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SELECTION OF A LINEAR INTERPOLATOR FOR TIME SERIES
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Abstract: A criterion is proposed for selecting the order of the linear interpolator
of a stationary time series, which may be useful in the problems of missing values
and outlier detection. The criterion is based on a mean-square error similar to that
leading to the final prediction error criterion for autoregressive model identification,
and is called the final interpolation error criterion. The behavior of the proposed
criterion is illustrated by means of a simulation study.
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1. Introduction

Let {z;} denote a second-order stationary zero-mean stochastic process with
autocovariance function R(h), inverse covariance function Ri(h) and inverse cor-
relation function ri(k) = Ri(h)/Ri(0) (Cleveland (1972)). The linear interpola-
tor, I;, of z; is a linear combination of the observations z;_j, j # 0 such that the
mean square error E{z;—I;}? is a minimum; it is well known (see e.g. Grenander
and Rosenblatt (1957)) that the weights of such linear combination are equal to
—ri(j):

L=~ E"’i(j)fct—j- 1)
i#0

Linear interpolators are important for their ability to reconstruct one cbser-
vation from the remaining data, and arise naturally in outlier detection (e.g. Fox
(1972), Pefia and Maravall (1991), Chang, Tiao and Chen (1988), Tsay (1988))
and missing data (e.g. Brubacher and Wilson (1976)). In fact, if z; is missing,
its least squares estimator is I, and, if z4, say, is an additive outlier, i.e. it is
additively perturbed by a shock w, the least squares estimator of w is ¢4 — I,.

There are two different ways of estimating a linear interpolator: an ARMA
model may be fitted to the data and then the interpolator is expressed as a
function of the estimated model parameters, or alternatively the coefficients of
I, may be estimated directly by least squares. The latter case seems preferable
because the observed mean square interpolation error is minimized; however, for
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practical application it is necessary to limit the infinite sum in (1) to a finite
number p of coefficients.

The paper concentrates on the choice of the order p, and a procedure is
proposed for choosing p according to a mean square error optimality criterion,
similar to that leading to the final prediction error for autoregressive model fitting
(Akaike (1969)). We apply Akaike’s idea for computing the final interpolation er-
ror, i.e., the variance of the interpolation error when the interpolator coefficients
are estimated using an independent realization. The analogy between autoregres-
sive models and finite linear interpolators is apparent since, in the first case, the
observations are regressed on p past values, while, in the second case, they are
regressed on both past and future values. The reason for using a different order
selection criterion is the different behavior of the coefficients of autoregressive
models and linear interpolators. When the series follows exactly a purely autore-
gressive process of order k, it may be easily shown that ri(h) = 0 for b > k,
therefore p = k is also the correct order for the linear interpolator, but for other
processes the inverse correlations do not cut off, so that the choice of p involves
an approximation, and there is no evidence that the best approximating orders
should coincide for the two purposes. Specifically, the improvement achieved by
increasing the order, when fitting an autoregressive model, if measured in terms
of residual variance reduction, is determined by the partial correlation, whereas
the same measure for linear interpolator fitting is determined by the inverse corre-
lation. It has been pointed out (Cleveland (1972), Abraham and Ledolter (1984))
that these two functions behave differently, though both have the same cut-off
lag for purely autoregressive processes, and, in particular, their decay rates may
be considerably different.

The present framework is suitable only for stationary time series, and in
non-stationary cases the interpolator can be derived only for the differenced se-
ries. However, inverse correlations may be defined for non-stationary series also,
using the concept of pseudo-spectral density (Hillmer and Tiao (1982)); sample
properties are not known in this case and are currently being investigated.

We finally note that some problems arise in handling the data at the begin-
ning and at the end of the series, since computing interpolators at time ¢ requires
sufficient observations before and after ¢. Forecasts or backforecasts based on
unilateral models may be useful in such cases.

2. Derivation of the FIE Criterion and Applications

Suppose that two independent realizations {z;} and {y:} of the same gaussian
process with 7i(h) = 0 for h > p are available. We compute the least squares
estimates {fi(u),u < p} on the series {y;} and use them for estimating a linear
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finite interpolator for z;:

p
It = - Z 'f‘z(u) (:nt_.u -+ xt—}-u)-

u=1

The mean square interpolation error E(z; — I;)?, unconditional on {y;}, may
be derived following the method developed by Akaike (1969) for prediction errors.
The following asymptotic expression is obtained:

FIE(p) = %{1 + %tr[{Ri(O)Sp}‘l]} (2)

where N is the series length and S, the matrix with elements s;; = R(i — j) +
R(Gi+j) (1,7 =1,2,...,p). We call (2) the final interpolation error; its value is
jointly influenced by the amount of variability unexplained after interpolation and
the sample variability related to coeflicients estimation. The structure is similar
to that of the familiar FPE: two additive terms are present, one accounting for
the interpolation error variance, 1/Ri(0), and the other one, %—tr[{Ri(O)Sp}—l],
decreasing with NV and increasing with p.

In order to compute FIE on an actual series, ordinary autocovariance esti-
mates may be used for the matrix Sp, while estimates of Ri(0) have been proposed
by Bhansali (1980) and Battaglia (1988).

Expression (2) is derived under the hypothesis that ri(h) = 0 for A > p;
in other words, that the correct order is not larger than p. If p is less than
the true order, the observed interpolation error 1/ Ri(0) will generally decrease
on increasing p. On the other hand, FIE(p) is increasing as p increases over
the correct order. Thus, a reasonable procedure for selecting the order of the
interpolator is to compute FIE(p) for a range of possible values of p, and select
the one corresponding to the minimum estimated FIE.

In order to gain some insight into the behavior of the proposed criterion,
a simulation study is presented. Sets of hundred series of 50 observations were
simulated according to some ARMA gaussian models; on each series, the FPE
criterion for autoregressive order selection, and the FIE for interpolation order
choice were computed for orders ranging from 0 to 9. Results are shown in Table
1.

For a first order autoregressive process with parameter ¢ = 0.5 the behavior
of the two criteria is broadly consistent. Similar results are found for a second
order autoregressive process with parameters ¢; = 1.2 and ¢ = —0.6, and are
omitted here to save space. The results for a first order moving average process
with parameter § = 0.35 show larger differences between the two criteria: FIE
generally tends to select smaller orders than FPE; in particular, very large orders
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are less frequently selected. We note that for MA (1) models the ratio of inverse to
partial correlation equals —(1 — 62)(1 — §?%+2), therefore the inverse correlations
are about 15% smaller than the partial correlations for the present series. Finally,
a second order moving average process with parameters §; = 0.1,0y = —0.8
was simulated. In this case the orders selected by means of FIE were generally
larger than those chosen by FPE. Here the inverse correlations exhibit a pseudo-
periodical behavior with period about four, and their absolute values are large
(—0.79 at lag 2) and very slowly decaying: 7i(8) is about 0.37 and 7i(10) is —0.27.
The behavior of the partial correlations is similar but with rather smaller values
(0.48 at lag 2, —0.14 at lag 8, 0.10 at lag 10).

In order to check to what extent the different behaviour of the order selection
criteria is relevant for interpolation accuracy, a figure of merit is evaluated as
follows. For each simulated series, and according to the order selected by each
criterion, the finite linear interpolator is estimated by least squares, and the
observed interpolation error variance (average of the squared interpolation error
for t ranging from p 4+ 1 to N — p) is computed. Table 2 reports the averages of
such quantities based on the hundred replications. Figures for FIE are always
less than for FPE, differences are smaller for purely autoregressive processes than
for moving average, and range from about 5% to 10%.

Summarizing, the simulation results suggest that for purely autoregressive
processes both criteria generally behave in a similar way, while for other processes
the orders selected by the two procedures may differ considerably, depending on
the different behavior of the partial and inverse correlations. In both cases,
use of FIE provides a reduction in the overall observed mean square error of
interpolation.

Table 1. Frequencies of selected orders in 100 series of length 50 simulated from: (i) an
AR(1) model with ¢ = 0.5; (ii) a MA(1) model with § = 0.35, and (iii) a MA(2) model
with 6; = 0.1 and 6, = —0.8.

AR(D) MA(1) MA(2)
order | FPE FIE | FPE FIE | FPE FIE

0 0 5 0 14 0 0
1 73 76 54 52 0 0
2 10 9 23 22 23 7
3 10 9 8 8 3 2
4 7 1 8 4 35 29
5 3 0 16 10
6 2 0 11 23
7 3 7
8 8 15
9 1 7
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Table 2. Observed interpolation error variance according to the chosen order selection
criterion. Figures are averages on 100 series of length 50 from: (i) an AR(1) model with
¢ = 0.5; (ii) a MA(1) model with § = 0.35; (iii) an AR(2) model with ¢; = 1.2 and
¢z = —0.6; (iv) a MA(2) model with 6; = 0.1 and 6; = —0.8.

model | FPE | FIE
AR(1) | 0.79 | 0.75
MA(1) | 0.82 | 0.79
AR(2) | 0.36 | 0.34
MA(2) | 0.60 | 0.54
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