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STATISTICAL INQUIRY FOR MARKOV CHAINS
BY BOOTSTRAP METHOD
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Abstract: In this paper, we propose several different bootstrap algorithms, to get
approximate confidence intervals for the parameters of an ergodic Markov chain, each
of which can have k possible outcomes. Small-sample comparisons are used to select
the best intervals for different parameters. An illustrative example which analyzes a
farmers’ tenure behavior pattern data set of Taiwan is given.
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1. Introduction

Suppose we have a sequence of observations in which each observation has
k possible states. Then a common problem is deciding if successive events are
independent or if the probabilities of the different outcomes depend on one or
more immediately preceding outcomes, in which case a Markov chain model is
more appropriate. This type of problem arises in the study of animal behavior, in
information science, in sociology and in various other fields. We shall investigate
in this paper the simple ergodic (positive recurrent, aperiodic and irreducible)
Markov chain for a sequence Xi,X3,...,X, of random variables which has a
first order dependence with stationary transition probability.

Maximum likelihood methods are commonly used to analyze Markov chain
data. The asymptotic properties of maximum likelihood estimators and likelihood
ratio tests have been investigated by Anderson and Goodman (1957), Billingsley
(1961), and others. The use of bootstrap method to analyze this type of problem
are in Kulperger and Prakasa Rao (1990), Athreya and Fuh (1989), Basawa et
al. (1990) and Datta and McCormick (1992). A survey paper in this area is
in Athreya and Fuh (1992). In these papers, various bootstrap methods, as
well as their asymptotic properties, have been verified. Little is known, however,
about their small sample properties, nor has much attention been paid to develop
appropriate methods for small samples.
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The Parametric Bootstrap (PB) and Block Bootstrap (BB) have been given
in Athreya and Fuh (1989). In this paper, a new modified bootstrap method,
Nested Bootstrap (NB), is proposed. The detailed descriptions of these methods
are given in the next section. We shall also examine the small sample properties
among all these bootstrap algorithms for estimating the parameters. It is hoped
that this paper will stimulate further research along this line.

The remainder of this article is organized as follows. In Section 2, three dif-
ferent bootstrap algorithms are given. Small sample results for approximating the
confidence intervals for the parameters (transition probability, stationary proba-
bility and hitting time) are in Section 3. An illustrative example which analyzes
a farmers’ tenure status pattern data set of Taiwan is in Section 4. Concluding
remarks are in the last section.

2. Bootstrap Algorithms

Let {Xn;n > 0} be a homogeneous ergodic Markov chain with state space
S and transition probability matrix P = (p;;). The problem of estimating the
transition probability P, the stationary probability II, and the distribution of
the hitting time T to a state A, arises in several areas of applied probability
and statistics. The application of the bootstrap method to a finite state Markov
chain case was considered in Fuh (1989), and Kulperger and Prakasa Rao (1990).
Athreya and Fuh (1989) discusses the countable state space case.

Here, we consider an ergodic Markov chain with finite state space S =
{1,2,...k}. The ergodic property implies that the existence of an invariant prob-
ability measure II = (my,...,m) such that m; > 0, E;’:l =1, m; = 3 mipij,
j=1,...,k and for all : € S, pg‘) — T, as n — 0o, Where pg;-‘) = Pr{X, =
7|Xo = i} is the probability of X, = j given X = 1.

Suppose & = {z¢,Z1,...,Z,} is a realization of the process {X;; 7 =0,...,n}
observed up to time n. Let n;; be the number of ij transitions in {zg,...,z,},
and n; be the number of visits to state i in {zg,...,z,}.

We estimate P by its maximum likelihood estimator P, = (5, (s, 7)), where

Pnli,j) = { bijs otherwise,

where §;; = 1 if i = j and = 0 if ¢ # 7, and estimate II by II,, = (7n (7)), where
ﬁ’n(i) =n; / n.

Since the state space S is finite, we can consider the non-parametric case as
a special case of the parametric case. Therefore, the consistency and asymptotic
normality of the maximum likelihood estimators can be deduced by using the
analogy with the multinomial distribution. This idea can also be used for the
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bootstrap estimators of P, given @. The central limit theorems for the maximum
likelihood estimators P, of P and II, of IT are in Billingsley’s book (1961).

Although the validity of the asymptotic normality can be used as an ap-
proximation of the sampling distribution of P,, the difficulty to compute the
asymptotic variance-covariance matrix makes it less suitable for application. Es-
pecially, the computation of the distribution of the hitting time Ty is extremely
difficult. Therefore, we propose several bootstrap algorithms to investigate this
type of problem. The Parametric Bootstrap (PB) and the Block Bootstrap (BB)
are in Athreya and Fuh (1989). The Nested Bootstrap (NP) will be proposed in
this paper. For completeness, we state all three alternative bootstrap algorithms
herewith.

I. Parametric Bootstrap (PB)

Let @ = {z0,21,...,2x} be a realization of the Markov chain {X,;n > 0}
with transition probablhty P. Let P, = P(n,&) be an estimator of P based
on the observed data @. Assume G is a parameter of interest which needs to
be estimated and Gn its estimator based on the observation @. The Parametric
Bootstrap to estimate the sampling distribution H, of R(z,G) = (G, — G) is as
follows:

(1) With P, as its transition probability, generate a Markov chain realization
of N, steps &* = {x’(“,,zf,...,x"j\,n}. Call this the bootstrap sample, and let
G, = G(N,,x*). Note that G, bears the same relation to =* as G, to x.

(2) Approximate the sampling distribution H, of R(z,G) by the conditional
distribution HY of R(z*,Gy) = (Gn — G ) given @, which can be done by Monte-
Carlo method.

I1. Block Bootstrap (BB)

The existence of a recurrent state A which is visited infinitely often (i.o.)
for a recurrent Markov chain is well-known. A famous approach to its limit
theory is via the embedded renewal process of returns to A. This is the so-called
regeneration method. For a fixed state A, by the strong Markov property, the
cycles {X;;j = T(n), .. TX‘H) 1} are ii.d. for n=1,2,..., where T& ™) is the
time of the nth return to A.

Fix an integer k and observe the chain up to the random time n = TXCH) . Let
x = {z0,Z1,...,Z,} be a realization of the process. Note that in this situation,
zn, = A. Fix 1, j which are different from A. Let 74 = {z;;j = Téa), - ,Tlga""l)—l}
be the ath cycle, T, be the length of 74, g(74) be the number of visits to state i
during the cycle 74, and h(7,) be the number of ¢j transitions during the cycle
7Na. Define

o Tem19(Ma) L D h(na)
e (i) = Sk Pr(i,J) = ko)
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be the estimators of 7 and P respectively.
The Block Bootstrap algorithm is as follows:
(1) Decompose the original sample in the following fashion:

{"70:7717772,---,’%}7 where noe = {ZO)ZIV")‘TT(l)_l}'
A

Let F} denote the uniform probability measure on the cycles {n,;a=1,2,...,k}.
If Xo = A w.p.1l, then one could take n = T( ) and F}, to be the uniform
probability measure on {7,;a =0,1,2,...,k — 1}

(2) With the original sample fixed, draw a “bootstrap sample” of size k' according
to F). Denote this sample by 77,73,...,m%. Then, the bootstrap analogues of
7k (1), Pr(¢,7) can be defined as follows:

TEo1h(n2)
ZQ_I g(ﬂa)

Tt

( ) = Ea-—l g(na)
SE T

where T is the length of 7.
(3) Approximate the distribution of vk(px(3,5) — pij) by the conditional distri-
bution of V& (pr (i,5) — pr(4,7)) given @. Similarly for vk&(#x(z) — m;).

ITI. Nested Bootstrap (NB)
(a) (a+1) ~1}
Al 9o

3 ﬁk’(iaj) E

With the same notation as above, let 7, = {z;;7 = T
be the ath block of returning to state A;. Fix another state Ag, and by the
same idea of defining 7., we define 7,3 to be the Bth subblock of returning to
state Ao within the ath block, where 8 = 1,2,...,k,, and k, is the number of
subblock during the original ath block. For example, let 132432334231232231 be
a realization of a Markov chain with state space {1, 2, 3, 4}. Let A; =1, Ag = 2,
then,

= {13243233423}, 7o = {123223}.

m1 = {243}, mo = {2334}, na1 = {23}, n2 = {2}.

The Nested Bootstrap algorithm is as follows:
(1) Decompose the original sample in the following fashion:

{no,m,m2,---,Mk}, wWhere ng = {mo,zl,...,xTS)_l}.
1

Let F} denote the uniform probability measure on the cycles {Na;a=1,2,... k}.
If Xo = A w.p.l, then one could take n = T4 and Fj to be the uniform
probability measure on {7,;a =0,1,2,...,k — 1}.

(2) With the original sample fixed, draw a first level “bootstrap sample” of size
k' according to F}. Denote this sample by UHE R 1R
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Let {nop;a=1,2,...,k, 8 =1,2,...,ko} be the fth subblock within block
Ne, and k=rki+-+ ki. Let F i denote the uniform probability measure on the
cycles {nqp}.

With the first level bootstrap sample 77,7%3,...,7; fixed, then according to
F,-c, we can draw the second level bootstrap sample {n;ﬂ} of size k* = i+ kg,
where k7 is the number of subblock within the block 7%. Then, replace the
subblock in the first level bootstrap sample by the second level bootstrap sample.
Denote this sample by n7*,73*,..., 75"

Then, the bootstrap analogues of # (%), px(7,7) can be defined as follows:

S g K _LR(nZ)

k' ) ﬁk'(i,j) = 5 P
a=1 T(;* a=1 g(ﬂa*)

e (1) =
where T3* is the length of n}*.
(3) Approximate the sampling distribution of vk(p (4, 7) — pi;j) by the conditional
distribution of vVk'(fx (i, 7) — pr(3,7)) given @. Similarly for VE(#(3) — ;).

3. Monte-Carlo Simulations

A small sample comparison for all three alternative bootstrap methods is
given in this section. We compare all the approximate confidence intervals for
different parameters, which includes transition probability pss, stationary prob-
ability 75 and hitting time T5.

For this small sample study, two different sample sizes £ = 20,50 (n =
81,226) are included. The bootstrap resample sizes are k' = 20, 50, 100 for k = 20
and k¥’ = 50,100,150 for k = 50 respectively. Here, we compare 95% confidence
interval, empirical coverage probabilities, and their average length for all three
alternative bootstrap algorithms.

For each situation (specific k, k' and parameter) 1000 replications Monte-
Carlo trials were run. Computations were performed using FORTRAN programs
on the VAX-8350 computer of the Institute of Statistical Science, Academia
Sinica, Taipei, Taiwan, ROC. The random numbers were generated by using
IMSL routines. All the tests were compared on the basis of the same random
numbers. Samples of different sizes were nested.

The original sample is a computer simulation from an ergodic Markov chain
with transition probability matrix

v

I
DO = = v
ORI PR
= OT e W
N )
e R



58 C.D.FUH

and stationary probability

I = (211, .241, .217, .186, .146).

3.1. Transition and stationary probabilities

The maximum likelihood estimates Paq (IIg) of P (I) based on sample size
k = 20 (n = 81) are as follows:

150 .250 .200 .300 .100
.480 .120 .160 .080 .160
Py=] .154 .692 .000 .000 .154 |,
.000 .300 .500 .000 .200
231 .385 .000 .154 .231

1o = (.247, .310, .160, .123, .160).

The maximum likelihood estimates Psg (ﬁ50) of P (II) based on sample size
k = 50 (n = 226) are as follows:

.100 .240 .180 .380 .100
500 .107 125 .143 .125
Pso = .087 .522 .108 .087 .196 |,
182 114 .500 .114 .090
.166 .300 .100 .267 .167

M50 = (.221, .248, .204, .194, .133).
The following abbreviated notations will be used in the tables below:

C.I.- confidence interval n — sample size
NA - normal approximation & — number of sample block

A.L. - average length k' — number of resample block

On the basis of Tables 3.1 and 3.2 below, it is suggested that the Parametric
Bootstrap be used for a simple parameter like stationary probability.



BOOTSTRAPPING MARKOV CHAINS

59

Table 3.1. Comparison of approximate confidence intervals for p3s = .200. All coverage
probabilities are above 95%.

k = 20, k = 20

95% C.I A.L.

k=20, k' =50

95% C.IL AL

k=20, k' =100
95% C.I AL

True
NA
PB
BB
NB

(.000, .353) .353
(.000, .351) .351
(.063, .447) .384
(.001, .287) .285
(.040, .403) .363

(1046, .253) .207

(.127,.376) .248
(.130, .326) .196
(.010, .242) .232

(077, .227) 149

(.103, .270) .167
(.020, .156) .136
(.055, .217)  .161

k =50, k' = 50

k=50, ¥ =100

k=50, k' =150

True
NA
PB
BB
NB

(075, 299) .223
(.081, .311) .230
(.033, .254) .220
(.015, .210) .195
(.042, .272) .229

(120, .274) .153

(.060, .223) .163
(.104, .250) .146
(.111, .313) .201

(129, 254) .15

(.076, .200) .123
(.105, .210) .105
(.099, .284) .184

Table 3.2. Comparison of approximate confidence intervals for 75 = .146. All coverage
probabilities are above 95%.

k=20, & =20

95% C.L AL

k =20, & = 50

95% C.IL AL

k = 20, k' = 100
95% CI.  A.L.

True || (076, .212) .135 | (.101,.185) .083 | (.116, .174) .057
NA | (.080, .240) .160
PB | (.077,.242) .164 | (.105,.215) .109 | (.118,.197) .079
BB || (.071,.250) .178 | (.102,.219) .116 | (.121,.200) .079
NB | (.068,.234) .166 | (.105,.219) .113 | (.118,.200) .082
k=50, K =50 | k=050, K =100 | k=50, k' = 150
True || (.101, .186) .085 | (.113,.172) .058 | (.119, .171) .051
NA | (.088,.177) .089
PB || (.087,.179) .092 | (.099,.163) .064 | (.106,.157) .051
BB | (.087,.179) .091 | (.101,.164) .063 | (.106,.158) .052
NB | (.078,.172) .093 | (.092,.158) .065 | (.098,.156) .057

3.2. Hitting time

With the notation above, let T5 be the first hitting time up to state 5. Let
Pr(t; P) = Pr(Ts < t|Xo = 1, P) denote the probability that Ty < t for t =
1,2,3,..., where P is the transition probability matrix of the above given Markov
chain with initial state 1.

For any stochastic matrix P, let A = A(P) be the stochastic matrix which
is the same as P except that the last row is replaced by (0, 0, 0, 0, 1). Note

that Pr(t; P) = (A%)15. The bootstrap estimate of the distribution Pr(t; P) of

the hitting time T is Pr(t; P,). All three bootstrap methods for estimating the
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distribution of the hitting time T5 are illustrated in the following figures. Here
the sample block size and the resample block size are both 50. Note that the

Block Bootstrap has the smallest average length.
The following abbreviated notations will be used.

— — true distribution O - true confidence band
A - PB confidence band < - BB confidence band

* — NB confidence band A.L. - average length

Here, A.L. is computed for each t =1,2,...,30, and then take the average.

Confidence band

[LL S T DU I S T SRS WS S SR N S S N WU S T S WU VT S S S SO S SRR

1 23 45 67 8 9101112131415161718192021 2223 24 252627282930
Time

Figure 3.1. PB approximate confidence band for T5, A.L.= .197

Confidence band

(o[ SO SRS S W WS S GOV SIS S S WU S SN S VY S S S S SN S S S S S S S

1 2 3 456 7 8 910111213241516171819202]1 222324252627282930
Time

Figure 3.2. BB approximate confidence band for T3, A.L.= .182
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Confidence band

/ |

0
1 2 3 45 67 8 9101112131415161718192021222324252627282930
Time

Figure 3.3. NB approximate confidence band for T5, A.L.= .200

4. An Illustrative Example

In this section, we illustrate the bootstrap algorithms of Section 2 by applying
them to a real example, which is the problem of the tenure behavior pattern of
farmers in Taiwan. In this example, a Markov chain is used for modeling, and
bootstrap techniques are used to make statistical inference for the accuracy of
the estimators.

4.1. Land reform problem in Taiwan

This example is concerned with the problem of the tenure behavior pattern
before and after the land reform program in Taiwan in the early 1950’s. We study,
within the Markovian framework as well as by the bootstrap techniques stated
in the present paper, the behavior systems reflecting the time ordered changes
in the tenure status of farmers before and after the new land policy. The data
concerning tenure status in Taiwan from 1941 to 1966 are given in Table 4.1.

Although time ordered tenure status data are not available, annual propor-
tional data for the island’s tenant, part owner and owner-operator are available
from 1941 to 1966 as shown in the table. Note that the land reform program
which started in 1949 actually only got effectively underway in 1953. Thus, we
assume these aggregate data were from a first order Markov chain, and the tran-
sition probabilities are stationary from 1941 to 1952. After 1952, due to the land
reform, we assume the transition probabilities ché,nged from the previous period
but remain stationary from 1953 to 1966.
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The maximum likelihood estimates, Lee et al. (1977), for the first period
(1941-1952) are as follows:

) .862 .058 .080
P = .181 .819 .000 |,
.000 .070 .930

I1; = (.347, .263, .390).

The maximum likelihood estimates for the second period (1953- -1966) are as
follows:

) .663 .337 .000
P, =] 206 .543 .251 |,
.000 .075 .925

I, = (.123, .202, .675).

Here, state 1, 2, 3 refers to Tenant, Part-owner and Owner, respectively.
The estimators of the expected hitting time ET}3 from tenant to owner status
based on the two different Markov chain models are, in units of year,

ET1;=138 and ET., = 8.5.

To gain information about the accuracy of these estimators, we would like to
find approximate confidence interval for #3, the statlona,ry probability for owner,
and the sampling distribution of the hitting time 733. Here, we use bootstrap
methods to answer these questions partially. Based on the maximum likelihood
estimators P; and P2, we can generate bootstrap Markov chain data by the
methods (PB, BB and NB) described above for this problem. Although time
ordered tenure status data are not available, annual proportional data for the
island’s tenant, part owner and owner-operator are available in Table 4.1. The
Block Bootstrap and Nested Bootstrap can be modified herewith. That i is, we use
the estimator P (or P2) of P; (or P;) to generate first level Markov chain data,
called # = {z1,...,z,}. Then, based on this presumed Markov chain data, we
apply bootstrap methods (BB and NB) to approximate the confidence intervals
of 73 and the sampling distribution of T13. The approximate confidence intervals
of r3 are given below in Tables 4.2 and 4.3, and the confidence bands for T13 are
shown in Figures 4.1 and 4.2 for the two Markov chain models.

By comparing the stationary probabilities, expected hitting times from ten-
ant to owner status as well as their corresponding confidence intervals for these
two Markov chain models, the result appear to be consistent with expected eco-
nomic outcome and would suggest that the land reform program has provided
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tenants with a good opportunity of changing their tenant status. In particular,
the estimated stationary probability for owner has increased from .390 to .675
and the expected hitting time from tenant to owner status decreased from 13.8

to 8.5 years.

Table 4.2. Approximate confidence intervals for #3 = .390 with k£ = 20

Table 4.1. Number of farm families and percentages of
classified farmers, Taiwan, 1941-1966.

Percentages
Year Total number of
farm families Owner Part-owner Tenant
1941 440,105 31 31 38
42 452,462 31 31 38
43 470,374 31 30 39
44 482,776 31 30 39
45 500,533 30 29 41
46 527,016 33 28 39
47 553,308 32 27 41
48 597,333 35 26 39
49 620,875 36 25 39
50 638,062 36 26 38
51 661,125 38 25 37
52 676,750 39 26 35
1953 702,325 55 24 21
54 716,582 57 24 19
55 732,555 59 24 17
56 746,318 60 23 17
57 759,234 60 23 17
58 769,925 61 23 16
59 780,402 62 23 15
60 785,592 64 21 15
61 800,835 65 21 14
62 809,917 65 21 14
63 824,560 66 21 13
64 834,827 66 21 13
65 847,242 67 20 13
1966 854,203 67 21 12

Source: Taiwan Agricultural Yearbook (1941-1966).

K = 20 K =50 k" = 100
95% CI AL |95%CIL AL |95%CIL AL
PB || (.038, .690) .651 | (.064, .629) .565 | (.148, .562) .414
BB | (.019,.821) .801 | (.223,.771) .547 | (.357,.714) .357
NB | (.355,.821) .465 | (.386,.773) .386 | (.393,.718) .324
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Table 4.3. Approximate confidence intervals for #? = .675 with k = 20

k' =20 k' =50 k' =100
95% C.L AL | 95% C.L AL. | 95% C.L AL
PB || (.209, .802) .593 | (.467,.770) .303 | (.541, .750)  .209
BB || (.256, .825) .568 | (.223,.771) .547 | (.357, .714)  .357
NB || (.257, .823) .565 | (.584,.792) .208 | (.631,.780) .148

The following notation will be used in Figures 4.1 and 4.2.
O - Markov chain model 1
A — Markov chain model 2

The middle solid (or dashed) line is the estimator of 7}3 under Markov chain
model 1 (or 2).

A o e S S S T S S SE B SR S S S e s S Gmes e e

Confidence band

0.1 4

°‘1||1»11111111141|1;41 xxxxxx
2 3 45 6 7 8 9 1031121334153617 1819 2021 22 2324 2526 27 2829 30

Figure 4.1. Comparison of the approximate confidence band for 7% and 7% by PB

1 T T T

Contidence band

N S S S S S 1 I WU S S T 1 !

A I S S S SN S

PR Lo i
2 3 4 5 6§ 7 8 91011121314 15161718 192021 22 2324 2526 27 28 29 30
Time

Figure 4.2. Comparison of the approximate confidence band for T}, and T2, by BB
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5. Concluding Remarks

In this paper, we state three alternative bootstrap algorithms, and use an
empirical approach to construct approximate confidence intervals or confidence
bands for the parameters. A real example was presented to illustrate the appli-
cation of these methods. In the example pertaining to the Taiwan land reform
problem, we found the effect of the new land policy by Markov chain modeling
and bootstrap methods. Finally, we have the following remarks:

1. By computer simulation, the Parametric Bootstrap is recommended in
general, especially for a simple parameter like stationary probability. Another
reason is that this method uses all the data information.

2. The bootstrap theory for Markov chains developed by Athreya and Fuh
(1989), among others, are only for micro data. Here, we apply them to the
macro data case with modification. For consistency of the bootstrap methods,
rigorous theoretical investigation, involving the central limit theorem for both
the maximum likelihood estimator and its bootstrap versions, is required.

3. Theoretical study of the accuracy of Parametric Bootstrap, Block Boot-
strap and Nested Bootstrap, which involves the Edgeworth expansion for Markov
chains and corresponding block, is need.

4. Investigation of the method of Pao-Zhuan Yin-Yu proposed by Fu and Li
(1992) to Markov chain should be an interesting problem.
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