(Z22ES5;))S112

p2
2112
71 (X) —p2 -1 11.2

= T1255, D1 + ~

Hence
cov(B1(8)) = (X;X1)'® Sy — (XiXy) XN X (X Xq) ™!

£1255 S — b2 > ) .
®( 120y T~ oy T T 2 ) (3-5)

which implies that,
MSE(B1(S)) = tr((XiX1) )tr(Z11) - tr((XﬁXl)’IX’lNzXl(X’lxl)“l)

[tr(21222‘21221) - — T(XI;2— P 1tr(211,2)} . (3.6)

Obviously MSE(B1(S)) < tr((X;X1) " tr(Z11) = MSE(B,) if n is sufficiently
large, and the proof is complete. The method for estimating B; may also be used
to estimate Bo.

In order to draw some more practical conclusions, note that B1(S) is superior
to LSE B, if and only if,

(D155 1) = X’;Q_ ——t(B12) > 0,

which is equivalent to,

pztr(}:n)
tr()312 22—21 221)

n—-rX)-1>
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Using (2.14) we observe that,

tr(Xq1) _ tr(®11)
tr(D12555 Bo1) [(211 1255 STy’ )(211)]
1 A(Z11) _ACu) m

IA

_1 I T k2
A(Ell)tf(2112 21225212212112) A(Z11) (Zizy £7)
_ M)k pm )\(211) p1

AE0) (T p) B - AEn) YT, o2

L
The last inequality holds because —Z—i—f—p— > ¥/TI%, p?, and the p;s are the same
as those in Section 2, therefore (3.7) holds if

)\(211 1

1>P1P2 om )\/H"——

We therefore obtain the following conclusion:

n—r(X) - (3.8)

Corollary. The two stage estimator B1(8) is superior to LSE B if the inequality
(3.8) holds.

This is an important result which brings the sample size n, the dispersion
of the response matrix Y; and the population canonical correlation coefficients

together. It is notable that 5%&1-% is the condition number of ¥1;, while the last

term py = [[*, p? is Hotelling’s generalized population correlation coefficient.
An important conclusion is that the range of pg over which B1(S) is superior
to B narrows down as the sample size n becomes smaller. This means that if
the canonical correlations are weak, then large n is needed for B1(S) to be more
efficient. In practical situations, the choice of n can be based partly on the sample
canonical correlation coefficients.

4. Applications
We now investigate the growth curves analysis by SUMR model.
4.1. Selection of concomitants in growth curve model

Consider the growth curve model suggested by Potthoff and Roy (1964)
Y =XBZ+E (4.1)

where Y (n x p) is a matrix of responses, X(n x t) and Z(g X p) are known matrices
with rank ¢ and g respectively, B is a t X ¢ parameter matrix and the rows of E
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are independently distributed with mean vector zero and covariance matrix 2.
In order to estimate B, let H(p x ¢) be a matrix with full column rank ¢ such
that ZH = I, let Y; = YH, X; = X then

EY; = X;B, cov(Y;)=1® (H'SH). (4.2)

Since (4.2) is a standard multivariate linear model, we obtain an estimator of B
which depends on the choice of H,

B(H) = (X}X,)"!X} Y = (X)X;) ' X YH. (4.3)

This estimation approach was first proposed by Potthoff and Roy (1964). As
pointed out by Rao (1965), this approach would be inefficient as it ignores the
information supplied by the concomitants defined as Yy, = YT, where T(p x m)
(m < p — q) is any matrix with rank m such that ZT = 0. Rao (1965) further
suggested the use of part or all of the concomitants (the case when m = p — q)
to make adjustment in order to improve the estimator (4.3). Note thau

EY; =0, cov(Yy) =1 (T'ST), (4.4)

and the rows of (Y1,Y,) = Y(H,T) are independently distributed with covari-

: Vi1 V H'YXH H'ZT
ance matrix V = (V; V;; ) = ( T'SH T’%T ) Hence (4.2) and (4.4) may

be regarded as'a special case of the SUMR model (1.1) with X, = 0. Applying
Theorems 1-3, we obtain the following results.

Theorem 4. 1. When £ is known, the BLUE of B among the class of linear
unbiased estimators having the form A1Y 1D + A2Y D3 is

BY(H,T,%) = (XjX1) 'XiY) - (X;X0) ' X} YoV Vi
= (X{X)IXIYH - (X1 X)X YT(T'ET) ' T'SH. (4.5)

2. When ¥ is unknown, the two stage estimator

B(H,T,S) = (X;X;) ' X|YH - (X{X;)"'X{YT(T'ST)"'T'SH  (4.6)
is superior to the estimator (4.3) if n is sufficiently large, where S = Y'(I —
X1 (X, X1) XY

Theorem 4 gives an efficient method for improving the estimator (4.3) by
making use of the concomitants. When all of the concomitants are considered,
(4.5) leads to the BLUE of B in (4.1), and then (4.6) leads to the MLE of B
obtained by Khatri (1966).



EFFICIENT ESTIMATION OF SUMR MODELS 433

4.2. Seemingly unrelated growth curve models

During the past 30 years there have been many papers devoted to the estima-
tion of a growth curve model. But the study of two or more growth curve models
which we call seemingly unrelated growth curve models (SUGC model) has not
yet received enough attention. In this paper we study the following SUGC model:

Y; =X;B;Z; + E; 1=1,2 (4.7)

where Y; and E; are n x p;, X;(n x t;) and Z;(¢; x p;) are known matrices
with rank t; and g¢; respectively, B; are ¢; X ¢; parameter matrices and the rows
of E = (E;,E;) are independently distributed with zero mean vectors and a

common covariance matrix
11 2
2=< 11 12>. (4.8)
Yo1 Yoo

We now give an efficient method to estimate the parameter matrix B;, while the
estimator for Bs may be obtained similarly.

Following the method suggested by Potthoff and Roy (1964), let H;(p; x ¢;)
be a matrix with full column rank g¢; such that Z;H; = I (i = 1,2), in which
case (4.7) may be reduced to a SUMR model

Y. =X;B;,+E;, i=1,2 (4.9)

where Y; = Y;H;, E; = E;H; and the rows of E = (E;, E;) are independently
distributed with zero mean vectors and a common covariance matrix

Vi V H £, H; H;S,H
V:( 1 12):( R 2). (4.10)

Va1 Voo H,Z21H; H)Y9H)

We obtain the following results:

Theorem 5. 1. When ¥ is known, the estimator

B; = (X3X1) 7' XY - (X1Xy) ' X No Y, V5, Vi
= (X]X) X Y1 H; - (X1X,) I XN, Y Hy (Hy S90Hy ) T HL B0 H; (4.11)

is superior to the estimator obtained from the first equation of (4.9)
B, = (X|X;)'X|YH;, (4.12)

where Ny = I — Xo(X4X2)"1X}.
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2. When ¥ is unknown, the two stage estimator

Bi(T) = (X{X1)"'X!Y.H,
—(X}X1) T IX N, Yo Hy (H 5o Ho ) ' HY S Hy  (4.13)

is superior to (4.12) if n is sufficiently large, where S = Y'NY, Y = (Y1,Y3),
and N =1 - X(X'X)1X, and X = (X1, X>).
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