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ON THE LOCAL OPTIMALITY OF OPTIMAL LINEAR
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Abstract: For the multivariate normal mean vector testing problem, it is shown that in
the light of local power, the most stringent somewhere most powerful test (MSSMPT)
performs better than the likelihood ratio test (LRT) for the entire positive orthant
space.
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1. Introduction

Let X; = (Xi1,...,Xi), 1 =1,...,n, be n independent and identically dis-
tributed random (k-) vectors (i.i.d.r.v.) having a k-variate normal distribution
with mean vector pu = (p1,...,ux) and non-negative definite (n.n.d.) dispersion
matrix A. Consider the problem of testing the null hypothesis Hy : u = 0 against
the restricted alternative Hy : g > 0, ||]|> > 0 (which constitutes the positive
orthant space R**). A popular test for this restricted alternative problem is
based on the usual likelihood ratio test (LRT) criterion (see Bartholomew (1959
a,b), Kudé (1963), Niiesch (1966), Perlman (1969) and extensive literature cited
in Robertson et al. (1988)). However, the (asymptotic) optimality properties of
the LRT are not that well known (compared to the case of the global alternative
p # 0 where the LRT has the asymptotic most stringent and best average power
properties). Because of this, Abelson and Tukey (1963) considered an optimal lin-
ear test (OLT) statistic which was later extended by Schaafsma and Smid (1966),
Snijders (1979), Shi (1987) and Shi and Kudé (1987), among others; these are ref-
ered to as the most stringent and somewhere most powerful (MSSMP) tests. The
advantage of an OLT is that the test statistic has a normal distribution so that
the critical level can be computed very easily, and the power can be expressed in
terms of a normal distribution. Also, such an OLT is most powerful for alterna-
tives in a certain direction. On the other hand, for such restricted alternatives,
the LRT may not be a Bayes test, and hence, it is not generally a most stringent
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test (even asymptotically), and may not be most powerful even for a specific
part of the restricted parameter space RT*. However, from the consistency point
of view, Perlman (1969) has shown that the region of consistency is larger for
the LRT than the corresponding OLT. An analytic comparison of the (exact or
asymptotic) power functions for the LRT and OLT is difficult (due to the fact
that their null as well as non-null distributions are not of comparable forms). For
the specific case, A = I, Oosterhoff (1969) has shown that the LRT is asymptot-
ically optimal in the sense that the maximum shortcoming of the LRT converges
uniformly to 0 (at an exponential rate) when the level of significance converges to
0; this result for a general A is due to Kallenberg (1978). Oosterhoff (1969) also
claimed that the OLT inherits the same asymptotic optimality property of the
LRT when the level of significance converges to 0. In the current study, we also
consider this situation when the level of significance is small, and in the light of
some local power considerations, a comparative picture of the OLT and LRT is
drawn. In Section 2, the case of known covariance matrix is considered, where it
is shown that in terms of the slopes of the power functions at the origin, the OLT
has a better picture than the LRT (uniformly in the entire parameter space R** ).
In Section 3, we incorporate the curvature of the power function in the case of
known A. In the last section, the case when A = ¢2A(, where Ay is known and

0? is unknown, is considered. For this model, parallel results are studied.

2. First Order Local Picture _

Without loss of generality, we let n = 1. We also write A = ((6jj')) and let
6 = (61,...,0k)', where §; = Vi, j = 1,...,k. Then, following the arguments
of Shi (1987), Shi and Kudd (1987), we claim that there exists a particular subset
J (0 € J C K) for which Aj;.76; > 0 and 65 + AT, Ays6; < 0 with B~1
denoting the generalized inverse of B, so that the OLT statistic is of the form

T = lf]:JIX (2.1)
where
L.y = 6{IBJ{6{]A‘]J;JI6J}—1/2 with By =1 — AJJIA;I]:]I- (2.2)

Let a be any subset of K = {1,...,k} and a’ be its complementary subset
(0 € a C K). For each a in K, partition (following possible rearrangement) X

and A as
-Xa Aa.a Aaa’
X = A= . 2.3
( X, ) ( Ay Agy ) (2.3)
Also for each a (0 C a C K), let
Xoao = Xo- Aaa’A;r]‘;:Xa’; (2.4)
Bogar = Aga— Aaa'A;"lzf Agig. (2.5)
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Then, the LRT statistic is of the form

Q2= Z {X;:a’A_l Xa:a’}l(Xa:a.’ >0,A

-1 X, <0), (2.6)
PCaCK

a'a

where 1(B) stands for the indicator function of the set B.

Note that the OLT statistic has a normal distribution function (d.f.) while
the LRT statistic has a chi-bar d.f. (under Hy), and under Hj, their non-null
distributions are not of comparable forms to allow the usual Pitman R.E. (relative
efficiency) measure to study their relative performances. For this reason, we use
some local measures to compare the performances of the OLT and LRT.

Theorem 1. Let X; ~ Ni(pu,A), ¢ = 1,...,n, where A is known and non-

negative definite. For testing the hypothesis Hy : p = 0 against Hy : p > 0,

||l > 0, the OLT is uniformly locally more powerful than the LRT as the level
of significance a is made to converge to 0.

Proof. Let 8,(Q?% 1) (Bo(T;u)) and y2 (7,) be the corresponding power func-
tion and critical point of the LRT (OLT) when the level of significance is o and
p € Rt*. Thus if we write p = ut, t = (t1,...,t)', t > 0,  A~1t = 1, then,
following some standard steps, it follows that

ﬂfz(T; t) = (3/(9#)6&(T;#t)‘p=0 = (tlﬂJ:J')ﬁb(Ta); : (2~7)

where ¢(-) stands for the standard normal density function. Similarly,

BL(Q% 1)
= (9/0mBa(@%pt)| = Y Eo{X'AT'1(S.)}
#77 {ecack)
= (lypt) Y. Eo{X'A'(lyply ) 5.01(S0)} (2.8)
{0CaCK}

where E; denotes the expectation under the null hypothesis and

Se={X:X A7 Xo0 >y Xew >0,AL X, <0} (2.9)

a:a' aa:a’ a'al

Note that both (2.7) and (2.8) depend on the direction vector t through the
multiplicative factor t'£;.;, so that if we let

ba(t) = BL(Q% 1) / BL(T3 ), (2.10)

ba= Y. Eo{X'A7Y(Ls585.5)  L.51(Sa)} [ $(re) (2.11)
{9CaCK)}
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then we have 6,(t) = 64, uniformly in t: ¢t > 0, ' A~ 1t = 1.
Let
my.n = A-l/z(l_]:J:l{]:J;)—ll_]:‘]/, and Y = A—1/2X. (212)

Then (2.10) reduces to
5a = [1/¢(Ta)] [ Z EO{Y’mJ:Jll(Sa)} . (213)
{#CaCK}

Consider the usual polar transformation from Y to (W, @), where 8 = (61,...
Ok—1),

?

j—1
Y, = W(sinGj H cosﬂ,), J=1,...,k=1, Yp = W(cosb; ---cos Of_1), (2.14)
r=1

—-m/2<0; <7w/2,for j=1,...,k—2 and 0 < 0,3 < 27; the Jacobian of this
transformation is given by

k-2
J(Y /W,0) = J(Wr/W,8) = WET T (cos 6,)k—"1, (2.15)
r=1
where
!

k-1
T= (sin 01, cos 61 sin 02,...,H cos 0,) (2.16)
r=1

Note that ||7||> =1, and
”mJ:J’”2
/
= (6A70.065)87B;|(B16,87B;)7)| A~Y(B}66,B,) " B}6;

= tr[(AJJ:J'5J5’J)'1AJJ:J'5J5'J]
= rank(AJJ;J:(SJ&f,) = ra,nk(éjﬁfl) =1,

where tr(B) denotes the trace of B. By (2.13) and Cauchy-Schwarz inequality,
it follows that for a — 0,

6 < [1/9(re)| { clexp(~1/202) )8k [1 + 03]}, (217)

where

c= { /{ Aoy dr} /(@m)*2 > 0. (2.18)
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Using Mill’s ratio, for 7, we have

Ta = { —2log (a(27r)1/2)}1/2, as a 0. (2.19)

Also note that

a= 3 Eo[l(Sa)] = cyt—le—3vE [1+0(y;1)], as a0, (2.20)
{9CaC K}

and hence, as o | 0,

cys e 3 (14 0(yzh)] = 72 (7)1 + O(r7?)] (2:21)
so that
Ya=Ta = —2(ya+ Ta)_l [log(cra(Zw)l/z) + (k- 1)log ya] [1 + 0(1)]
— 0, as a 0. (2.22)

Therefore, by (2.17), (2.21) and (2.22),
' i ko—332 1 _
lim b, < lim {[1/¢(7a))eyae™> } =1 (2.23)

This completes the proof of the theorem.

In passing, we may remark that Theorem 1 relates to the case where o 10
This relative result that 6, (defined in (2.11)) is not greater than one still holds
even for moderate values of . Towards this, we present the case A = I (for
simplicity of calculation) in the following:

Table 1. Values of the slope-ratio 6, for typical combinations of (a, k)

a\k 2 3 4 5 6 7 8
0.2000 0.8735 0.8230 0.7971 0.7813 0.7707 0.7632 07577
0.1000 0.8749 0.8255 0.8000 0.7844 0.7740 0.7665 0.7607
0.0500 0.8712 0.8233 0.7979 0.7827 0.7724 0.7650 0.7592
0.0250 0.8717 0.8240 0.7991 0.7835 0.7733 0.7660 0.7604
0.0100 0.8796 0.8322 0.8070 0.7919 0.7813 0.7738 0.7687
0.0050 0.8814 0.8341 0.8098 0.7938 0.7843 0.7763 0.7708
0.0010 0.8740 0.8256 0.8036 0.7881 0.7754 0.7717 0.7647
0.0001 0.8751 0.8261 0.8000 0.7778 0.8125 0.8000 0.7857

3. Second Order Local Power Comparison

In Theorem 1, we have observed that the slopes of the power functions of the
OLT and LRT (at the origin) are proportional to ¢'£;.;:, and hence, the same
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local efficiency (relative to each other) prevails over the entire positive orthant.
The picture may not be different when we take into account the curvature of
the local power functions at the origin (which behaves differently in the different
directions within the positive orthant). For simplicity of presentation, consider
here the setup of A = I (a similar picture will hold for an arbitrary A), and also
a second order local expansion of the two power functions. Note that 3,(T; u)
is increasing in each p; when the others are held fixed (1 < 7 < k). Also,
Ba(Q?, 1) > Ba(Q? p*) if p—p*e~T0, where I'C is the dual cone of I'. Hence, by
the same arguments as in Theorem 2.6.2 of Robertson et al. (1988), we conclude
that the power function G,(Q?; ) is also increasing in each u; when the others
are held fixed (1 < 7 < k). Invoking the symmetry structure (in p) in these
power functions, we claim that the minimum of each power function is attained
at the k edges: p; > 0, pj =0,Vj # ¢ ¢ =1,...,k, and the maximum of each
power function is attained at the half-line p; = --- = uj > 0. By the somewhere
most powerful character of the OLT, it also follows that maximum power of the
OLT (on this half-line) is never below that of the LRT. Hence, we compare the
two local powers (up to the second order) over one of the edges, for example, the
edge pe;, where e; = (1,0')’, p > 0. Then note that

ﬁZ(T; t) = (62/8/‘2)ﬂa(T§ /l't)l;t=0 = (clt)27'a¢(7'a)a vt >0, (3.1)
where ¢/ = k~1/2(1,...,1) = k~1/21}. Also, after some routine steps, it follows

that for every t > 0; ||t||> =1,
2(Q%1)
= (8°/0k")Ba(@% mt)| _
k T
=27y ) {Z 2, [P{xtr 2 92} - PO 2 92}
i=1

=0 {il ’..A’ir}

» » k k
+(2/) [Z > titim P{x242 > yir- > > titi, P{x? > yg}] }

j=1lm=14m j=r+lm=r+l2m

= 97k (Zk: ( k : ! ) [P{X3+3 > 92} - P{X12~+1 2 yi}]

r=0
-% kf ( k - 2 ) [P{x2s > 42} - PO 2 yi}])

+(eH2(2 ) lkz:( TPzt -POE 23], 62

=0
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where xg denotes a central chi-squared random variable with p degrees of freedom
(DF) and {i1,...,%} presents a permutation of 1,. .., k. The first term (sum) on
the right hand side of (3.2) does not depend on ¢ while the last term is a function
of (¢'t)2. Thus, the two curvatures in (3.1) and (3.2) are not proportional to each
other (for every t on the unit sphere (restricted to the positive orthant)). Hence,
a Taylor’s expansion of the two power functions (up to the second order) reveals
that the local power efficiency does not remain constant in all directions over the
positive orthant space. Define

Ya(t) = Ba(@%)/a(T;t), for every t > 0 (where [H2 =1).  (3.3)
Then, for p = pey, i.e., t = ey, and for small (> 0),
Ba(Q?; per) — Ba(T; pey)
= K7V20(ra) (80 = 1) + 5 7ad(7a)i (valer) — 1) + O(4%)
= 72 0g(ra) [(6a = 1) + {(u7a)/ CKYA) H{(raler) = D} + O(42)], (3.9)

where
2 1/20—k 1k“1 k—1 2 enr/2
bo = exp{ (2 = 42)/20 227 S (D) {2y o624 1)), 39)
r=0
and
—k f k-1 2 2 2 2
vale) =2 Y (£ ) [POCes 2 421 POCa 2 42)] [{rad ()} (30)

r=0
Recall that if g,(z) stands for the density function of the central chi square d.f.
with p DF, the P{x2,, > z} — P{x2 > 2} = 2g,42(z) = (2/r)g-(z)z, = > 0, so
that using (2.21), (2.22) and the above identity, it follows from (3.5) and (3.6)
that

lim, = lim{ (E) F<k/2>[—2log{2<3’=-1>/2r<k/z)a}l1/2}
all

al0 n) T((1+k)/2)[—2log((2m)1/2a)]1/2
= (k/m)"2[D(k/2)/T((k+1)/2)], (3.7)
and
li?g7a(e1) =1, for every k > 1. (3.8)

Consequently, for every fixed u > 0 (3.4) is non-positive for very small values of
a. For moderate values of o, numerical study indicates that the OLT may not
have a very distinct advantage over the LRT for not very small u > 0. Towards
this, we present the following numerical results:
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Table 2. Table for the values of v4(e;) for some typical
5

2

3

4

8

0.200
0.100
0.050
0.025
0.010
0.005

1.7093
1.4490
1.3353
1.2727
1.2306
1.2069

2.1682
1.7416
1.5576
1.4551
1.3815
1.3405

2.5238
1.9704
1.7320
1.5994
1.5014
1.4489

2.8218
2.1637
1.8797
1.7217
1.6040
1.5407

3.0828
2.3328
2.0103
1.8302
1.6950
1.6223

3.3174
2.4855
2.1279
1.9283
1.7774
1.6960

3.6327
2.6256
2.2371
2.0183
1.8527
1.7640

Table 2 shows that for moderate values of a, the v4(e;1) are much larger than

their asymptotes, and this is reflected in the following two tables as well.

Table 3. Table for the values of 8, (T’; pe;) for some specific values of (u, a, k)

a k 2 3 4 5 6 7 8
0.200 p=0.2 .2408 .2328 .2281 .2250 .2226 .2208 .2194
0.100 1264 .1211 .1180 .1159 .1144 .1133 .1123
0.050 .0663 .0631 .0612 .0599 .0590 .0583 .0577
0.025 .0345 .0326 .0314 .0307 .0302 .0298 .0294
0.010 .0143 .0134 .0129 .0125 .0123 .0121 .0119
0.005 .0074 .0069 .0066 .0064 .0062 .0061 .0060
0.200 =03 .2634 .2509 .2435 .2386 .2350 .2322 .2300
0.100 1417 1331 .1282 .1249 1225 .1207 .1192
0.050 .0759 .0705 .0675 .0654 .0639 .0628 .0619
0.025 .0402 .0370 .0351 .0339 .0331 .0324 .0319
0.010 .0171 .0155 .0146 .0141 .0136 .0133 .0131
0.005 .0089 .0080 .0076 .0073 .0070 .0069 .0067
0.200 p =04 .2870 .2696 .2595 .25627 .2477 .2439 .2408
0.100 .1581 .1459 .1390 .1343 .1310 .1284 .1264
0.050 .0866 .0787 .0742 .0713 .0692 .0676 .0663
0.025 .0468 .0419 .0392 .0374 .0362 .0352 .0345
0.010 .0203 .0179 .0166 .0157 .0151 .0147 .0143
0.005 .0108 .0094 .0087 .0082 .0078 .0076 .0074
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Table 4. Table for the values of B, (Q?; pe;) for some specific values of (i, o, k)

o k 2 3 4 5 6 7 8
0.200 wx=0.2 .2385 .2299 .2352 .2222 .2200 .2183 .2170
0.100 2561 .1193 1162 .1142 1128 .1117 .1109
0.050 .0650 .0616 .0597 .0585 .0576 .0570 .0565
0.025 .0337 .0317 .0306 .0299 .0294 .0290 .0287
0.010 .0140 .0131 .0126 .0123 .0120 .0119 .0117
0.005 .0072 .0067 .0064 .0062 .0061 .0060 .0059
0.200 =03 .2608 .2475 .2401 .2353 .2318 .2292 .2271
0.100 .1401 .1308 .1259 .1228 .1205 .1188 .1174
0.050 .0742 .0687 .0656 .0637 .0623 .0623 .0604
0.025 .0391 .0358 .0341 .0329 .0321 .0315 .0310
0.010 .0166 .0151 .0142 .0137 .0133 .0130 .0128
0.005 .0087 .0078 .0073 .0070 .0068 .0067 .0065
0.200 p=0.4 .2851 .2667 .2564 .2497 .2448 .2412 .2382
0.100 1568 1437 .1368 .1323 .1291 .1266 .1247
0.050 .0845 .0766 .0723 .0695 .0676 .0660 .0649
0.025 .0452 .0406 .0380 .0363 .0352 .0343 .0336
0.010 .0196 .0173 .0161 .0153 .0148 .0143 .0140
0.005 .0104 .0091 .0084 .0079 .0076 .0074 .0072

In passing, we make a few comments on Tables 3 and 4. First, the power of
the OLT, in Table 3 for a given (g, a,k) is the exact power while the power of
the LRT in Table 4, is approximate (up to the second order). Since the third
derivative of the power function of the LRT at the null point is still positive, the
LRT compares very favorably with the OLT over the edges for not very small u.

4. The Covariance Matrix has an Unknown Scalar Factor

In this section, we consider the case of A = 02A,, where A is known
(n.n.d.) and o? unknown. Recall that we have n iid. r.v.s Xi,...,X, and
X, =n"13", X;. In this setup, we may estimate o2 by

(nk—1)82=Y X!A;'X; - nX. ;.50 1 Xn, (4.1
0 JIEy

i=1

where £;.7: is defined in the same way as in (2.2) with Ag equivalent up to a
scalar factor. Note that the OLT statistic corresponding to the MSSMP similar
region for testing Hy vs. H; is given by

T,,? = \/T_LE(,:J:X,,/S“. (4.2)

In the particular case of n = 1 and A = I, Shi and Kudé{(1987) have developed
an alternative MSSMP form of 70, and the current one is a natural generalization
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of theirs. As such, under Hg, 7§ has the student t-distribution with nk—1 DF;in
the Shi and Kudé (1987) form, the corresponding DF is equal to k — 1. Similarly
the LRT statistic is of the form

nX; a:a' A_l ol -X'n, a:a’
Q?:= Z (n) O(aa:a') (a:a’) 1{
PecK > XiAglX;

i=1

- -1 -
Xn(a:a’) >0, Ao(ala/)Xn(a') < 0}’

(4.3)
where the corresponding partitions of vectors and matrices are defined the same
way as in (2.3)-(2.5) with A replaced by Ag. Then, under Hy, the distribution
of Q,O,2 is given by

k

P{QY <} = zz_%szé,g%(c) (4.4)
where w = (g jaj=) Po{Zaiar > 0, A5unZar < 0}, £=0,1,... .k, with Z ~
N(0,Ay) as well as |a| being the cardinality of the set a, and B, , represents a
random variable having a beta distribution with parameters p and ¢ (Bg 4 = 0).
Without loss of generality, take Ay = I, also let p, and tnk—1;a be the a-level
critical value of Q?f and the upper 100a% point of the student ¢-distribution with
nk — 1 DF respectively. Then after some routine calculations, for every t > 0,
le]? =1,

Ba(Tait) = (8/8u)BalTR:pt)|,_,

= 1(1't)\/5\ﬁp{3 e > k1o } (4.5)
2 kEV L2554 = (nk—1)+tﬁk_1;a )

Ba(QY5t) = (8/0m)Ba(@Tspt)| _
i 2 S k-1
= (1t)\/;\/772 k;;;( , )
< |P{Buga pam 2 pa} = P{Byasess 2 pa}] (49)

Note that both (4.5) and (4.6) depend on the direction vector ¢ through the
multiplicative factor 1't, so that if we define

63(t) = BL(Q%5t) / Ba(TD3t) (4.7)
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then 62(t) = 62 uniformly in ¢; ¢ > 0 and Itl|? = 1, where

k-1
m-k“;:xk;)[P{Bz;,_._w-lZPa}-P{Bg,_M-Zum}}/

2
P{B1 ko > kLo } (4.8)

Write z, = tik_l;a / [(nk 1) +tnk 1. a] and note that for every positive p, and
Za

%P{B% = >za}—aand2kz< )P{Bf:“{ _Pa}=a- (4.9)

For n = 1, the minimal level of significance of Q9" is 2~* (as B ko = 1).
Hence take n > 2. Then n > 2, as o | 0, and we have

1 - 22) ™5 ~ a(nk - 1)3(1 n—k2——> (4.10)
and
(1 - pa) =7 ~ @27+ (n — )kB(Izc ("—2—-1&> (4.11)

where a ~ b means that a/b — 1.
From (4.8), (4.10) and (4.11), it follows that

wt - ()T

= e, say. (4.13)
We may remark that e is equivalent to Iixl:% 6a(t) (defined in (3.7)) when A =T

and it is easy to see that el is less than one for every k > 2. In passing, we
also note that by arguments parallel to those in the proof of Theorem 1, and the
results of (4.10)—(4.11), the conclusion in Theorem 1 remains true for the case
A = 02A;. Also note that

BUTYt) = (0%/0p)Ba(TRipt)| _

= [(k - Z)P{ 1, nkel > Za} +P{B%’nkz—1 > Za}]
k k

+ny, D titpE{nXa;XnjL(TQ > tak-1,0)}  (4.14)
J=1j'=1,j#j'
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and

pa@st) = (@/0u)Ba@Timt)|

Y (5 ) [FP{Begz szt > b} = P{By asce 2 5}
£=0

2

k k
+2Y Y titpE{nXa, Xu1(QF > Pa) }- (4.15)
imlj=Lgt#

Thus, for small y,
Ba(QY; pe1) — Ba(TY; per)
2
= BL(T0e1)(63 - D+ (T en)ra(er) - 115 +0(°)  (4.16)

where
k
1(e1) = 2—k+1e§( ’; )[kP{B%ﬁ,nkz.z > pa —P{Bé’,.,.;, > pa}]/
[(k - 2)P{B%,,k2_1 > za} + 1.0{1-3*%,,,.,.2_1 > za}]. (4.17)

By using (4.9)-(4.11), we then have
lim~%(e;) =1 VEk>1. (4.18)
al0l

Therefore similar conclusions to those in Section 3 can be made; we omit the
details.
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