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GENERALIZED SAMPLE COVERAGE WITH AN
APPLICATION TO CHINESE POEMS

M.-C. Ma and Anne Chao

National Tsing Hua University

Abstract: The sample coverage for a random sample is defined as the sum of the
class probabilities of the observed classes in multinomial sampling for which only one
class occurs in each independent observation. This study generalizes the concept of
sample coverage to the case that multiple possibly dependent classes can occur for
each observation. A consistent estimator for the generalized sample coverage and its
mean squared error properties are developed. The resulting estimator is shown to be
an approximate empirical Bayes estimator. A data set on Chinese poems is given for
illustration. Results of a simulation study are reported to show the general perfor-
mance of the proposed estimator and to suggest that the usual estimator, without
considering the dependence among classes, may yield severe bias in some situations.
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1. Introduction

Each independent observation in multinomial sampling is classified to exactly
one class (i.e., only one class can occur). The sample coverage of a random sample
is defined as the sum of the class probabilities of the observed classes. An equiv-
alent measure is one minus the sample coverage, which can be interpreted as the
conditional probability of discovering a new species in an additional observation
given the sample. An widely used “estimator” for this conditional probability
is the proportion of the singletons originally proposed by Turing according to
Good (1953). The estimator has been discussed in Good (1953), Good and Toul-
min (1956), Harris (1959), Knott (1967), Robbins (1968), Engen (1978), Starr
(1979), Chao (1981), Esty (1982, 1983, 1986), Cohen and Sackrowitz (1990) and
Lo (1992). A variance estimator and the construction of confidence intervals are
given in Esty (1983). There is a close relationship between the estimation of
sample coverage and that of the number of classes. Refer to Darroch and Ratcliff
(1980), Esty (1985) and Chao and Lee (1992) for details.

A seven-character quartet (chueh chii) is a Chinese poem of 28 characters
which are divided into four parts with seven characters in each part. In a study
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of the seven-character quartet of China’s most popular poet of the Tan’g Dy-
nasty, Bai Juyi, 200 seven-character quartets were randomly selected from Bai’s
collected work and the proportion of this sample covered is the main interest.
In other words, if we were to select another seven-character quartet, what is the
probability of finding at least a new character. Previous papers discussing lit-
erature studies, e.g. Efron and Thisted (1976), Thisted and Efron (1987) and
McNeil (1973) have treated each single word in the sample as an independent
observation and ignored the possible dependence among words. This may be
reasonable for English literature, but for Chinese poems, many characters tend
to occur together for “rhyming” or “symmetric” purposes. For examples, typ-
ical symmetric words: sun with moon, mountain with stream, spring with fall
‘etc. Thus the dependence between characters occurring within a poem should be
considered. In this work, we regard each selected seven-character quartet with
28 characters as an “observation”, although each distinct Chinese character is
still regarded as a class. Hence for each observation, at most 28 classes can oc-
cur (some characters may be repeated) and the dependence among characters
occurring within an observation is allowed.

We present, in Section 2, a general model introduced in Chao and Lee (1990)
to be applied to the Chinese poems problem and define generalized sample cover-
age. An “estimator” for the generalized sample coverage is proposed in Section 3.
The mean squared error as well as other properties are derived. A simulation
study is reported in Section 4 to show the general performance of the proposed
estimator and to compare it with the usual estimator treating each character as
an independent observation. In the final section, a data set on Chinese poems is
given for illustration.

2. Generalized Sample Coverage

Assume that there are N classes and ¢ independent observations, N is un-
known. In our application, N denotes the number of distinct characters used
for all poems, and a selected poem (seven-character quartet) is regarded as
an observation. For each observation, at least one but at most n classes can
occur, n < N. The sample space of each observation can be expressed as
S ={(21,22,...,ZNn)|Z; =0 0r 1,0 < 3 Z; < n}, where Z; = I[the jth class
occurs] and I is the indicator function. Also let Pz, 2,..z5 be the correspond-
ing probability for the outcome .Zl,Zz,...,ZN, 0<¥YZi<n Y Z >n,
P2z, 2,..2y is defined to be 0. For notational simplicity, let

P, = Pz,2,..25, Where w = {ilZ,‘ = 1}, (2.1)

and w is a nonempty subset of {1,2,..., N} with at most n elements.
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Let the ith observation have outcome (Z;1,Z;2,...,Z;5) from the sample
space S. Thus the t observations can be expressed as a t x N matrix (Z;;), where

Z;; = I [the jth class is found in the ith observation].

For example, with N = 4 and n = 2, the set of all possible outcomes for each ob-
servation is S = {(1000),(0100),(0010),(0001),(1100),(1010),(1001),(0110),(0101),
(0011)}, where P1goo = Py;3 represents the probability that only class 1 is ob-
served and the other classes are not observed. Pi1i00 = Pjy,2) represents the
probability that only classes 1 and 2 are observed and the other classes are not
observed. A similar interpretation pertains to other outcomes. In the following,
we shall drop the brace and write P; instead of Ppy, P12 instead of Py g3 etc.
for simplicity.
Suppose t = 2 and we have a data matrix

Zu 212 Zi3 Zig| _|1 000
Zoy Zoo Zog Zog | |1 1 0 O]

To define the sample coverage for this problem, first consider the following ques-
tion: If we were to take an additional observation, what is the probability of
discovering at least one new class. It is intuitively clear in the above example
that this probability is C = Pgo10+ Pooo1 + P1010 + P1o01 + Por10+ Pozo1 + Poo1r =
P3 + Py + Py3 + Pyy + Po3 + Pay + Pay, i.e., any observation which includes the
class 3 or 4 will discover at least one new class. Note that for this example
Pio3 = Pjoy = Pigq4 = Pa3zq = Piozq = 0. Consequently the sample coverage
becomes C =1 — C = Pi1gp + Poio + P110 = P1 + P> + P13. Now we can define
the generalized sample coverage in the following:

Definition 1. Let A = {w|w C {1,2,...,N},0 < #w < n} where #w denotes
the number of elements in w, be the collection of nonempty subset of {1,2,...,N}
with at most n elements. Let a random sample of ¢ observations be taken and
X = S°t_1 Zix be the number of occurrences of the kth class in ¢ observations.
We define the generalized sample coverage based on t observations as

C=C) = Z P, I]all elements of w occur in the sample]
weA

= pr{

wEA

11 I[X(k) > 1]} ' (2.2)

kew
The conditional probability of finding at least one new class in an additional

observation given the sample is defined as

C=C) = Z P, I[at least one of the elements in w does not occur
wEA
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in the sample]

= u%qu{ rl?easz[X(k) = 0]} (2.3)

We shall drop the use of subscript t in C; and C; wherever no confusion arises.
Both C and C vary with the sample and C+C = 1. In the special case that only
one class occurs in each observation, C reduces to the total cell probabilities of
the observed classes as defined in Good (1953) and Good and Toulmin (1956).

3. Estimator and Mean Squared Error

To derive an estimator for E(C), the following definitions are needed: (Al
the summation of w, w', o and o' in the rest of this paper is over the class A,
unless otherwise stated.)

Definition 2. Define

Flufw')

probability that all elements of w occur simultaneously
Z P, w')
{w'|w' Jw}
probability that at least one element of w occurs
Z P(w:)(—-l)#w'"l; (equivalently, 1 — P(w) is the probability
{w'lw'Cw}
that all elements of w do not occur);
probability that all elements of w and at least one element

of w’ occur.

Definition 3. For a data matrix, we define for w € Aand k=1,2,... , 7,

X(w)

fr1

the number of observations in which all elements of w occur

simultaneously

t
ZI[ZM =1 for all i € w];
k=1 ’
the number of possible combinations of k classes that occur

simultaneously and individually exactly once in t observations
Y I Xy = Xy =+ = X(iy) = 1 and Xiip iy = 1]
1< <ip < <ip <N

Z I[X(.w)-=1 and X(i)=1 fora,llie'w}.
{wlHw=k)
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Some properties of C and fi; are given below:

Proposition 1.

C = Y Pul[Xp=0Vieuw|(-1)#, (3.1)

BO) = ¥ Puy(1-Pw) (-0, (3.2)

E(f1) = Y tP('w)(l - P(w))t_l- (3.3)
fwl#w=k}

Proof. From the definition (2.3) and

maxI[Xp = 0] = g: I|Xpy=0] - zk:ez I X4y = X4 =0]+
w JEW

n (—1)#’”‘122'“21[)((1:1) == Xy =+ =0],

(3.1) follows by noting that the coefficient of I[X(;) = 0 V i € w] is (—1)#¥~1
Y wow Pu = (= 1)#w= 1P,). Also, (3.2) and (3.3) follow immediately from (3.1)
and the definition of fi; respectively.

We now proceed to derive an estimator. Notice that if ¢ is large,

EC) = Y Y Pu(i-Pu) )t (3.4)
k=1 {w|#w=k}
n _ -1
~ Y T Pu(l-Pw) (-1
k=1 {w|#w=k}

= > E(fu)(-D*/
k=
Thus an estimator of E(C) is
C(=Cy) ZnulkVt (3.5)

which is also used as a predictor of C. If only one class is observed for each
observation, fx; = 0 for k > 2 and the estimator C reduces to the proportion of
singletons, which is Turing’s formula given in Good (1953).

In the following, we obtain an alternative form for C':
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Proposition 2. LetY; (= Yt) be the number of singletons in the jth observation
based on t observatzons then

C(=Cy) =Y I(%; 2 1/t (3.6)

i=1
Proof. This follows from (3.5) and fi; = ] =1 (1,:’)

The proposed estimator given in (3.6) is simply the sample proportion of
observations that contain singletons. This intuitively implies that only those ob-
servations that contain singletons are informative of the probability of discovering
another singleton in an additional observation.

Let f“"]l and th“ be defined similarly to fi; and Y; except that they are
based on ¢t + 1 observation if an additional observation were taken. It is then
clear from (3.4) that the estimator

t+1 k-1 t+1 I Yf+1 >1
Ct+1 Zf —1) = L__;_)
t+1 t+1

j=1

is an unbiased estimator of E(C,).
We now extend the approach of Good (1953) to prove that C is an approxi-
mate empirical Bayes estimators with respect to a uniform prior.

Proposition 3. Let £ be the event that there is at least one class which did not
occur in the sample. The posterior mean of C given £ under a uniform prior is

then
T Rw[i- B -y
S e

Proof. For any w € A, it can be shown that

P(é’ IC = P(w)) = P(the set of unobserved classes is w)
_ 4t .
> [1- By (-1 #

wCw'

Then for any w € A the posterior probability that C = P(w) given £ is
P(£IC = Pu)) P(C = Pru))
> P(EIC = Pay) P(C = Py

ac A

P(C = P(w)lé') =



GENERALIZED SAMPLE COVERAGE 25

Under a uniform prior that P(C = P(w)) are equal for all w € A, we have

> [1—P(a'>]t(—1)#“"#“ = Z[l—P(a')] [Z( 1# J

a aCa o aCal

= Y [1-Pay] (~0)#

al

It then follows that the posterior mean of C is

S By 3 [1- By (m1)p e

Since it is easy to prove that Z P(w)( 1)#e-l = P(y1y, we have

{w|lwCw'}
ZP(‘W) ;, [1 — P(w’)] 1)#w'_#w
= Z[ > P(w)(—l)#w_l} [1 = P (~1)#2'

w' "wCw'

3 P (1= By (1),

From Proposition 3, we can write

E{Z Iy > 1)]/(t+ 1)
G

where Yi”’1 is the number of singletons in the ith observation based on t + 1
observations. If we were to take an additional observation, then ¥, I(Y;'*! >
1)/(t+1) is an empirical Bayes estimator. When t is large, our proposed estimator
>; I(Y; > 1)/t is thus an appoximate empirical Bayes estimator.

The mean squared error of the proposed estimator is then derived as follows:

E(C|€) =

Proposition 4. The mean squared error of & is given by
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+ 203 R P [1 = Pluun] (-1 # 4

wNw'#£¢
_ -2 :
+ Z Zp(wlw P(w']w)[ P(.wuw,)]t (_1)#w+#w
wNw'=¢
+ Z Z P(.w wl)P(_wal)[ _ P(wuw’)} t—2(_1)#,w+#wl
wNw'=¢
-2 Z Z P(w)P(fw’[w)P(wa/) [1 — P(’lUle)] t—2(_1)#w+#w' (39)
wNw'=¢
where
— -2 ,
B = ZZ [P(w)_P(’:u|wl)] [P(w’)“P(:u'lw)] [l—P(wa,)]t (_1)#w+#w . (3.10)
wNw'=¢

Proof. From (3.6), we can show that

B¢ = t-zE{z %21+ LS 10 2 )1 2 1)}

(1] [E(2)eam
E

= (C +t_2 ZZE{ [ )—IViEwal,X(w)=1,X(w/)=1,
wNw!=¢

_ BE +t‘2E N

i#]

X(wa’) = 0] }(“1)#w+#w,

- B9 ,_Lip (3.11)
t t
Also,
E(C?) = 33 PuyPuy|l = Pluuw) (-1
wNw's#£¢
— t '
+ 20 2 Py Pan[1 = Pavw] (-DFH#, (312)
wNw!=¢

and the cross product term is

—2B(CC)=-23 %" Pu [P(w') - P('iqu)] [1 - P(wa')]t_l(—l)#w+#w'-

wNw'=¢

(3.13)
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Combining the above three terms, we get (3.9).

Proposition 5. The mean square error for any fized n when t is large is given

by
= = E é) .B = t'—2 1
2 __ w w
E(C - C) = T — ? + Z %P(w)P(w') [1 —_ P(wuwl)] (——]_)# +#
wNw'#¢
_ t—2 , B
+3° 3 BuuyPluriuy [1 = P (“DF*H#¥10(7),  (3.14)
wNw'=¢

where B is defined in (3.10). If we define M;; for i # j as the number of classes
which appear only in the ith and jth observations (and not in others), an asymp-

totically unbiased estimator for the mean squared error of C for large t and fized ~
n 1s then

é%:Té’)+ZZI[M,-]-Z1,}Q=0,Y,~=0]/(;). (3.15)

i<y

Proof. Since there are at most n classes observed for each observation, we can
show that 3, P,,) < 27. It then follows that

- _ -2 ,
Z E P(“”)P(w')P(%uUw') [1 - P(wa’)]t (_1)#w+#w = O(t_2),

w !

and

_ . -2 ,
> 3 Pl Pluy Pravwr) [L = Pavw)] — (~DFH#
wNw'#¢
- _ 12 ,
+ Z E P(w)P(:qu)P(wa/) [l - P(wa:)] (_1)#w+#w — O(t_2),

wNw'=¢

(3.14) then follows. We now derive the estimator of the mean square error.
From (3.11), an estimator for B is t{C(C — 1/t)]/(t — 1). Moreover, an unbiased
estimator for Z Z Py Pl — P(wa,)]t'2(—1)#w+#w is

wNw'#¢
-1
(3) TX % 1HG w0k,
i<y wNw'#¢

where H(i,j,w,w’) denotes the event that all elements of w occur in the ith
observation, all elements of w’ occur in the jth observation, and none of the
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elements of wUw' occur in other observations. For given observations ¢ and j, we
have to enumerate how many combinations of w and w’ satisfy the above specified
condition. First fix the number of elements in w N w’, £. There are, accordingly,
(") possibilities. Then there are (Y"+A,:I"' %) choices for w and (M-8 choices
for w'. We finally have an alternate sum with respect to £ to remove all redundant
pairs. The above estimator becomes

_ Mi; ( [Yit+Mi;—t
t 1 ij i ij K + Mi' iy
(5) ZZZ{[ > (N )(—U’“J
i<j £=1 k=0
Y;+M;;—£
’ Y]'+Mij—f _\m Mz‘j _1)4-1
[ ] e
However, for £ < M;; we have
Yi+ M-t Y+ M;;—¢t
Yi+ M;;, — £ Y, + M;; — ¢ m
Z ( kJ )(_1)k=0= Z ( 7 m] )(-1) .
k=0 m=0

Thus only the terms for £ = M;; are left and the above estimator then becomes

-1
( ; ) 22 (=DM - I(¥; > 0)][1 - I(Y; > 0)]

i<j
-1 .
= ( ; ) ZZ("I)Mij—II[M,‘j > 1Y, = O,Yj - 0]
1<j

Similarly, define G(%, j, w,w’) as the event that all the elements of w and at least
one element of w' occur in the ith observation, all elements of w’ and at least one of
w occur in the jth observation, and none of the elements of wUw’ occur in others.

- t—2 ,
An unbiased estimator for Z ZP(:ulw’)P(:u']w) [1 - P(wa')] (_1)#‘w+#'w is
wNw'=¢

-1
( ; ) DD 3 D IGl, jw,w))(~1) et

i<j wNw'=¢

- (3) SE (¥ + 1)y 2 2% =05 =0)

i<y
Combining the above three estimators, we then obtain (3.15).

For the special case that exactly one class can occur for each observation, the
only possible value for M;; is 1. It is obvious that 3 2ici I[Mi; =1,Y;=0,Y; =
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0] = number of doubletons; hence our variance estimator reduces to Esty’s (1983)
result.
The following proposition proves the consistency of the proposed estimator:

Proposition 6. When N — 0o andt = t(N) — oo such thatt 2E Y. 3,
>1,Y; =0,Y; =0] = o(1) for any fized n, then c-cEo.

i<j [ ij

Proof. It is easy to see that B = O(1) and the conclusion follows directly from
(3.14) and (3.15).

The condition in the above proposition can be easily shown to be valid in the
special case that only one class is observed in each observation. We remark that

a bias-corrected version of C can be easily obtained by noting that

E(é’ ~-C) = Z E Plw)Pw [1 - P(w)]t_l(—l)#w+#w'.

w w'Cw

An estimator for the bias is

o= § EX T 2 {1+ UG w1

w w'Cw
YeAMi=t v 0 .
= 24\22{[ n (7 >(_1)]
Y+ M;;—¢ . e ..
TEra s
- t(t EZ[I(Y—O—YJ,M,JZI)+I(Y>1Y—0 M;; 2 1)),

Hence we obtain the bias-corrected estimator:

Py

Cbc"‘_"é

t(t_l)zz[ _O_}/:;,M1321)+I(Y>1Y__OM”Z]_)]

i#]
(3.16)

It is reduced to C'— (number of doubletons)/(5) if only one class is observed for
each observation.

Two intuitive explanations regarding the bias-corrected term are provided in
the following: First, an approach similar to Lo (1992) is presented: Let N; 1=
Y, I(Y}T! > 1) be the number of samples with singletons based on t + 1 samples.
As mentioned before, Ni™!/(t 4+ 1) is an unbiased estimator of E(C;) and now
we use N}/t instead, where Ni = Y, I(Y; > 1). The purpose here is to evaluate
the difference of N{"'l /(t + 1) and N#/t. However, Ni*! is unobservable, so
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we construct an “estimator” N i+1 as follows: the relatxon between Nit! and N?
should be approximately the same as that of N} and N 1 which can be obtained
by successively deleting a single observation. If the ith observation is deleted, the
following four cases may arise:
(1) if the ith observation contains singleton but no doubleton, we have
N f+1 = N{+1;
(2) if the ith observation contains both a singleton and doubleton, we have
N =N =Y I(Yi 2 1,Y; =0,Mi; > 1) + 15
j#i
(3) if the ith observation contains a doubleton but no singleton, we have
N = Nf = 3 I(¥; = 0,Y; = 0, My; > 1);
J#
(4) if the ith observation contains neither a singleton nor a doubleton, we have
Nt+1 Nf
Then an approximate bias is

E(NfUYLYs, o Yo My, 6,5 = 1,2, 8, i #§) N1

t+1 t
(t+1 ZZ[ "“O”EaMzJ>1)+I(Y>1Y—OM,]>1)]

The second explanation is to consider a U-statistics for E(C;_5): Write

E(Ci—C) = E(Cio1-Cy) ~ E(Cig — Cp1)

1 1 (=i) 1
E[nggI(YJ 21)-2223 Y>1} (3.17)

where Y9 is the number of singletons in the jth observation when the ith
observation is deleted, 7 # 7. It can be shown that

Carrying out some algebra results in

EC:-C) =~ E{ ZZ[I(Y—O-—YJ,M,J>1)

t(t —

H(Y 2 1Y = 0,My 2 1)] .
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This also provides an intuitive view of the bias-corrected term.

4. A Simulation Study

In this section, we compare our estimator with that of the usual approach
without considering the possible dependence among characters occurring within
a poem. If each character is treated as an independent observation, then an esti-
mate for the probability of discovering a new character for an additional character
is fi1/(nt), the proportion of singletons. Therefore an estimate for the probabil-
ity that there exists at least one new character for an additional poem with n
characters is C =1 — [1 — f11/(nt)]*. We are then interested in the performance
of C under the dependence situations.

We have carried out a limited simulation study to investigate the relative -
performance of C’ bias-corrected Cbc, and C The number of classes N was fixed
to be 200. Let R;, Rs,..., Rogo denote these 200 classes. For each observation,
four classes (n = 4) were chosen in a way that two classes were randomly selected
without replacement from Rjg1,R102,. . .,R200 and the other two classes were a pair
randomly selected from the 50 pairs (R, Ry),(R3, R4),.. .»(Rgg, R100). In other
words, for ¢ = 1,3,...,99, both classes R; and R;,; always occurred together
(if they occurred) in any observation. For each value of ¢ (30 to 100 with an
increment 10), 500 data sets were simulated. The average values of C, é’, é’bc
and C are shown in Table 1. Based on these 500 estimates, sample standard
error as well as sample root mean squared error (RMSE) were also obtained.
The average values of the estimated RMSE based on (3.15) for the proposed
estimator are also given to check the adequacy of that formula.

Table 1 shows that the conventional estimator C ignoring the possible de-
pendence severely overestimates in all cases. This implies that the usual sample
coverage estimator has a severe negative bias. The proposed o) shghtly overesti-
mates and its bias-corrected form Cbc 1s nearly unbiased. Both ¢ and C’bc have
comparable RMSE and generally perform better than the usual estimator C with
respect to both bias and RMSE criteria.

The last column provides the averages of estimated RMSE based on (3.15).
It seems that the theoretic formula is generally satisfactory compared with the
sample RMSE if ¢ is sufficiently large.

5. Application

Two hundred seven-character quartet (¢ = 200) were randomly selected from
the collected work of Bai Juyi. Since each poem consists of 28 characters (n = 28),
there is a total of 5600 characters in the data. The number of distinct characters
is 1270 and the number of singletons is 539. Out of these 200 poems, there
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are 181 poems with singletons and 19 without singletons. Thus the generalized
sample coverage for this data is estimated to be 9.5% (19/200) and the conditional
probability of finding at least one new character in the next quartet is 90.5%. If
we treat each character as an independent observation and ignore the possible
dependence within a quartet, then the probability of finding at least one new
character is 1 — (1 — 539/5600)2® = 94.1%, and the sample coverage estimate
is 5.9%. Based on the simulation given in the last section, we suspect that the
probability 94.1% is likely to overestimate the true value. Out of the 19 poems
without singletons, only one character “drinking a little” appears in both 17th
and 24th poems and not in others. Therefore the estimated mean squared error
for our estimate using (3.15) is 90.5%(1 — 90.5%)/199 + 1/(220) = (2.2%)%. Thus
if the asymptotic normality is valid, an approximate 95% confidence interval
for the coverage of these 200 poems is 5.2% to 13.8% and 86.2% to 94.8% for
the conditional probability of discovering at least a new character in the next
additional quartet.
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Table 1. Simulation results for comparing various estimators

C : defined in (2.3);
C : defined in (3.5) and (3.6);

é’bc : bias-corrected estimator defined in (3.16);
C : usual estimator without considering dependence.
t average sample sample average of
value s.e. RMSE estimated RMSE
30 C 907 013
c 911 057  .066 057
Che 904 061 .070
¢ 956 026  .062
0 C 831 021
o) 837 .063 .080 074
&y 828 067  .083
é 905 035 .02
50 C 743 031
é 752 .064 .089 084
Che 743 067  .091
é 842 044 122
60 C 655 1039
¢ 661 061  .094 089
Che 652 063  .095
o 761 049 135
70 C 566 045
¢ 574 054 .091 .091
Cve 565 .055 091
¢ 678 051 144
80 C 487 1050
& 403 .051 .093 .090
Cve 485 .052 .093
¢ 594 050  .141
90 C 412 052

.420 .051 .094 .087
be 412 .052 .094
.514 .052 .140

.354 .044 .086 .083
be .348 .045 .086

c
o]
o)
100 C 345 052
é
o)
s, 441 .048 131
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