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IMAGE RESTORATION: FLEXIBLE NEIGHBORHOOD
SYSTEMS AND ITERATED CONDITIONAL
EXPECTATIONS

Heping Zhang

Yale University School of Medicine

Abstract: The iterated conditional expectations (ICE) procedure is studied under the
Ising model. If the parameter in the Ising model is not well chosen, experiments
show that the ICE suffers from problems of over- and under-smoothing. To detect
and avoid these problems, a criterion is proposed in which the performance of the
iterations is predicted. Based on this criterion, we have an algorithm that eliminates
the over- and under-smoothing iterations, adjusts the parameter in the Ising model,
and finally leads to the “right” parameter and the “right” number of iterations. The
ICE procedure is successfully modified by the proposed algorithm according to the
experiments.
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1. Introduction

Owen (1986, 1989) introduced the method of iterated conditional expecta-
tions (ICE) for segmenting images using the Ising model that is described in
Section 2. As a simple modification of Besag’s (1983) iterated conditional modes
(ICM) algorithm, ICE replaces the discrete problem of ICM by a continuous one
that retains more information from one iteration to the next. Such an idea is
closely related to the theory of mean field approximation that has been modified
for various applications; see, e.g., Bilbro et al. (1988). In very noisy images, ICE
greatly improves the image segmentation, as shown in Owen (1986, 1989). A
number of authors (e.g., Marroquin (1985), Kent and Maria (1988), Johnson et
al. (1989) and Manbeck (1990)) applied ICE-like methods successfully in differ-
ent contexts and showed the advantage of using the ICE scheme by comparing it
with other competing methods.

However, convergence properties of the ICE algorithm are unknown. To
study its performance, we design various experiments and make empirical obser-
vations. The numerical evidence suggests that the algorithm usually converges in
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the sense that the restored image changes very little after a large number of iter-
ations, though not necessarily resulting in a useful image. Without a well-chosen
parameter in the Ising model, the restored image suffers from severe over- and
under-smoothing problems. The present paper proposes a performance criterion
to study the process of the image reconstruction. Based on this criterion, we
implement a stopping rule which terminates the over- and under-smoothing iter-
ations, and an adjusting procedure to search for a parameter which cures these
problems. We succeeded using these protocols to modify the ICE scheme.

In the rest of the paper, Section 2 introduces the model and reviews some
useful methods. In Section 3, two experiments are designed to illustrate how the
choices of the parameter in the Ising model cause the over- and under-smoothing
problems for the ICE method. More examples are studied in Section 4 to show
the impact of introducing the performance criterion, the stopping rule, and the
parameter adjusting procedure to the ICE algorithm. '

2. Model and Methods
2.1. Model and notation

Suppose that the original image is an M x N array and that z; denotes the
gray level at pixel t = (¢,7), taking values from 0 to k. For binary images, k = 1.
The configuration space is 2 = {0,...,k}",n = MN. A general model for noise
degradation used in image processing is

Y, = g(X;)N} + N2, (1)

where the Y;’s are the intensities of the observed image, N} and N? are noise
variables at pixel ¢, and g(-) is a blur function; see Jain (1989).
We consider a special case of the model (1):

}ft = Xt + €¢, (2)

namely, we assume the identity blur function and a degenerated speckle noise. So,
each pixel t is associated with an undegraded gray level X, an observed intensity
Y:, and a noise level ¢;.

Many algorithms have been proposed to reconstruct images based on model
(2). This paper focuses on the maximum a posteriori (MAP) approach by fol-
lowing the notation of Besag (1986).

Assumption 1

l(ylz) = P[Y = y|X = z] = [] f(velzs), (3)

t
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where f(-|) is a known conditional density. This assumption implies that the
observed intensity at each pixel is conditionally independent given the true scene.

Assumption 2

P(zt| X g\t) = P[X: = 24| X g\t]) = pe(24]| Xo1), (4)

where p; is specific to pixel ¢, X5 denotes the neighbor gray levels of pixel ¢,
and Xg\; denotes gray levels elsewhere. That is, the undegraded image X is a
realization of a locally dependent Markov random field with specified distribution
p(z). This assumption allows us to estimate the gray level at the current pixel
through its neighborhood only. In this paper, the neighborhood of a pixel ¢t =
(,7) is defined by

ot ={(k,1): (i—k)>+(-1)?<d}.

When d = 1, 2, and 4, we call the resulting neighborhood systems the first,
second, and third orders, respectively.
For a binary image, we consider the Ising model and take

exp(B3b:)
exp(Bb:) + exp(Bwy)’

where b; and w; are the numbers of 1’s and 0’s in Xg;. Then, the conditional
distribution of X;, given the values of X5; and Y3, is determined by

f1(yt) exp(Bb:)
f1(y:) exp(Bb:) + fo(y:) exp(Buwy)’

where f.(y:) = f(y:|Xt =¢), ¢c=0,1.
We estimate the true image X with & which maximizes the posterior proba-
bility

(5)

pt(1|Xat) =

PX:=1|Xp, Y1 =yt] = (6)

p(zly) o l(y|z)p(z). (7)

2.2. Methods

(i) Annealing method
Geman and Geman (1984) considered a system

pr(z,y)  {I(ylz)p(=)}7,

where T' > 0 is a parameter. In the limit as T — 0, pr(z,y) is concentrated on

~

z.
They designed an algorithm using the Gibbs Sampler. At the kth iteration,
choose “temperature” T'(k) = C/log(1 + k). If C is large enough, the procedure
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converges and finds & after a sufficient number of iterations. Since the rate that
T — 0 is very slow and the constant C is required to be large, the annealing pro-
cess is computer-intensive. When the signal-to-noise ratio (SNR) is low, small C
(e.g., C = 1) works well in some simulations. The magnitude of C depends on
the SNR, but to our knowledge no explicit relation is available. To reduce the
amount of computation, Gidas (1989) proposed a renormalization group (RG) ap-
proach. The RG method computes the MAP estimator of the undegraded image,
by generating iteratively a multilevel cascade of restored images corresponding
to different levels of resolution. His simulations show that the algorithm is much
faster than the original annealing method and that the results are improved.
However, it is usually impossible to justify the strong assumptions required in
his theory and computation. A more severe problem of the simulated annealing,
suggested by the work of Greig, Porteous and Seheult (1989), is that with prac-
ticable ‘temperature’ schedules it generally produces poor approximations to the
MAP estimate to which it converges.
(ii) Iterated conditional modes

Besag (1986) proposed a simple, iterated method to avoid intensive compu-
tations based on the local characteristics of the image. At each iteration, z, is
assigned 1 if (6) is larger than 0.5 and 0 otherwise. p(Z|y) never decreases at any
stage during updating, and hence converges to a local maximizer of the posterior
distribution. This procedure converges rapidly, but its results are not satisfactory
in general. Jubb and Jennison (1988) suggested a modification which extends the
range of ICM to high noise cases as well as reducing the computational cost.
(iii) Exact maximum a posteriori estimation

For binary images, Greig et al. (1989) showed how the images with MAP
probability can be evaluated exactly using efficient variants of the Ford-Fulkerson
algorithm for finding the maximum flow in a certain capacitated network. How-
ever, the parameter (3 involved in their model is considered to be fixed and known
as with other existing methods. In Section 3, it will be seen that the choice of 3
is crucial to the quality of the restored images, as is also shown in their numerical
results. There is no single choice of § to fit all images. For the simulations, we
know the truth and thereby adjust the parameter. In practice, we should select 8
dynamically to best suit the image of interest. In fact, this motivates the current
research.
(iv) Iterated conditional expectation

Owen (1989) noted the following situation: If a pixel t has eight neighbors,
all with the most recent posterior probability 0.51 of being a 1 (black), then ICM
handles it the same way as one in which all neighbors had posterior probability
0.99 of being a 1, but in quite a different way from a pixel with all neighbors
having probability 0.49 of being a 1. There is some loss of information in this
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process of ICM. Owen (1986) proposes to replace the quantity b; in (6) with
2 se9tPs; here p, is the current value of P[X, = 1|Xp,,Y; = y,]. The updates

are via
fi(ye) exp (ﬂ > ps)

sEBt

Pt = (8)
|

f1(y:) exp (ﬁ > Ps) + fo(y:) exp [ﬁ > (1-p,)
s€0t s€ot

and ICE delays the assignment of black or white pixel until the end. Such an

assignment may also be extended to the multicolor images. However, we shall

not discuss this extension in this paper.

3. The Effect of  and the Neighborhood System

We now use ICE and show how the choices of the parameter 8 and the
neighborhood system (defined in the previous section) in the Ising model affect
the quality of the restored images. In all examples, the pictures are plotted with
256 by 256 pixels, where white and black pixels have bits 0 and 1, respectively.

Example 1. Chinese Character

Figure 1(a) is a Chinese character meaning “picture”. We simulated our data
Y according to model (2) and i.i.d. normal noise N(0,16), with the true image
displayed in Figure 1(a). Figure 1(b) is a pointwise degraded image obtained
by assigning a pixel to be black if its observed intensity is above 0.5, or white
otherwise.

) g
hd

(a) Original image (b) Degraded image
Figure 1. Chinese character
Experiment 3.1. This ezperiment is designed to show how the restored im-

ages change over the iterations. The program is stopped at the 100th, 500th and
1000th iterations. To illustrate how the neighborhood systems and the associated
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parameter 8 influence the resulting images, three kinds of neighborhood systems
are used with typical choices of f.

4 4

|~

i
:

)
-

| (First, 100) | (Second, 100) | (Flexible, 100)
(First, 500) | (Second, 500) | (Flexible, 500)
(First, 1000) | (Second, 1000 | (Flexible, 1000)

4

Figure 2. Comparison of restored images from different orders of neighborhoods and

iterations

We started with the first order neighborhood and 8 = 1.0. The three images
in the first column of Figure 2 are the restored images from the 100th, 500th and
1000th iterations. Next, we tried the second order neighborhood with 8 = 0.7.
The restored images are similarly displayed in the middle column of Figure 2.
Now, Algorithm 1 below allows flexible neighborhood systems during updating,
and the resulting images are shown in the last column of Figure 2.

Algorithm 1. Choose Flezible Neighborhoods
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At the current pixel t, let p; be defined in (8).
If (0.49 < pt < 0.51) then use the third order neighborhood and 8 = 0.5;
else if (p; > 0.35 or p; < 0.65) then use the second order and 3 = 0.7;
else use the first order neighborhood and 8 = 1.0.

This algorithm chooses a larger neighborhood for a pixel having posterior
probability close to 0.5. The cutoff points 0.35, 0.49, 0.51, and 0.65 are selected
after a number of experiments. Owen (1989), among others, discussed the ratio-
nale of choosing 3. Here, our rationale is to resolve the over- and under-smoothing
problems for the ICE algorithm.

Remarks on Figure 2: (i) The most risky choice is the second order neigh-
borhood with 8 = 0.7, which results in a very serious over-smoothing problem )
though it happens quite late. (ii) The process is very stable when the first order
neighborhood is used with 8 = 0.5, however, the images are not smooth enough.
(iii) When the order of the neighborhoods varies according to Algorithm 1, the
process is stable and the images are smooth. Unfortunately, it is hard to establish
an optimal way to vary the neighborhood systems (cf. Derin and Won (1987)).
We do not pursue this topic here.
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Figure 3. Misclassified ratio

To get more insight into the problems, we now introduce the misclassification
rate, which is the ratio of the number of the misclassified pixels to n. Let us
examine Figure 3, where the horizontal axis is the number of iterations and the
vertical axis is the percentage of the misclassified pixels. The dotted, solid, and
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dashed lines correspond to the misclassification rates obtained by the first, second,
and flexible neighborhoods assigned by Algorithm 1, respectively. The left panel
is an enlarged picture of the right one for only 100 iterations. It can be seen from
this figure that the two curves resulting from the first and flexible orders merge
at the stable states after about 80 iterations. In contrast, the curve from the
second order increases after reaching its minimum at about the 40th iteration.
The misclassification rate is a natural criterion to judge the performance of
image restoration as demonstrated in Figure 3, from which, however, the smooth-
ness of the images has not been exploited enough. For example, the insignificant
departure between the dotted and solid curves in Figure 3 does not reflect differ-
ences in smoothness of those corresponding images in Figure 2 (columns 1 and

3).

Experiment 3.2. In the previous ezperiment, we fized the parameter values with
the specified order of neighborhood systems. In this experiment, we fiz the neigh-
borhood to be second order, but choose a series of f =0.2,0.3,0.4,0.5,0.7,1.0.
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Figure 4. Misclassified rate for different parameters

Figure 4 uses the misclassification rate to show how the restored image
changes for different 8 at each iteration, where each curve is labeled with the
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corresponding . we see that all curves decrease drastically at the beginning,
but they behave differently later on. For small 3 like 0.2, the curve flattens very
soon, and the misclassification rate cannot be reduced further. For large 3 like
1.0, the curve rises rapidly after reaching its minimum. For moderate B, say 0.3,
the curve seems desirable. Figure 5 vividly displays all the images restored from
the experiment after 500 iterations. From left to right and then top to bottom,
the images come from 8 = 0.2,0.3,0.4,0.5,0.7, and 1.0.
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Figure 5. Restored images from ICE with the second order neighborhood and different
parameter 3’s after 500 iterations

We can learn from Figures 4 and 5 that there exists a critical value of 8 (e.g.,
0.3 here), above which the restored image smoothes over and over such that much
of its detail is lost; on the other hand, below which the image remains noisy. The
former problem is called over-smoothing and the latter under-smoothing.
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To resolve the over- and under-smoothing problems, one would presumably
look for an “optimal” choice of 3. We begin with a small 3; if the process sticks
early, increase 8 and restart. Repeat the process until an ideal value of 3 is found,
and then use the final § to run for a while. Qur experiments suggest that this is
a safeguard procedure, since starting with large values of 8 tends to lose the fine,
detailed features of the image. The question is how and when to increase 3. A
criterion will be proposed shortly.

4. Modification of ICE
4.1. Stopping rule

In this section, we try to predict the performance of the image restoration
process. For simplicity of the algorithm, we merely focus on chasing the misclas-
sification trend and providing information about the smoothness of the restored
images.

4.1.1. Black and white intensities

Recalling Assumptions 1 and 2, we estimate the proportion of black pixels,
denoted by R, by the observed proportion,

Bw=>Y V. (9)

When the restored image is either over-smoothed or under-smoothed, the fraction
of its black pixels, say IRy, usually differs from Ry, as well as from R, (a
trivial application of the strong law of large numbers). Moreover, the further
IRy, deviates from Ry, the higher is the misclassification rate. We use the
difference ‘

dyw = [IRbw — Riw (10)

as one of the indicators for the quality of the restored image. Indeed, a restored
image cannot be good if it does not have the right amount of pizels of different
colors.

Example 1. (continued) Chinese Character
The Chinese character is now degraded by normal noise with two levels;
o = 1.0 and 4.0. The misclassification rate and dy,, are recorded at each iteration.
First, consider 0 = 4.0 and use the second order neighborhood with 8 =
0.5,1.5. Then, o is re-set to 1.0. Figure 6 shows the results.
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Figure 6. Similarity of misclassified rate and black white ratio. The horizontal and
vertical axes are the number of iterations and the percentage of pixels, respectively.

Panel (c) is the plot for 0 = 4.0 and 8 = 0.5; where the solid curve corre-
sponds to the misclassification rate, and the dotted one to 100-dp,,. The similarity
of the two curves is persuasive. In Panels (a) and (b), the misclassification rate
curves are above the other ones by approximately constant distances. In Panel
(c), both curves behave similarly except for the period from the 50th to 100th
iterations. In Panel (d), the misclassification rate curve goes up after about 30
iterations due to over-smoothing, but dj,, keeps decreasing slowly. The misclas-
sification rate and dj, share the feature that they first decrease drastically and
then change (up- or downward) gradually after an intermediately decreasing pe-
riod. So, the key lesson from Figure 6 is that the iteration should be terminated
when dy,, either changes much slower than it did at an early stage, or it begins to
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increasé, because this signals that there is no more gain from further iterations.
The following algorithm adds this simple idea to the ICE scheme.

Algorithm 2. Stopping Procedure Based on dp,,
1. find Ry, from (9);
2. set 7, the jump between iterations, proportional to the noise level (e.g., [o]+1);
3. first compute dpy, in (10) from the pointwise degraded image and then from
the restored image after j + 1 iterations. Let dfy be the difference between the
two dpy’s;
4. at iteration jk+1, compute dfy, which is the difference of d,, between iterations
jk+1and j(k—1)+1;
5. continue until dfy < constant - dfy.

Remarks on Algorithm 2: (i) Step 2 is optional. The reason for skipping
a fixed number (j) of iterations is twofold. First, it takes O(n) operations to
calculate I Ry, and hence dp,,. One would avoid tracking dp, at every iteration to
improve the computational efficiency. Second, df, from two consecutive iterations
may be affected too much by the noise contained in the restored images. Jumping
over some iterations can avoid the random fluctuation and catch the overall trend.
Since o controls the noise level in the restored images, j is set to be proportional
to 0. On the other hand, a larger j implies a longer delay of our decision. To be »
conservative, we suggest j = [o]+ 1. (ii) The constant in Step 5 is chosen so that
the process stops near an ideal point; that is, we are not able to gain more from
further iterations. The following example demonstrates this algorithm.

Example 2. Markov Random Field (MRF)

The image data is a “simulated” third order MRF obtained by the algorithm
suggested in Cross and Jain (1983), with parameter 1.0 for the constant term, 3.0
for the first order neighbors, 2.0 for the second order neighbors, and 1.0 for the
third order neighbors. It is not crucial to estimate the exact order of neighborhood
systems and parameters of the MRF for the reconstruction problem. We select
the second order neighborhood with two choices of £, 0.5 and 1.0. The noise
N(0,4) is added into the true image. The jump in Algorithm 2 is set at 3, i.e.,
o+1. ‘ A

The simulated MRF image is plotted in the upper-left panel of Figure 7,
with the pointwise degraded image on the right. According to Algorithm 2 the
process stops at the 7th and 10th iterations for # = 0.5 and 1.0, respectively.
The middle and bottom images in the first column of Figure 7 are the respective
restored images. The restored images with (on the left) or without (on the right)
the stopping rule are compared in the bottom two rows of Figure 7.
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B Markov field Degraded field

0.5 Restored image Restored image
with stopping rule | without stopping rule

1.0 | Restored image Restored image
with stopping rule | without stopping rule

Figure 7. Simulated Markov random field

According to the pairs of images with or without the stopping rule in Figure 7,
our procedure indeed helped us to stop at the right time. Figure 8 shows it more
precisely; where the solid curve is the misclassification rate for 8 = 0.5, the
dotted curve for B = 1.0, and the asterisks for the stopping spots. The stopping
spots are well located at the minimum of the curves. Moreover, Figure 7 shows
that, without the stopping rule, large S results in serious over-smoothing; see
the right-bottom image. After implementing the stopping rule, we prevent the
over-smoothing quite well; see the left-bottom image. This phenomenon is also
apparent in other image data like the Chinese Character and the Scotland Map.
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Figure 8. Misclassified rate and stopping points

Our final goal is to find an automatic procedure for choosing both the optimal
parameter § and stopping time. To this end, it is necessary to establish a more
sophisticated criterion than d,, alone. For example, in the low noise cases, where
the noises do not destroy the image too much, we could have

IN Riy — R| < |Row — Rpul, (11)

where N Ry, is the fraction of the black pixels in the pointwise degraded image;
that is, Ry itself is not accurate enough. Therefore, dy,, is not very helpful when
o is very small. Further, we saw from Panel (d) in Figure 6 that d;, alone is
not enough in the high noise cases. As was mentioned earlier in Section 3, even
the behavior of the misclassification rate can be predicted: it lacks information
on the smoothness of the images. The problem is overcome by introducing the
proportion of boundary pixels as a measure of smoothness, denoted by BR; here
the boundary pixels are ones whose first order neighborhood has at least one
pixel of different color. This is another important feature of the images. BR 1is
usually small when the image of interest is smooth. From now on, BR denotes the
proportion of the boundary pixels for the restored images. Our procedure should
result in small BR and dj,, under the assumption that the image is smooth.

4.1.2. Smoothness and intensities
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Let us start by studying Example 1 again.

Example 1. (continued) Chinese Character

First, we find Ry, = 0.2709, as opposed to Ry, = 0.2741. They are quite
close. In simulation, we can also obtain the proportion of the boundary pixels
BR, which is 0.0675. However, we cannot estimate it from Y as we did for Rj,,.

Next, use the first and second order neighborhood systems associated with
different values of 8. Table 1 summarizes the numerical results from ICE after
500 iterations. The first column shows the order of the neighborhood systems;
NA is for the pointwise degraded image. The next column lists the 8 values. The
last two columns are, respectively, the ratios of the boundary and black pixels of
the restored images.

Table 1. Comparison of ratios for chinese character

order B BR IRy,
NA 0.00 | 0.9313 | 0.4779
' 0.25 | 0.8463 | 0.4601
0.50 | 0.3927 | 0.3681
0.75*% | 0.0714 | 0.2752
1.00 | 0.0607 | 0.2708
1.25 | 0.0542 | 0.2503
1.50 | 0.0601 | 0.2696
0.20 | 0.6858 | 0.4234
0.30* | 0.0746 | 0.2708
0.40 | 0.0538 | 0.2587
0.50 | 0.0452 | 0.2275
0.70 | 0.0303 | 0.1611
1.00 | 0.0378 | 0.2606

ICI IR CY Y EYCY 0] YUY (U U () (U

The A values marked with asterisks have the virtue that both BR and IRy,
are close to the underlying true values. The following combination, ¢ of dj,, and
BR is suggested for searching for such choices of 8

BR

= ——— + dpy- 12
P (12)

q

The quantity g contains the information of the misclassification rate through dp,,
as well as the smoothness through both terms in (12).

Remarks on ¢: (i) In general, when BR, dj,, and hence g are “reasonably”

small, the restored image, obtained from ICE, is rather good because it is smooth

and has a reasonable amount of pixels of different colors. However, we need to pay
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some attention to the situation; for instance, in the chess board (see the first row
in Figure 11), if we simultaneously over-smooth a black square somewhere and
a white square somewhere else, then dj,, remains unchanged and BR decreases,
so ¢ is smaller; but the image gets worse. It is worthwhile noting that the over-
smoothing usually occurs after the period when g changes slowly. If ¢ cannot
be significantly reduced, the process will be terminated soon because further
reduction of ¢ is not meaningful. So, we usually quit before simultaneous black
and white over-smoothing.

(ii) Formula (12) is a simple combination of BR and dj, which trades off
the two factors as follows. In the low noise cases, well restored images could
have larger d,, than the pointwise degraded images because Ry, is not accurate
enough; the closeness to it means inaccuracy to some extent. ¢q will be reduced as
BR decreases though dy,, may increase. This is why under-smoothing is avoided.
In the high noise cases, the magnitude of dp,, plays a more important rule than
BR. The weight ;51:—1- is introduced to prevent the dominance of BR over d,, in
the high noise cases; ﬁi is another reasonable choice. '

(iii) At the initial step of ICE, one can artificially make a picture with dp,, ~
0, in which half is white and the other half is black so that BR cannot be smaller.
It appears that ¢ has nothing to do in this situation. Fortunately, that is not
the case. We can easily get around by asking the questions: (a) Why should we
start from this initialization and why not? (b) If there is no reasons to answer
why not, do we expect to reconstruct our image in one iteration? If not, we skip
the beginning one or two iterations, and keep chasing ¢ afterwards. Otherwise,
at the initial step, we should compute dp,, from a randomly chosen part of the
image.

4.1.3. More examples

More experiments will be conducted in order to convince that g provides
useful messages for the image restoration, although evaluating a restored image
is subjective. It is beyond the scope of this paper to discuss the evaluation of a
restored image. The chinese character is used as a main example because it is less
controversial, at least among Chinese, by visualizing it. In all our experiments we
know the true image. As a simple way out, we sometimes plot the misclassified
pixels accompanying the true and restored images. In the following, the second
order neighborhood is chosen. ¢ and the misclassification rate are recorded up to
500 iterations, and Figures 9 and 10 exhibit their relationship. Figure 9 is similar
to Figure 6, but dy,, in Figure 6 is replaced with ¢ in Figure 9. In Figure 10, the
x-axis is the misclassification rate and y-axis is 100 - q.
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Example 1. (continued) Chinese Character

The top-left panels in Figures 9 and 10 show that g and the misclassification
rate are linearly correlated for the cases o = 0.5, 8 = 0.5 and ¢ = 4.0, g = 0.15.
Corresponding to ¢ = 4.0 and 8 = 0.75, the middle-left panels in Figures 9 and
10 are more interesting. At the beginning, the misclassification rate decreases
significantly and ¢ retains the linear relationship with it. When it starts to
decrease and then increase slowly, ¢ has the negative correlation with it. After a
while, it increases more rapidly and g retains the strictly linear relationship with
it.
Example 2. (continued) Markov Random Field

As before, 0 = 2.0. Choose 3 = 0.4. The middle-right panels in Figures 9
and 10 show similar phenomena when ¢ and the misclassification rate are not too
small.

Example 3. Scotland Map

The original image data is the map of Scotland; see the third image in the
first column of Figure 11. We tried two experiments. One has o = 3.0, 8 =0.3;
the other 0 = 4.0, § = 1.0. The corresponding graphs are at the bottom of
Figures 9 and 10. »

From these figures we can conclude that when ¢ is not too small, it has a
clear linear relationship with the misclassification rate; when it is too small, it
implies dy,, is very small and the relationship may be destroyed by the inaccuracy
of dp,, Which results from Ry, Luckily, the accuracy of g is usually good enough
to determine the optimal parameter and stopping time, as our examples suggest.

4.2. Main algorithm

Now is the time to propose an algorithm which summarizes the previous
discussion.

Algorithm 3. Modification of ICE

1. initialize 8. A reasonable choice for many examples we studied is 0.1. Usually,
the higher the noise level, the smaller § should be chosen to begin with;

2. set the amount of increment of 3, usually at 0.1 or 0.05;

3. use the initial 4 to run the ICE procedure;

4. pause running if ¢ decreases slowly. This is determined by Algorithm 2 in
which dj,, is replaced with g;

5. if ¢ is not below some small number, (0.09 works for all our examples) and S
is not beyond some level, (the common choices are 0.9-1.3 for o below 1,0.5-0.7
for o between 1 and 2, 0.4-0.5 for o between 2 and 3, 0.3-0.4 for the rest) then
increase  and go back to Step 3; otherwise terminate the process.
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4.3. Demonstration

Four different kinds of images are used to demonstrate Algorithm 3.

Original image Restored or misclassified images
Chess board Restored board o = 1.0 c=3.0
Chinese character | Restored character o = 0.5 c=4.0
Scotland map Restored map o = 4.0 Misclassified pixels
Markov field Restored field o = 2.0 Misclassified pixels

Figure 11. Comparison of images
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Example 4. Chess Board

The original image is plotted on the top-left of Figure 11. The top-middle and
top-right ones are restored from the degraded images with noise levels o = 1.0
and 3.0, respectively.

Example 1. (continued) Chinese Character

The second row in Figure 11 is for the Chinese Character. The original image
is on the left; next to it are the restored images from the noise levels o = 0.5 and
4.0, respectively.

Example 3. (continued) Scotland Map

Now, 0 = 4.0. Since it is not easy to asses the Scotland map visually, we
display the true and restored images together with the misclassified pixels in the
third row of Figure 11. 7

Example 2. (continued) Markov Random Field
Three images at the bottom of Figure 11 are plotted as'in Example 3.

4.4. Conclusions

All restored images look remarkable. For the noise level o below 2.0, we can
almost completely reconstruct the true image; for o above 2, the main structures
are well recovered. Table 2 summarizes the goodness of fit for all examples, from
which we can see that for restored images, the fraction of the black and boundary
pixels is close to the true fraction. The misclassification rates are also listed.

Table 2. Goodness of restored image

black ratio bound ratio mis pixels

image o | true % | restored % | true % | restored % mean %
chinese | 0.5 6.75 6.77 27.41 27.40 0.5325
chinese | 4.0 6.18 26.39 9.6527
scotland | 4.0 6.03 2.39 42.35 41.41 6.0392
markov | 2.0 20.36 22.50 50.01 50.84 14.436
chess 1.0 10.64 10.27 50.00 50.07 2.6245
chess 3.0 9.31 48.27 10.6232

Throughout this paper, ICE serves as the main scheme. As is evident from
our examples, ICE works very well after we set the automatic procedure for choos-
ing the optimal parameter and stopping time. Qur ideas are not restricted to ICE
nor to the model (2), and should be applicable in implementing other procedures.
For instance, for a noisy image resulting from transmitting a true binary image
with certain known mis-transmission rate, one may replace o2 in (12) with the
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mis-transmission rate and build ¢ into this algorithm (not necessarily ICE) to
guide the image processing.

Although we focus here on binary images, the ICE scheme can be extended
to deal with multicolor images and to different contexts as mentioned in the
introduction. For multicolor images, as a simple illustration, Rp, will simply
be the average intensity of the true scene and the definition for boundary pixels
remains. Hence, ¢ is directly applicable.

In all examples, we added normal noises to true images, but the normality is
not needed at all for the validity of our procedures.

The quantity ¢ in (12) plays the key rule in the update step. It carries two
important features of a restored image. However, we cannot offer a theoretical
justification whether ¢ can lead to the convergence of restored images to the true
one. Fortunately, our experiments indicated that Algorithm 3 is not so sensitive
to choices for which BR and dj,, are so combined that they will both be small
if ¢ is small and in which ¢ has a counter effect on BR. (12) happens to be
the simplest candidate to bear this information. Successfully, it leads ICE to
produce better images, terminate nuisance iterations, and prevent the over- and
under-smoothing problems.
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