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Abstract: Projection pursuit {(PP) is a class of methods for exploratory and confirma-
tive analysis of high-dimensional data sets. In this paper, a brief introduction to PP
is given. Recent contributions of Chinese statisticians in PP classification, tests, es-
timation and tail behavior are presented. Some other developments and applications
are also discussed.
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1. Introduction

Our interest in projection pursuit (PP) originated in the early 1980’s when G.
Li and Z. Chen were visiting Harvard University and working with Professor Pe-
ter Huber. Later, in 1984, Professor Ping Cheng visited University of Wisconsin
and University of Manitoba. In preparing a discussion paper he obtained a copy
of the preprints of Huber (1985) and the associated discussion papers. With these
papers, we realized that PP was at a stage of development where practical expe-
rience and extension of its usage were needed, and where, more critically, some
theoretical understanding of it to remedy the “gap developing between practice
and theory (Miller (1985))” is especially required. Thus, starting from 1985, a
long term seminar on PP and related topics was conducted by P. Cheng and G. Li
at the Institute of Systems Science, Academia Sinica. Our research activities were
extended to include compiling lecture notes and giving short courses throughout
of China. More statisticians and students were attracted to this area. In the
past seven years, about 10 statisticians and 20 students have been involved in
research and applications of PP. So far, about forty papers have been completed,
of which more than thirty have been published. Most of the papers are concerned
with the theory and methodology in PP classification, tests, estimation and tail
behavior of PP statistics; only a few are in applications. This paper summarizes
the major results of these papers.

A brief introduction to PP is given in Section 2. Sections 3-7 are concentrated
on the contributions of Chinese statisticians.
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2. Projection Pursuit

Projection pursuit is a class of methods dealing with high-dimensional data
analysis. It serves both exploratory and confirmative analyses. The basic idea
is to project data points onto low- (one- or two-, mostly,) dimensional subspaces
and to study the original data set by searching for interesting projections.

Analyzing high-dimensional data can be very difficult because (1) it is im-
possible to draw a visible scatter plot or other pictures of the data, which will be
very helpful for exploratory purposes; (2) data points are extremely sparse in the
high-dimensional space so that kernel smoothers and similar techniques do not
even work; (3) some optimal methods in the low-dimensional case behave poorly
when the dimension is high. For example, M-estimators for location and scale
parameters can.reach the largest breakdown point 1/2 in the one-dimensional
case, but in the p-dimensional case, all M-estimators have breakdown point less
than 1/p; the sample mean is admissible for the normal mean when the dimen-
sion is Jower than three, but not so if the dimension is higher. PP is able to
avoid this “curse of dimensionality” since it is actually working with the low-
dimensional projections. Also, quite often there exist some irrelevant variables
when the dimension of a data set is moderate or high.

PP is categorized by manual PP and automatic PP. The former is a graphical
display system, which provides pictures of any two-dimensional projections of a
data set. The latter is a class of statistical techniques which choose a projection
index and obtain the interesting projections by maximizing the index successively.
Manual PP becomes more and more time-consuming as the dimension increases.
As Huber (1985) pointed out: “an exhaustive visual search is out of the question
if d (dimension) exceeds 4”, so “we need an automated procedure that ferrets
out projections likely to be of interest to the data analyst”. This paper discusses
only automatic PP.

An index is a measure of the interestingness of projections. But what is
meant by “interestingness”? This is a practical and important question, but it
is difficult to answer. According to our understanding, in exploratory analysis
an interesting projection should be able to show the structure/feature of the
original data set; and for confirmative analysis, it should be helpful in making
inference. The most important sturctures/features, which people frequently want
to reveal, are, perhaps, groups (usually clusters), the relationship among variables
for complicated data sets, and variation and shape for simple data sets. We need
different types of indices to capture these structures. “Interestingness” varies
according to the purposes of analyzing data sets. Mathematically, for example,
an index of one-dimension-projection is a map Q from R™ to R!. Once the index
Q is determined, PP searches for the most interesting direction, say a,, that
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maximizes Q(a” X1, ...,a" X,), where X1, ..., X, are R%valued observations and
a” is the transpose of a unit vector a. This unit vector a, and the maximum value
Q(alX1,...,a;X,) may all be called the PP statistics. Frequently, not only one
but several interesting projections are selected for inspection. The above indices
are a “practical version”. An abstract version index of one-dimensional projection
is a functional from one-dimensional distribution space to the real number space.
When an empirical distribution is used as the argument of this functional, the
abstract version index is a practical version.

PP was first proposed in the early seventies. Friedman and Tukey (1974) suc-
cessfully implemented this technique and coined its catchy name. Huber (1985)
gave an excellent survey of PP that, for the first time, put the fascinating prob-
lems and ramifications of PP into a coherent perspective. Cheng and Li (1986),
and Cheng, Li et al. (1986) also gave in-depth discussions.

3. Exploratory Projection Pursuit

Exploratory PP includes, up to now, methods for classification, regression
and density estimation. Little progress has been made in the area of density
estimation recently. We shall concentrate our discussion on classification and
also include the regression problem.

PP actually started from multivariate classification. The pioneer work in
this area was done by Kruskal (1969, 1972), Switzer (1970), Switzer and Wright
(1971), Friedman and Tukey (1974) (cf. Huber (1985)). Research on PP clas-
sification basically proposes indices to measure the interestingness that serves
certain purposes, and develops the corresponding algorithms, as the pioneers did.
Huber (1985) heuristically pointed out that interestingness for classification goes
together with non-normality, and listed three examples of projection indices that
are all essentially statistic for testing normality. One of them is the standardized
negative Shannon entropy. Jones and Sibson (1987) realized that if this entropy
index is used, the computation is very intensive. They derived an approximation
to the entropy index by expressing the probability density as a truncated Gram-
Charlier expansion based on Hermite orthogonal polynomials, and obtained a
moment index, which is a simple function of the third and fourth moments.
Friedman (1987) also presented a PP algorithm for clustering. After centering
and sphering the data, he performed a transformation on each projection

R(a) =2®(a"X) ~1

where ®(-) is the standard normal cdf. With p,(r) the probability density of R(a),
f_ll(pa('r) —.%)2dr measures the departure of a” X from normality. Expanding
Pa(r) in Legendre polynomials and truncating the resultant sum of the above
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integral, Friedman obtained a projection index

J o
Z E2[p.7 (a))], (3.1)

where E denotes expectation and p;i (7 = 0,1,...) are Legendre polynomials

n (—1,1). This is not really a new index, but is essentially Neyman’s (1937)
statxstlc for testing normality (cf. Section 4). Hall (1989b) discussed another
index without any transformation, that is a moment approximation to

o 2
/ |9°(w) = $(w)] du (3.2)
— 00

(g% is the probability density of a”X and ¢ that of the standard normal) by
truncating the expansion of g in Hermite polynomials. This index was also
proposed independently by Li (1989). Following Friedman and Tukey’s (1974)
idea that a point cloud with groups tends to be locally dense and globally spread
out, Li added a measure of dispersion to Friedman’s (1987) and Hall’s (1989b)
indices. Both their indices basically describe only the local density of the data
sets.

The advantage of these indices is that they are more rapidly computable
than the previous ones. On the other hand, they are all within the framework
of testing normality. Why normality is one of the least interesting distributions
for classification may be due to its simple structure with only one group. The
uniform distribution is also one of the least interesting distributions. A data set
drawn from a uniform distribution may be considered in which every data point
is a group. This is another extreme case of the classification problem. Based on
this idea, Zhang (1990a) proposed a new index that is the product of the trimmed
variance and the mode of the probability density, i.e., following the notation in
(3.2), I(a) = o2(a" X ) sup, g*(t). He also discussed the asymptotic properties of
the optimum direction and the mode in this direction. Suppose f2 is a kernel
estimator of g% and ¢g*(¢;) = supa sup, g°(t), fo(t,) = sup,sup, f2(t); then
the bivariable sequence v/nh3 ((t, —t1), (an — a1)) is asymptotically multivariate
normal under proper conditions, with h, the bandwidth in kernel estimation.

The progress on PP regression is on its theoretical aspects. Hall (1989a)
investigated the consistency property of the kernel-based PP regression estimator
for the first projective approximation to the regression function. He showed,
under suitable assumptions, that if the orientation estimate 6, is sufficiently
close to the “true” projective direction 6y, that is

|6n — 60| < (nh)™1/2n® for any fixed ¢ < 1/[2(2r +1)] (3.3)
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(Jo| stands for the absolute value of a number o or the length of a vector a, A is the
window size and r the order of the kernel function), then |8, — 6y| = O((nh)~1/2)
a.s. and the curve estimate g, (67,) of the first projection approximation gg, (87 z)
satisfies |gg, (07) — g4, (03z)| = Op((nh)~1/2). Zhu and Fang (1992) further
studied this problem and proved, under proper assumptions, that the estimate
fr of the first optimum direction satisfies condition (3.3) needed by Hall’s (1989a)
argument.

4. Tests

Huber (1985) pointed out that PP emerged as the most powerful method
yet invented to lift one-dimensional techniques to higher dimensions. This is es-
pecially true for statistical testing procedures. As a matter of fact, almost at -
the same time as PP was suggested, Malkovich and Afifi (1973) used exactly the
same idea to construct two multivariate normality tests based on one-dimensional
kurtosis and skewness. After the advent of PP, Beran and Miller (1986) dis-
cussed confidence sets for multivariate distributions, which are actually, in our
terminology, the critical values of PP Kolmogorov-Smirnov tests for multivariate
goodness-of-fit. They proved the feasibility of bootstrap construction for critical
values.

We also start with goodness-of-fit problem. Suppose X3, ..., X, are d-vectors
which are iid with common cdf . Let F,, be the empirical distribution of
Xi1,...,Xna, P and P, be the corresponding probability measures of F' and F,
respectively. Denote the cdf of a” X by F'* and the associated probability measure
by P°. Similarly, define F¢ and P2. Zhang (1988) first built up a PP x? test,

o~ n[Pp(S:) — P*(S:)]

Zn = su
ol ; pPa(S;)

with {Si,...,Sn} a partition of the real number space R'. He obtained the
asymptotic distributions of Z, for the null hypothesis completely known and
with unknown parameters respectively. Then Cai (1991) constructed a test W,
based on the Cramér-Von Mises-Smirnov test,

2
Wa = sup / (F2) - Fo(0)) dFe(0).

Li and Zha (1991) presented a PP Neyman test

K, = sup in: —71; [i T (Fa(aTXi))} 2,

i=1
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where mg = 1, 7y, ..., 7, are orthogonal polynomials on (0,1). Each of these two
papers derived the asymptotic distribution of its PP test statistic, constructed
two kinds of bootstrap approximations, and proved the consistency of the boot-
strap procedures, i.e., the bootstrap statistics all have the same asymptotic dis-

tributions as their original PP statistic. If we write down the sample version of
Friedman’s (1987) projection index (3.1), that is,

J
Ii(a) = Z
ji=1

25 +1[ & . 2
53 [ p; (28(a” X;) —1)] ,
=1

1=

then we see that this index is essentially the same as that of the PP Neyman
test except that the F'® of a general F is replaced by the standard normal & and
the orthogonal polynomials 7; on (0,1) replaced by the same kind of polynomials
p;j on (—1,1). Sun (1989) discussed the p-value of this index and obtained some
elegant results.

Practically, some data analysts consider a random p-vector to be normal if
its p marginal distributions are all normal. To clarify this usage, Cui (1990) gave
counterexamples to show that a p-vector is not necessarily normal even if its NV
marginal distributions of projections a7X,...,a}y X are all normal for any given
finite N and N directions aj,...,ay.

Another type of tests being discussed is the location problem. Zhang (1989)
proposed two location tests based on the Mann-Whitney test and a robust t-type
test, and derived the asymptotic distributions of these two PP tests, respectively,
under null hypotheses.

As we have seen, the above PP tests are mostly for goodness-of-fit, and
otherwise for the location problem. Also, their asymptotic properties are studied
individually. Can we establish some methods for other types of testing problems?
Is it possible to study a class of PP statistics as a whole, like U-statistics and so
on, in the one-dimensional case?

Note that:

(1) for two d-vectors m and my,

m = mg <= a"m = a”my for all unit vectors a;
(2) for k x k matrices V and Vj,
V=W <= a"Va = a"Va for all unit vectors a;

(3) for random vectors X and Y,

X2Y <= a"X £ a7V for all-unit vectors a;
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(4) for random s-vector X and t-vector Y,

X and Y are independent <= "X and b"Y are independent

for all unit vectors a and b;

where “2” means that both sides have the same distribution. The PP goodness-
of-fit tests mentioned above are all built on the fact (3). Aware of the above
foundation underlying PP tests based on one-dimensional procedures, Li and her
two students studied PP L-, R- and U-statistics for tests as a whole (see Shi and Li
(1992, 1991), Shi (1991), Tang and Li (1992)). They took centralized L-, R- and
U-statistics as projection indices, and built up the corresponding PP statistics
for the tests. The asymptotic distributions of each class of PP test statistics are
derived. As special cases and applications of the general results, examples for one
and /or two sample location and dispersion tests, and for testing independence of
two random vectors are given. However, these asymptotic distributions depend
on the unknown underlying populations, so Shi and Li (1991) discussed boot-
strap approximations for PP L-statistics and reported some numerical results of
simulation studies.

In the above papers, the asymptotic levels of the tests are obtained. What
about the powers of these tests? Zhang and Cheng (1989) gave a general result
from which the asymptotic power of most of the above PP tests can be derived.

Let II be a set with a distance d(-,-) on it. Let V(¢) be a continuous real-
valued function on II and {V,(t) : t € II} be a stochastic process. Put

Sa(t) = Va(Va(t) = V(1), B= { V(5) = sup v}

Theorem 4.1. Assume that B is not empty and that there is a stochastic process,
say S = {S(t) : t € I}, with uniformly continuous and bounded paths such that

s%p |Sn(t) — S(t)] — 0 a.s. (4.1)

Then
\/ﬁ(sup Va(t) — sup V(t)) — sup S(t) a.s.
II II B

To explain how to apply this theorem, let us look at the location problem.
For simplicity, we assume the underlying covariance matrix is known. The null
hypothesis is m = mg, and the alternative is m # mg. It is evident that the
statistic

T» = sup |[a" X, — a"my
a
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provides a test, where X, is the sample mean of X 1,...,Xn which are iid with
common probability measure P. Let Pf = [ fdP. If the null hypothesis is true,
then by simple argumentation we have

T, = sup|Vn(P, = P)(a"z)| - sup |G(a)],

d . . . . .
where — stands for convergence in distribution and G(a) is a Gaussian process.
Now assume m # mg. Put

Vala) =

a’ X, - aTmO' = 'Pn(a"a:) - armot,
V() =|P(a"z) - a'fmoj, B= {b V(b) = sup V(a)}.

Note that now (P,(a"z) — a"my) is no longer centralized. The asymptotic dis-
tribution of T, = sup, Vy(a) is not obtainable by the usual theory of empirical
process. But it can be derived by Theorem 4.1. Since for sufficiently large n,

Sn(a) = \/H(Vn (a) — V(a)) = \/E(Pn (a"z) — P(a”m))sign(P(aTz) - a"mo) a.s.
we have

Sp={Sn(a) : |a] =1} N {G(a)sign(P(aTz) —a"myg) : |a| = 1}
=S = {S5(a) : |a| = 1}.

By the Representation Theorem (Pollard (1984, p.71)), there exist S, = {5, (a) :
la] = 1} and S = {S(a) : |a| = 1} such that

g &

S, %8, 58,

~

[s?_pl ‘S'n(a) - S'(a)' — 0. as.

Put V,(a) = Sa(a)/+v/n + V(a). Then, from Theorem 4.1, it follows that
vn ( sup Va(a) — sup V(a)> — sup S(t) as.

This yields

\/"_7'<Tn ~ sup V(a)> = ﬁ(sgp Va(a) — sup V(a)) R sup S(a).

5. Estimation
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It was once a difficult problem to construct estimators for multivariate dis-
persion matrices that have most of the important properties in the light of equiv-
ariance, accuracy, breakdown point, positive definiteness and so on. The classical
sample covariance matrix is affinely equivariant, positive definite and asymptoti-
cally normal; but its performance is not stable, and it has a very poor breakdown
point 0. While existing robust estimators either have no equivariance, or have
a low breakdown point; some of them have no asymptotic theory to back it up;
some do not even guarantee a positive definite matrix.

Take advantage of PP, Li and Chen (1985) and Donoho (1982) proposed,
respectively, two types of estimators that possess most of the desirable properties.
A remarkable fact is that both types of estimators have high breakdown point,
and certain equivariance as well.

Donoho showed that his PP-type estimators for multivariate location and
dispersion are affinely equivariant and have sample-breakdown point close to
—%. Later, Li (1987) proved theoretically that Donoho’s estimators are strongly
consistent and qualitatively robust. Zhang (1987) verified that they are also
asymptotically normal. A serious drawback is that they are computationally
very expensive since maximization over the unit sphere is necessary for every
data point of the observations.

Li and Chen (1985) presented another kind of PP procedures. Note that by
its spectral decomposition, the sample covariance matrix can be built up by its
principal components. The principal components are actually PP statistics with
the sample variance as the projection index. Li and Chen took a robust scale
as the projection index, firstly obtained robust principal components using the
PP method, and then constructed a dispersion matrix based on these principal
components. As shown in their theoretical and Monte-Carlo studies, this kind of
robust estimators, namely robust PP estimators, for dispersion matrix and prin-
cipal components are qualitatively robust, strongly consistent and rotationally
equivariant. Their breakdown point can reach. % if the robust scale is properly
selected. Most of the theory was given in Li (1984). The robust PP estimators for
dispersion matrix and principal components together with their good properties
were extended by Li (1986) to the case where the location is unknown and needs
to be estimated simultaneously. One basic condition required in the above papers
is that the underlying distribution belongs to an elliptic distribution family. Cui
(1992) showed that this is not a necessary condition for the robust PP estima-
tors of dispersion matrix and principal components being qualitatively robust.
He proved, under suitable conditions, the necessary and sufficient condition for
that is that the underlying distribution is of an orthogonal structure (see Cui
(1992) for detail). Li (1986) and Cui (1992) also studied the convergence rate in
probability of these robust PP estimators. Zhang (1990a) and Zhang, Zhu and
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Cheng (1989) obtained, under proper conditions, the asymptotic distributions of
the estimators for the dispersion matrices and the principal components when
the eigenvalues of the underlying dispersion matrix are either all distinct or all
identical, and also that for the largest and the smallest components in the general
case. Zhang (1991) investigated the bootstrap approximation of these asymptotic
distributions, and constructed confidence sets for the parameters.

6. Tail Behavior of Projection Pursuit Statistics

The asymptotic distributions of most PP statistics depend on the underlying
distributions that are usually unknown. To apply these asymptotic results, we can
either perform empirical bootstrap, or theoretically study their tail probabilities.

Typically, a PP statistic actually describes the largest difference between
projections of the data and that of the (assumed) underlying distribution in a
certain aspect. It may be regarded as a PP version and extension of Kolmogorov-
Smirnov (K-S) distance. The tail probability of this type of statistics is an old and
basic problem and has become quite attractive in recent years. Besides Cheng
and his students in China, Alexander (1984), Adler and Brown (1986) Adler
and Samorodnitsky (1987), Ohvrik (1987, '1988), Huber (1988), Sun (1989), etc.
studied this kind of problem from different aspects. In the following we sketch
some of their results. Let us follow the notation introduced in Section 4.

Assume F is a class of functions on R?% whose class of graphs has polynomial
discrimination of degree v (cf. Pollard (1984, Ch.2)). Alexander (1984) proved
that for A > 8

Pr{\/ﬁsup |P.f - Pf| > ,\} < 163777 exp{—212).
].'

Zhu (1990, 1991a,b), Zhang and Cheng (1991), and Zhang (1990a, 1992) improved
this inequality. For example, they showed that for any £ € (0,1/4),if A > Ay =
A(v,€), the factor 16A2'*? can be replaced by M(=1)(1+€)/(1~2) A more accurate
result and other similar results are also given in their papers.
For PP K-S statistics, Ohvrik (1987, 1988) did many simulation experiments.
He generated many samples of d-vectors from multivariate normal and other
spherically symmetric distributions, which resulted in two empirical formulas,

E(n,d,\) = Pr{\/ﬁs:? F,ff(’t)—F“(t)IZ/\}

d—-1
= 2exp{—2)\2+ N ln(Zen/d)},

£(n,d,)) ~ 2exp{—2)2+2.464(d ~ 1)}.
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Huber (1988) studied this problem theoretically and improved his results of 1985.
He verified, for A > d/+/n,

€(n,d,A) < 2(%)dexp{ -2(X — d/\/ﬁ)z}

with the underlying distribution sphencally symmetric. This is the best result so
far for the finite sample case. Based on Ohvrik’s simulation results, Huber made
a conjecture that

£(n,d,)) < N - 2exp{-2%}, (6.1)

where N = N(d) does not depend on X and n.

Zhang (1990a,b, 1992), Zhang and Cheng (1991), Zhang, Zhu, and Cheng -
(1993) and Zhu (1990, 1991a,b) investigated the upper and lower bounds of
€(n,d, A) for a wide range of underlying distributions. One conclusion from their
results is that for n > ng = ng(A),

c1(d)A24 D) exp{ 222} < £(n,d, A) < ca(d)AX4D exp{—222}. (6.2)

For fixed dimension d, the two sides have the same order A%(¢~1) exp{—2A2}.
Hence, when n is large enough, (6.2) contradicts (6.1). The right side of (6.2),
which improves Huber’s (1988) inequality in large sample sense, holds not only
for elliptically symmetric distributions, but also some symmetric and stable laws,
etc. (Zhang (1990a, 1992)). The left side of (6.2), which leads to a contradiction
of (6.1), holds, as well, for even a wider class of underlying distributions (cf.
Zhang (1990a,b) and Zhu (1990)).

Cheng and Zhu (1992) discussed the upper bound for £(n,d, ) for the case
that the underlying distribution is elliptically symmetric with unknown and esti-
mated parameters. For example, when both location 6 and dispersion matrix ¥
are unknown, and estimated by én and 3, respectively, they obtained

E(n,d,2) < NIV exp (32 /242},

where £(n, d, ) is the same as £(n,d, ) but with 6 and T replaced by 6, and &,
respectively in F, and b? = b?(F) is a constant. A

Zhang and Cheng (1991) and Zhang, Zhu and Cheng (1993) studied PP K-S
statistic with m-dimensional projections. Let

Fm = {I(A(C <t):Ais an m X d matrix, t € Rm},

n(md, 3) = Pr{ sup|Va(Paf - P1)| > 2.
Fm
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They proved that, if P is elliptically symmetric with P{z = 0} = 0, then for any
A > 2 there exists an n(\) such that

Em(n,d,A) < A0 D exp{—2)2} for all n > n(}).

They also discussed the upper and lower bounds of £,,(n,d, \) for general under-
lying P.

Combining the Von Mises statistic and the PP idea, Cheng and Zhu (1992)
discussed two statistics for goodness of fit tests. One is

= [ [ VaEw - o)) e wan),

where H is the uniform distribution on the d-dimensional unit sphere. They
showed that, under mild conditions for A > 1, there exists an n()) such that

Pr{V, > A} < eA"Y2[In(A)] e /2,

where [a]T = al(a > 0). Another is

W, = sup / " [VaER) - P dFee).

|laj=1V—o00
If F is elliptically symmetric, then
Pr{W, > A} < c(d)A24-1/2¢=27%/2,

Zhang (1990a,b) studied the lower bounds for other K-S statistics. He ex-
tended the result of dimension d = 2 by Adler and Brown (1986) to general
d, and proved that the lower bound in Adler and Samorodnitsky (1987) for
P = Uniform([0,1]¢) remains true when P is any continuous distribution on
R? with proper conditions. In the latter, the lower bounds are of the form

CX224-1) exp{—-2A2} (A > 0).

7. Applications
7.1. The life of a steel roller

The life of a steel roller is a very interesting practical problem raised by a
steel plant in 1958, which was advertised for solution in a Chinese journal. More
than thirty years had passed before Cheng, Zhu, Wei and Shi (1991) provided an
answer quite recently through the PP theory. The problem is as follows. While
making rolled steel, a very big metal ball is used. Each time of steel rolling, the
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ball is put in the device randomly, and after rolling it shows a sign of wear and
tear, which is approximately a big ring with a great circle of the sphere in the
middle. If any point of the sphere falls in the ring m times, then the metal ball
has to be scrapped. The question is how many times the ball can be used on
average.

Without loss of generality, we assume the radius of the ball is one. Consider
one rolling first. Let 2h be the thickness of the ring of wear and tear, and
x a unit vector perpendicular to the great circle. A point @ is in the ring if
and only if [a"z| < h. For n times of rolling , let Xi,...,X, be the n unit
vectors perpendicular to the n rings of wear and tear. The number of rings

where a particular point a falls in is Z I(Ja™ X;| < h). Note that, without loss
. i=1 -
of generality, X;,...,X, are iid with a uniform distribution on the half ball

{a = (01,02,a3) : |a| = 1,3 > 0}. Denote the corresponding empirical measure
by P,. Then

iI(IaTX,-I < h) = nPnI(IaT:cI < h)
i=1

is actually a process indexed by the unit sphere. Evidently, the ball is scrapped
if

|51|1_P1 (nPnI(|aT:c| < h)) > m. (7.1)

The number of times that a ball can be used is

T = 7(m, h) = inf {n : |451.1|1=-P1 (nPnI(IaTa:I < h)) > m}.

The left hand side of (7.1) is a typical PP statistic whose asymptotic distribution
can be derived. Then the asymptotic distribution of 7 follows.

Both theoretical results and numerical simulations are presented in Cheng et
al. (1991). For example, one theorem says that as m — oo,

Bm(r(m,h)/m —1/h) =0 a.s.

An empirical formula based on the simulation is

Er(m,h).& m/h — 2.6388—\/’1—% +13.7116.

7.2. Other applications

The principal component analysis (PCA) method is frequently applied to
meteorology data sets, which usually contain a number of outliers. In this case,
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classical PCA often fails to give reasonable results. Chang, Shi and Chen (1990)
tried the robust PP PCA discussed in this paper (cf. Section 5) and analyzed a
data set from the records of monthly mean precipitation for 160 stations in 35
years (1951-1985) in China. In order to compare this method with the classical
one, they chose a relatively “clean” data set of 500 hPa monthly mean height
from Jan. 1951 to Dec. 1960 and 29 spots in Asia, and created a “dirty” data set
by deleting the data of year 1960 and adding a few outliers to it. The numerical
results showed that for the clean data set, two methods gave basically the same
results; but for the dirty data set, the results given by the robust PP method
remained almost the same, while the classical method gave entirely different re-
sults.

Instead of the usual principal components in latent root regression, Yan
(1990) used the robust PP principal components to construct the robust latent
root regression (RLRR), and the robust principal component regression (RPCR).
He applied these two regression methods to analyze a set of medical data. Addi-
tionally, he compared these two methods with the LS regression and the classical
principal component regression (CPCR). His numerical experiments showed that
the RLRR and RPCR were not only robust but also able to cope with colinearal-
ity while CPCR could only stand colinearality but was sensitive to outliers, and
LS regression performed poorly when either colinearality or outliers occurred.

When an attack plane launches missiles to a target, it needs to choose a
distance for good launching according to its state relative to the target. The
relative state can be described by six variables (predictors). To build a model for
the launching distance (response) based on observations, quite a few regression
methods have been applied. However, none could achieve the required accuracy.
Tian and Rong (1993) adopted the PP regression technique. They used the sum
of ridge polynomials, Y7~ gi(alz), to approximate the regression function, where
gi (1t =1,...,m) are polynomials. The numerical results showed that this method
achieved the required accuracy.
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