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A SIMPLE ONE DEGREE OF FREEDOM TEST FOR
NON-LINEAR TIME SERIES MODEL DISCRIMINATION
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Abstract: A test procedure for discriminating among different nonlinear time series
models is proposed. This test procedure is seen to perform reasonably well in sim-
ulation experiments. One advantage of the test procedure is its simplicity. A real
example based on the annual sunspot series is also given.
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1. Introduction

In recent years there has been rapid growth in the literature on nonlinear
time series models. Many different types of models have been suggested. Two
major classes are the threshold models (Tong (1978), Tong and Lim (1980)) and
the bilinear models (Granger and Andersen (1978), Subba Rao (1981)). The
recent book by Tong (1990) contains a comprehensive summary of most of the
proposed nonlinear models. A natural and important problem is to develop tests
to discriminate among the various models. Many tests have been proposed for
testing different nonlinear models against linear (ARMA) models but not among
nonlinear models. Saikkonen and Luukkonen (1988) give a summary review of
the former procedures. For the latter, various informal arguments have been
suggested. For example, it has been argued that threshold models can mimic limit
cycle behaviour but bilinear models cannot (Tong and Lim (1980)). Consequently,
one should consider threshold models for data that appear to have a limit cycle.
Another common approach is to compare the post sample forecast ability of
the different models (Ghaddar and Tong (1981)) or the residual sum of squares
(Gabr and Subba Rao (1981)). Other arguments include parsimony in terms
of model parameters and whiteness of residuals. Although these arguments are
valid and important it may still be beneficial if formal tests can be developed for
distinguishing between different nonlinear models. Clearly, the problem is more
difficult than testing nonlinearity versus linearity since different types of nonlinear
models in general cannot be nested within one another. Under the assumption
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of Gaussian innovations and nested models, comparing residual sums of squares
is equivalent to the likelihood ratio test which is, in general, asymptotically chi-
squared distributed under the null hypothesis. However, for non-nested models
the likelihood ratio statistic will not normally have an asymptotic chi-squared
distribution and thus the comparison of residual variances does not usually fit
into the hypothesis testing framework. A possible approach is to consider a Cox
test for separate families of hypotheses (Cox (1962)). This, however, requires
evaluating the expectation and variance of the log likelihood ratio under the null
hypothesis. For nonlinear time series this is a difficult task. Li (1989) proposed
a bootstrap procedure to overcome this difficulty. However, such an approach
is not too convenient to use and could encounter numerical problems. In this
paper a simple one degree of freedom test for discriminating among nonlinear
models is developed. This new test supercedes the bootstrapped Cox test in that
it is easy to compute and that it avoids the conceptual problem that faces the
bootstrap. More importantly, simulation results suggest that the test statistic has
satisfactory power and approximately the correct sizes in large samples. It will
also be shown that the test statistics are in some way related to the comparison
of residual variances. Hence the proposed methodology may be regarded as a
formalization of the latter procedure. The test is derived in Section 2; some
simulation results and a real example based on Wolf’s annual sunspot data are
given in Section 3.

2. The Test Procedure

For simplicity we consider only two possible hypotheses. Generalization to
the more general case is direct. Denote the time series process by {y:}. It is
assumed that {y;} is stationary with at least finite second order mloments. Let
F, be the o-field generated by {y:,yt-1,...}, and {ait}, ¢ = 1,2, be Gaussian
white noise processes with means zero and variances a?, 1 = 1,2. The null and
alternative hypotheses are respectively

Ho: yi= f(Fi-157) + a1

and
Hy: yi = g(F-1;8) + a2,

where the forms of f and g are known and both have continuous second order
derivatives with respect to v and 8. Here v and 8 are p; X 1 vectors of un-
known parameters, ¢ = 1,2.~ To avoid the f)ossibiﬁty of unidentifiability it is
further assumed that the two families of models {f(Fi-1,7)} and {g(Fi-1,08)}
are nonoverlapping. That is, {f(Fi-1,7)}N{9(Fi-1,8)} = ¢. In the case of
bilinear and threshold models this would mean that the possibility of a linear
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model is excluded. In practice, tests such as those in Saikkonen and Luukkonen
(1988) can be employed to see if linear models are adequate. Note that in Vuong
(1989) a variance test is suggested in the independent case to check if two families
of models can be considered as equivalent. Vuong proposes that if such is the
case then no more testing will be needed. Extension of his result to the time
series situation is certainly relevant and important but is clearly too involved to
be included in the present paper. Denote maximum likelihood estimators of Y
and § by % and @ Denote the corresponding residuals by a;;, 1 = 1,2 and let

9t = g(Fi-1; @), the prediction of y; under the alternative model. Consider the
model

Yt = f(Fi-157) + Ag(F-1;8) + ax, (1)
where {a;} are zero mean Gaussian white noise with variance 2. A test of
H, against the alternative can be based on testing Hy : A = 0. This test may
be interpreted as a test of the adequacy of the null model versus a possible
deviation in the direction of the alternative. Note that McAleer et al. (1988)
adopted a similar approach for testing a pure moving average model against
a pure autoregressive model. The test of H, can be based on the Lagrange
multiplier approach (White (1984, p.72)). Let S = Y a?/202 and § = (v, )).
Then the Lagrange multiplier test for A = 0 is given by )

- (%) G (%)
RN 88 69 a9
where the expectation is evaluated under the null hypothesis. Under the null
hypothesis T would be asymptotically chi-squared distributed with one degree

of freedom. For simplicity, let n be the same as the effective sample size in
estimating 4. Since 8S/08 = 0723 a;0a;/09, the statistic T can be rewritten as

_ _ (Oa; _ Oa 8a;\17! Ba; _\'.
T=012Zat<gj,yt> [E( B_Gt 5&,‘7)] Z(a—,)j,yt)at

where §; = g(Ft_l;B) and da;/0z is evaluated under Ho, and a; = aj;. For n
large enough we may drop the expectation operator and rewrite T as

T = nd W (WW')"'Wa /> 4}

where W' is the n x (p; + 1) matrix of regressors formed by stacking (a:/07', §;)
and @’ = (@1,...,a,). The statistic 7/ will have the same asymptotic distribution
as T under Hy. Thus, as in Godfrey (1979), the T” statistic can be interpreted
as n times the coefficient of determination of the regression of aj; on fa:/d7|¥
and 7;. In other words, the Lagrange multiplier statistic for testing A = 0 can
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be easily obtained from an auxiliary ordinary regression. It is desirable in non-
nested testing to intercharge the role of the null and the alternative (Cox (1962)).
There is, of course, the possibility of having both hypotheses rejected. Although
the interpretation problem can be difficult, such a result is still informative in
the sense that it may lead us to a better model different from the existing possi-
bilities. Clearly, generalization of the above procedure to the case of more than
one alternative is direct. In the next section the empirical size. and power of 7" in
discriminating among different nonlinear time series models are considered using
simulation.

We now show that the T” statistic is related to the method of comparing
residual variances. Consider the regressions

a1t = 7Yt + €4, (2)
and
Of(Fy_q;
@t=—f—(-3t—1j—)'ff+‘4, (3)
7

where €4, V; are independent zero mean normal random variates; 7 and K are the
respective regression parameters. For simplicity, let 0% = 1. Then under Hy the
score vector 5/0§ = —(0,3 a1: §;) and the observed Fisher information matrix,

&y B:)'T ta:y

_ Of _
Eytéj!? Zyt
where f; = f(F;—1;7). Hence, the statistic 7" can be written as
-1
L - \2 _ _ Oft 8ft 8fi\7! _ Oft
T = (Zaltyt) [ny— <ny_6,2,_T) (Za ) 5,?) (Z?hgpj‘)}

> a1y 2. > uf
Y9 | D=7

where i
(Zoar) (25 a5) (T95)
Mo\ =8y Byt 5y
R
The quantity 72 is the coefficient of determination for the auxiliary regression
(3). Note that 3 a1 §:/ Y §2 = +, the least squares estimate of 7 in (2). Hence,

T =
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using standard regression results

TI
1—172
DI
- 1— 2 : (4)

We observe from (4) that if Hy 1s the true model then I a2, should be small
and Y &2 should be close to T a%,. However if Hj is true then 3 a a2, should be
large while 3" 2 should be small. A similar result holds when we interchange the
hypotheses. Thus the testing procedure can be interpreted as a way to compare
residual variances after adjusting them by auxiliary regressions (2) and (3). One
advantage of the approach is, clearly, that the statistic 7" has a known asymptotic
distribution under the null hypothesis and therefore we can have meaningful
discussions on sizes and power at least asymptotically. The parameter 72 can be
interpreted as a measure of the similarity between g(F;_1; 8) and f(F;_1;7 7) since,
in the special case, where g(F;_1;8) = Bg(F;—1) and f(F,_ 1Y) = 'yf(Ft 1) then

2 = 1if ¢cf = g for some constant c¢. Note also that since 0 < 72 < 1, the test
statistic can be much larger than its numerator and hence the procedure can be
more sensitive in detecting significant differences of the models than the method
of comparing residual variances. We shall give more discussions on this aspect in
the next section.

3. Some Empirical Results

Two major classes of models in nonlinear time series analysis are the thresh-
old models (Tong and Lim (1980)) and the bilinear models (Subba Rao (1981)).
Simulation experiments were performed to study the effectiveness of the T" statis-
tic in discriminating these models. In the first experiment the true model was
the simple SETAR (2;1,1) model

Xi =91 X1 +ay, Xy 120,
X;: = ¢, X314+ ay, otherwise,

(5)

where a; is Gaussian with mean 0 and variance 1. Two T” statistics T} and T4
were computed. The statistic 7] had the true model as the null hypothesis and
the simple bilinear model

Xt =CXy 1+ bX; res_g¢+ ey, (6)

as alternative. The statistic 75 had the simple bilinear model as null and the
true threshold model as the alternative. The parameters for the SETAR model
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were (¢1,¢7) = (0.5,—0.5) and (0.8,0.3). The values of (k,£) in the bilinear
model were (1,1), (1,2) and (2,1). There were 200 independent realizations each
of length 100 for each combination of (¢1,¢)) and (k,£). The derivatives of the
bilinear model were obtained recursively by setting initial values at zero as in
Gabr and Subba Rao (1981). The estimation of bilinear models was based on the
Newton-Raphson procedure. IMSL subroutines were used to generate the series
and to estimate the model parameters. The empirical mean, variance and the
upper 10% and 5% significance levels of T and T} are reported in Table 1. It
can be seen that the chi-square distribution with one degree of freedom gave very
reasonable approximation to the distribution of T7. The power of the T} statistic
was also very impressive. In most cases the frequency of rejecting the bilinear
null hypothesis in favour of the threshold model was well over 50%.
In the second experiment the true model was the simple bilinear model

Xt = CXt_l + bXt_ket_.z + et

with (C,b) = (0.5,0.2), (k,£) = (1,1), (1,2) and (2,1) and e; normal with mean
0 and variance 1. The alternative models were the SETAR (2;1,1) model and the
SETAR (2;2,2) model

Xt = 1 Xi1+02Xs o+ay, HfX; 2>0
Xt = ¢l1Xt_.1 -+ ¢I2Xt_2 + ag, otherwise.

Again we computed two statistics 7] and Ty where 7|’ took the true model as
the null hypothesis and T3 took the threshold model as the null hypothesis. For
cases involving the SETAR (2;1,1) model the length of each realization was again
100. For cases involving the SETAR (2;2,2) model the series lengths were 100 and
200. Again for each combination of hypotheses there were 200 independent repli-
cations. The empirical means, variances, and the upper 10% and 5% significance
levels of T7 and T3 with respect to the chi-square distribution of one degree of
freedom are reported in Table 2. From Table 2, the chi-square distribution gave
a very reasonable approximation to the distribution of 77 in cases involving the
SETAR (2;1,1) model. The power of T3 was also very good and the two statis-
tics could be considered to be doing their job well. When the SETAR (2;2,2)
model was considered and when n = 100 the chi-square distribution was some-
what too sensitive for T{. The power of T4 remained reasonably good and was
much greater than the nominal sizes. However, there was considerable improve-
ment when n = 200; and both statistics repeated the strong showing given by T}
and T3 in Table 1. These experiments suggested that the simple Lagrange mul-
tiplier statistic 7] as proposed in Section 2 can be used to discriminate between
nonlinear time series models with reasonable results.
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As suggested in the previous section the proposed statistics could be more
sensitive in detecting model differences. In Table 3 the mean absolute difference
(DRES) of the residual variances under the two hypotheses and the mean absolute
difference (DTEST) of the T' statistics were computed for the first three cases
of Tables 1 and 2. It can be seen that on the average the differences between
residual variances are rather small. In the absence of a reference distribution it
could be difficult to judge their significance. However, the differences between
the T’ statistics were on the average much larger than the upper 5% value of
the x? distribution. This suggested that differences between models might be
less susceptible to detection using residual variances than by using the proposed
tests.

It may be of interest to investigate the power of the tests when both hypothe-
ses are false. In Table 4, the true model is given by

Xi = dXi—1+d1 Xe—kar—g+ay, ifX;—12>0

and
X =doXi_ras_g + as, if X;_1<0

where a; are normal with mean 0 and variance 1.

We may call these models “threshold bilinear” models. Investigation on the
properties of this new class of nonlinear models is beyond the scope of this paper.
However, it is interesting to see how the T’ statistics work in this situation.
Denote by T the T” statistic corresponding to the null hypothesis given by (5)
and the alternative given by (6). Denote by T the T” statistic when the roles of
(5) and (6) are reversed. The power of 77 and T3 are recorded in Table 4. The
series length is 200 and the number of replications in each case is 100. We use
the same (k,£) in simulation and estimation. It can be seen that for the cases
considered both the T7 and T3 statistics appear to have reasonable power when
the true model is in fact not covered by both hypotheses. This result suggests
further evidence on the usefulness of the proposed approach.

As a real example we considered the annual Wolf sunspot numbers (1700-
1921). Tong (1990) considered a SETAR (2;3,11) model and Gabr and Subba
Rao (1981) suggested that a subset bilinear model may gave a better fit. These
nonlinear models were refitted by considering the first 11 observation as fixed and
two T statistics Tl and Tg were computed. The Tl statistic had the threshold
model as the null and the subset bilinear model as the alternative and the 7%
statistic had the hypotheses the other way round. The refitted models and the
T, statistics are as follows. For the threshold model we had
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(10.7678 + 1.7344X,_1 — 1.2957X,_o + 0.4740X,_3 + ¢4,

if X;_3 < 36.6,
7.5791 + 0.7332X;_1 — 0.0403X;_5 — 0.1971X,_5
+0.1597X;_4 — 0.2204X;_5 + 0.0220X;_g + 0.1491 X, _-
—0.2403X;_g + 0.3121X;_g — 0.3691.X,_19 + 0.3881X,_1;
| +eq, if X;_3 > 36.6

and T; = 51.84. Note that here the residuals for both branches of the model were
taken to have same variance. For the subset bilinear model we had

Xt = 6.8922+1.5012X,-1 —0.7671X;_5 + 0.1152X,_¢
—0.0146X;_2e;—1 + 0.0063X;_ge;_1
—0.0072X;_1€4—3 + 0.0068X;_4€;_3
+0.0036X;_1e;—6 + 0.0043.X; _oe;_4
+0.0018X;_3e;_2 + e

and T, = 0.0268. Hence, the T, statistic rejected the threshold null while the
Ty statistic accepted the bilinear null. Thus the approach here favoured the
bilinear model to the threshold model. The residual variances for the bilinear
and threshold models were respectively 124.92 and 149.71. Note that the value
of 0.0268, although small, was still greater than the lower 10% critical value of a
chi-square distribution with one degree of freedom. However, Tong (1990, p.443)
suggested that the bilinear model could be noninvertible.
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Table 1. Empirical means, variances and significance levels for Ty, T.

¢1 ’ ¢,1 k ¢ T{ _ TZI
90% 9% T V(T!) 90% 9% T, V(T3
(0.5,-0.5) 1 1 0.110 0.065 1.11 2.41 0.715 0.640 6.03 21.30

1 2 0110 0.060 1.03 2.24 0995 0.995 16.85 30.43
2 1 0.080 0050 095 1.58 1.000 0.995 16.10 38.34

—
[u—y

(0.8,0.3) 0.110 0.060 1.03 194 0510 0.365 3.76 13.97
0.120 0.070 1.25 3.32 0.730 0.555 5.25 15.76

2 1 0110 0.055 1.17 3.20 0.790 0.700 6.11 16.02

o
(3]
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Table 2. Empirical means, variances and significance levels for Ty, Ty'.

SETAR (2;1,1)

n = 100 i Ty
(k,£) 90% 95% Tl" vIT) 90% 95% Tz" V(Ty)
11 0.10 0.065 1.01 1.93 0.695 0.555 5.60 22.74
12 0.08 0.055 0.98 1.67 0.690 0.565 5.47 16.80
21 0.08 0.045 0.98 1.31 0.620 0.505 5.05 19.49

SETAR (2;2,2)

n = 100
1,1 0.170 0.100 1.38 2.89 0.850 0.820 10.25 43.72
1,2 0.160 0.105 1.29 2.70 0.420 0.265 2.86 7.85

2,1 0.165 0.090 1.32 3.30 0.565 0.435 4.25 16.38
n = 200

1,1 0.115 0.045 1.07 1.88 0.990 0.980 19.18 75.90

1,2 0.130 0.065 1.21 2.38 0.605 0.480 4.84 17.81

2,1 0.095 0.050 1.00 1.83 0.850 0.765 8.42 31.21

~

Table 3. Mean absolute differences between residual variances (DRES) and Tests (DTEST).

Hp (True model) H, DRES DTEST
SETAR (5) Bilinear (6)
(¢1,¢1) (5, 4)
(0.5, —0.5) (1,1) 0.06 5.03
(1,2) 0.18 15.13
(2,1) 0.18 15.12
Bilinear (6) SETAR (5)
(1,1) 0.05 4.93
(1,2) 0.05 5.32
(2,1) 0.05 5.12

Table 4. Power of Ty and T, at nominal sizes 10% and 5%. Entries are number of
rejections in 100 replications.

$r di dy k! 17 by
10% 5% 10% 5%

00 05 -05 1 1 51 45 45 37
05 05 -05 3 2 65 55 98 95
05 05 05 2 3 76 72 61 54
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