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ROBUSTNESS OF BLOCK DESIGNS
AGAINST MISSING DATA
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Abstract: Robustness of incomplete block designs against missing data is investi-
gated. Necessary and sufficient conditions for robustness of an arbitrary incomplete
block design are derived under two patterns of missing observations. Simple sufficient
conditions are also provided. Some classes of designs that are robust are identified.
The efficiency of the residual design is evaluated for certain group-divisible designs
when all observations in a block are lost. Finally, a lower bound to the efficiency of
the residual design is obtained when a single observation is missing in an arbitrary
incomplete block design.
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1. Introduction

When one or more observations become nonavailable in a designed experi-
ment, it is of interest to examine the loss of information, defined suitably, that
is incurred due to missing data. Designs for which this loss is “small” may be
termed robust. The robustness of incomplete block designs against missing data
has been investigated in the literature from different angles; see for example,
Hedayat and John (1974), John (1976), Ghosh (1982), Ghosh, Rao and Singhi
(1983), Baksalary and Tabis (1987), Dey and Dhall (1988), Srivastava, Gupta
and Dey (1990) and Mukerjee and Kageyama (1990). For an excellent review of
the subject up to 1988, refer to Kageyama (1990).

A criterion of robustness of designs (in particular, incomplete block designs),
was introduced by Ghosh (1982). According to this criterion (to be called Cri-
terion 1) an incomplete block design is robust against the loss of ¢ (> 1) obser-
vations if the residual design obtained by deleting these t observations remains
connected. It was shown by Ghosh (1982) that Balanced Incomplete Block (BIB)
designs are robust according to Criterion 1 against the loss of any r — 1 obser-
vations, where r is the common replication of the original BIB design. Similar
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results on certain Partially Balanced Incomplete Block (PBIB) designs were ob-
tained by Ghosh et al. (1983). See also Baksalary and Tabis (1987), who presented
sufficient conditions for arbitrary block designs to be robust under Criterion 1.

Another criterion of robustness (to be called Criterion 2) that has received
attention, is in terms of the efficiency of the residual design. As per Criterion 2,
a design is said to be robust if the efficiency of the residual design relative to the
original one is not too small. The papers by John (1976), Dey and Dhall (1988),
Whittinghill (1989), Srivastava et al. (1990), Mukerjee and Kageyama (1990) and
Ghosh, Kageyama and Mukerjee (1991) are in this spirit.

Perusal of the existing literature reveals that most studies (the work of Bak-
salary and Tabis (1987) appears to be the only exception) on robustness of block
designs, using either Criteria 1 or 2 have been restricted to specific classes of
designs with a specific pattern of missing observations. The purpose of this com-
munication is to present some results on robustness of arbitrary incomplete block
designs with equal block sizes. In Section 2, we obtain necessary and sufficient
conditions for robustness as per Criterion 1 when the missing observations ap-
pear in the following patterns: (i) ¢ > 1 observations pertaining to the same
treatment are missing, and (ii) all observations in a block are missing. Simple
sufficient conditions for robustness according to Criterion 1 are obtained in each
of the above cases. Some designs that are robust are identified. In Section 3,
the efficiency of the residual design, when all observations in a block are lost, is
evaluated for group-divisible designs satisfying k = n, where k is the block size
and n, the number of treatments in a group. In particular, the exact efficiency
of the residual design is evaluated when all observations in a block of a Regular
group-divisible design satisfying k = n and A; > 0 are lost.

The efficiency of the residual design when a single observation is missing has
been evaluated by Whittinghill (1989) for a balanced block design and by Ghosh
et al. (1991) for BIB and some group-divisible designs. In Section 4, we present
a lower bound to the efficiency of the residual design when a single observation
is missing in an arbitrary incomplete block design. Using this bound, it is found
that most PBIB designs with two associate classes are robust against the loss of
a single observation as per Criterion 2.

2. Conditions for Robustness

2.1. Two basic results

To begin with, we introduce some notation to be followed throughout. All
matrices and vectors are real, vectors being written as column vectors. We denote
an n-component vector of all unities by 1, and by I,,, an identity matrix of order
n. For a matrix 4, A’, M(A), A~ and A" will respectively denote the transpose,
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column span (range), a generalized inverse (g-inverse) and the Moore-Penrose
inverse of A.
We now have the following results.

Theorem 1. Let A and B be a pair of symmetric, nonnegative definite matrices
of order n and let

A=B+ GG (1)
where G 15 an n X m matriz such that M(G) C M(A). Then
Rank(4) = Rank(B) 2)
if and only if
Im — G'A™G s positive definite. (3)
Proof. Let
‘ I, G I, 0 1., -c'a-
Dz[G AJ’E“[—G I,,J’F“[o I, J )

Clearly, E and F are nonsingular. Now,

| Im 0 | Im 0
woz= |, o =[5 8]

is nonnegative definite, which implies that D is nonnegative definite.
Also, since M(G) C M(A), G = AH for some matrix H. Hence

G'ATA=HAA"A=H'A=G. (5)

Similarly,
AAG =AATAH = AH =G. (6)

Therefore,

Fpp - | In—G'A™G OJ

0 A
is nonnegative definite, because D is so and F is nonsingular. This implies that
In, — G'A~G is nonnegative definite. Finally,
Rank(D) = Rank(EDE') = Rank(B)+m (7)
= Rank(FDF') = Rank(4) + Rank(l,, — G'A—QG). (8)

The result then follows from (7) and (8) and remembering that (I, — G/ A™G)is
nonnegative definite.
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Remark 1. Observe that since G'A™G = H'AH, G'A~G is invariant with
respect to any choice of a g-inverse of A.

Remark 2. The result of Theorem 1 for the special case m = 1 was proved by
Ghosh et al. (1991).

The following result is known (see, e.g., Pringle and Rayner (1971, p.32)).

Theorem 2. Let A, B, G be as in Theorem 1 and suppose that I, - G'A~G =
I, — G'AYG 1s positive definite. Then

Bt = AT + ATG(I, - G'ATG)'G'A™. (9)

2.2. Conditions for robustness when t (> 1) observations pertaining to
the same treatment are lost

Consider a connected, binary block design dg with v treatments, b blocks and
constant block size k. Let t (> 1) of the bk observations be missing and let all
" these t observations pertain to the same treatment. Without loss of generality, we
may assume that these ¢ observations pertain to the first treatment in the first ¢
blocks. We further assume that these ¢t “affected” blocks are not all identical. Let
the residual design, obtained by deleting these ¢ observations from dy be called
d;. If Ny (respectively N;) is the incidence matrix of do (respectively d;), then

1, € o €
where e is a (b — t)-component (0,1) vector and F and M are (0, 1)-matrices of

orders (v —1) x t and (v — 1) x (b — t) respectively. Denote by Co(C}), the usual
C-matrix of dg(d;). Then, it can be shown, after some routine algebra, that

Co = Cy + UU' (10)

where U is a v X t matrix, given by

U = {k(k 1)} /2 [ k- })14 ] : (11)

+

Clearly,
1.U=10". (12)

~ Also, since Rank(Cg) = v — 1 (as d is assumed to be connected) and 1;,Co = 0,
it follows that M (U) C M(Cp). Thus, using Theorem 1, we arrive at
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Theorem 3. The design do is robust against the loss of any t (> 1) observations
pertaining to the same treatment according to Criterion 1 if and only if -U'Cy U
18 positive definite.

Corollary 1. The design dy is robust against the loss of any single observation
according to Criterion 1 if and only if

uW'Cju<1 (13)

where
u = {k(k—1)}"V2(k-1,-f) (14)

and f is a (0,1) vector representing the incidence of the (v — 1) “unaffected”
treatments in the first block containing the missing observation.

The result of Corollary 1 has been obtained by Ghosh et al. (1991) in terms
of the Moore-Penrose inverse Cy, using a different approach.

The necessary and sufficient condition for robustness given in Theorem 3 is
not very convenient in the sense that its verification depends on the structure
(incidence) of the unaffected treatments in the ¢ affected blocks through the ma-
trix U. A simpler sufficient condition in terms of the smallest positive eigenvalue
of Cy is given in
Theorem 4. The design dg is robust as per Criterion 1 against the loss of t (> 1)
observations pertaining to the same treatment if t does not exceed the smallest
positive eigenvalue of Cp.

Proof. From Theorem 3, we know that dy is robust against the loss of ¢t (> 1)
observations pertaining to the same treatment if and only if I, —U'Cy U is positive
definite, or, equivalently, if and only if all the eigenvalues of U’ Co U are strictly
smaller than unity. Let Anax(A) denote the largest eigenvalue of a symmetric
nonnegative definite matrix A. Then,

Amax(U'Cy U) = Amax(U'CFU) = Amax(CFUT). (15)

Also, it is known (cf. Marshall and Olkin (1979, p.247)) that for a pair of sym-
metric, nonnegative definite matrices A and B,

Amax(AB) < Amax(A)Amax(B). (16)
Hence, from (15) and (16), we have

Amax(U'CFU) < Amax(Cq ) Amax(UU')
= Amax(CJ) Amax(U'UV)
< Amax(CHtr (U'U), (17)
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where tr(-) stands for the trace of a square matrix. Note that tr(U'U) =
Amax(U'U) if and only if U'U, and hence U, is of rank unity. In such a case,
it is easily seen that all the ¢t “affected” blocks of dy must be identical. Since we
have already excluded such designs from our discussion, we have strict inequality
in (17). Now,

U'U = {k(k — 1)} [(k - 1)2); + F'F| (18)

where J; is a square matrix of order ¢ with all elements unity. Hence,
tr(U'U) = {k(k — 1)} [tk - )2+ 2(k —1)] = 1¢. (19)

Using (19) in (17) and remembering that Amax(Cy) = {11(Co)} 1, where A;(C))
is the smallest positive eigenvalue of Cy, we get the required result.

Corollary 2. The design dg is robust against the loss of a single observation,
according to Criterion 1, if the smallest positive eigenvalue of Cy is strictly larger
than unity.

Proof. When t = 1, uu’ is of rank unity, where u is given by (14). Hence
Amax(ut’) = tr(uu’) = tr(u'u) =1 and

’\max(ulcg-u) < Amax(Ca_)Amu(uul) = Amax(cg_) = {)‘I(CO)}wl-

Suppose dg is a connected, equireplicate, binary, block design with common
replication number 7 and constant block size k. Clearly, if the residual design d;
is to be connected, the number of missing observations pertaining to a treatment
cannot exceed r — 1. If {5,.x is the maximum value of ¢ such that d; is connected,
then from Theorem 4, we have

tmax 2 [Al (CO)}

where [-] is the greatest integer function. We now derive a sufficient condition
under which tyax = 7 — 1. Let Ny be the incidence matrix of dg. If ¢1 = rk >
¢ > --- > ¢, are the eigenvalues of NgNy then A1(Co) = 7 — ¢2/k. Hence
[A\1(Co)] = 7 — 1 if and only if

0< ¢ <k (20)

The sufficient condition (20) can be used to identify designs for which ty.x =
r — 1. However, since (20) is only a sufficient condition, designs other than
those satisfying (20) may exist for which tmax = 7 — 1. Note that the sufficient
condition (20) is applicable to any equireplicate incomplete block design with
constant block size, k.
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2.3. Conditions for robustness when all observations in a block are
missing

Suppose dy is a connected, binary block design with v treatments, b blocks
and block size k, and suppose that for some reason, all the observations in a block
are missing. Without loss of generality, let the missing observations pertain to
the first k treatments in the first block. If Co(Cy) denotes the C-matrix of do
(residual design di), then it can be shown that

Co=Cr+VV’ (21)
where V is a v X k matrix given by
V' = Iy — k7' J,0]. (22)

It is easily seen that 1,V = 0’ and hence M(V) C M(Cp). Thus, using
Theorem 1, we have

Theorem 5. The design dy is robust as per Criterion 1 against the loss of all

observations in a block if and only if I, — V'Cy V is positive definite.
Note that
y | Ie—k"1J, 0
VV' = [ 0 0

which is a symmetric, idempotent matrix of rank (k— 1), and thus, Amax(VV') =
1. Hence, proceeding as.in the proof of Theorem 4, we arrive at the following
sufficient condition.

Theorem 6. The design dy is robust as per Criterion 1 against the loss of all
observations in a block if the smallest positive eigenvalue of Cy is strictly larger
than unity.

Corollary 3. The following designs satisfy the sufficient condition of Theorem
6 and are thus robust against the loss of all observations in a block:

(i) All BIB designs.

(ii) All group-divisible designs with the ezception of the design with parameters
v=4=br=2=km=2=n,21=0,A=1.

(iii) All triangular designs with the exception of the design with parameters
v=10,b=15r=3 k=2, A =0, Ay = 1.

(iv) All Latin-square type (L; type, i > 2) PBIB designs with the ezception of Ly
designs with parametersv =%, r =2, k=35, b= 25, \1 =1, X2 =0.

(v) AllPBIB designs based on Partial geometries with more than two replicates.
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Remark 3. It should be noted, however, that since Theorem 6 provides only a
sufficient condition for robustness, designs excluded in Corollary 3 could well be
robust against the loss of all observations in a block.

3. Efficiency of the Residual Design When all Observations in a Block
Are Lost

Criterion 1 of robustness is in terms of the connectedness of the residual
design. However, even if a design is robust according to Criterion 1, the residual
design may have poor efficiency relative to the original design. It is, therefore, of
interest to examine the efficiency of the residual design and decide robustness on
the basis of Criterion 2. If dg is a binary block design with constant block size
and d; is the residual design, we take as a measure of efficiency of the residual
design, the quantity E given by

g sum of reciprocals of non zero eigenvalues of Cy

sum of reciprocals of non zero eigenvalues of C;
(%)
= w(Ch) )
where Co(C}) is the C-matrix of do(dy).

In this section, we evaluate the efficiency of the residual design when all
observations in a block are missing. Srivastava et al. (1990) and Mukerjee and
Kageyama (1990) evaluated this efficiency for BIB designs and Singular, Semi-
regular and Regular Group Divisible (GD) designs with A; = 0. For Regular
GD designs with A\; > 0, Mukerjee and Kageyama (1990) give lower and upper
bounds for the efficiency. In this section, we evaluate the exact efficiency in the
case of GD designs with £ = n, when all observations in a block are lost. For a
definition of GD designs see, e.g., Dey (1986).

Let (without loss of generality) the missing observations pertain to the treat-
ments 1,2,...,k in the first block of dg, where dj is a GD design with parameters
v,b,7, k,m,n, A1, A satisfying k = n. Theorem 6 tells us that such a design is
robust as per Criterion 1 against the loss of all observations in a block. If dj is
the residual design and Cy(C}) is the C-matrix of do(dy), then from Theorem 2,
we have

tr(C;h) tr(CH) +tr[CTV I - V'CFV)"V'C)
tr(Cy) +tr[(I - V'CFV)"V'CiCivy,
where V is as in (22).

For a GD design dj, it is well known that

Co = ¢1L1 + ¢2L2 (24)
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where ¢1 = {r(k — 1) + M\1}/k, ¢o = vAo/k, L1 = I, ® (I, — n~1J,), Ly =
(Im —m™ 1) ® n~1J, and ® denotes the Kronecker product of matrices.
Observe that LZ = L; and L;L; = 0 for i # j, i,j = 1,2. Hence

C§ = ¢7 L1+ 63 Lo (25)

and
Cy Cf = ¢1%L1+ ¢3°La. (26)

Using (25), we have, since k = n,

VICFV = ¢7HIn — 7 n) (27)
and
VICTCHV = ¢74(I —n ). (28)
Also,
(In—V'CTV) = (1 - ¢7") " (In — n7 7 ). (29)
Thus,

(I, = V'CgV)™WCFCFV = ¢72(1—¢7H) (I —n7 1)
= {p1(61 -1} ' In—n""T).  (30)

Further, since the positive eigenvalues of Cy are ¢; and ¢, with respective
multiplicities (v — m) and (m — 1),

tr(Cg) = (v—m)¢rt+ (m—1)¢3"

= {(v—m)é2+ (m —1)¢1}/d1 6. (31)
Hence, using (30) and (31) we get, after simplifying,
_ tr(CF)
P = e

(n=1Dé2+ (¢1 — 1){(v — m)p2 + (m — 1)1}’

As stated earlier, Mukerjee and Kageyama (1990) evaluated the exact efficiency of
the residual design in the case of Singular, Semi-regular and Regular GD designs
with A\; = 0. The expression (32) gives the exact efficiency for any GD design
satisfying k = n. In particular, using (32), one can get the exact efficiency for
Regular GD designs with A; > 0 also, a case for which Mukerjee and Kageyama
(1990) give bounds for efficiency, provided these satisfy k = n. Of course, the
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bounds of Mukerjee and Kageyama apply to all Regular GD designs with A\; > 0,
not necessarily satisfying k£ = n.

In the tables of Clatworthy (1973), there are 66 Regular GD designs satisfying
k = mn and A\; > 0. For each of these designs, the value of E was computed.
For 62 of the 66 designs, we have E > .90. For the remaining four designs,
.90 > E > .80; these designs are R1 (E = 0.875), R3 (E = 0.846), R7 (E = 0.89)
and R45 (E = 0.89). Therefore, Regular GD designs with £k = n and Ay > 0
appear to be robust according to Criterion 2 as well.

4. A Lower Bound to the Efficiency When a Single Observation Is
Missing
In this section, we obtain a lower bound to the efficiency given by (23), when

a single observation in an arbitrary, connected incomplete block design is missing.
From Theorem 2, (23) and Corollary 1 of Theorem 3, we have

_ tr(CF)(1 — u'Cgu)
B tr(CH)(1 — wCiu) +u'Cf Cfu’

Whittinghill (1989) derived the efficiency of the residual design when an
observation is lost in a Balanced Block Design. The exact efficiency E has been
evaluated by Ghosh et al. (1991) when dy is either a BIB design or a Singular,
Semi-regular or Regular GD design with A\; = 0. For regular GD designs with
A1 > 0, these authors give lower and upper bounds for the efficiency. We obtain
lower and upper bounds on E when dg is an arbitrary incomplete block design
with constant block size, k. Thus, our result is more general than those obtained
by Whittinghill (1989) and Ghosh et al. (1991) in the sense that it is not design
specific.

We now restrict our attention to block designs satisfying Corollary 2 of The-
orem 4, that is, block designs for which the smallest positive eigenvalue of the
C-matrix is strictly larger than unity. We need the following well known result
(see, e.g., Magnus and Neudecker (1988, p.236)).

(33)

Lemma 1. Let A be a positive definite matriz and B, a symmetric matriz, both
of order n. Let A1 < Ay < --- < A, be the eigenvalues of A"1B. Then, for every
nonnull vector x,

A < x'Bx/x'Ax < A,. (34)
Now, from Theorem 2, if C is the C-matrix of the residual design, then,
tr(C) = tr(Cf) = (1-u'Ciu)"'CfCfu
u'Cy Cfu

u'(I - Cf)u (35)
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since u'u=1.

Since the Co matrix of any design dy satisfying Corollary 2 has all its positive
eigenvalues strictly larger than unity, CJ' for such designs has all its positive
eigenvalues strictly smaller than unity and hence I — Cf is positive definite.
Also, if 1 < 6; < 63 < --- < 0,_; are the positive eigenvalues of Cp, then the
eigenvalues of (I — Ci)~1CFCy are 0 and 6;1(6; — 1)L for i =1,2,...,v — 1.
Therefore, using Lemma, 1, we have

u'C{Ciu

—0 0 <grl(6,-1)"L
“uw(I-Cfu~ G

Hence, from (23), we get

tr(Cy)61(61 — 1)
1+ t'l‘(Cg')el(gl -1)

<E

IA

1. (36)

The upper bound in (36) is trivial. Further, if we let

_ _uw(CHee:-1) 1
T 14t (CH)61(61 — 1) 1+tr(CT)6: (61 - 1)

(37)

we have
Ey<EL1. (38)
Since tr(Ci) = Y?716;! = (v — 1)/H, where H is the harmonic mean of
the positive eigenvalues of Cy, we have

H

EO:I—H+(v—1)01(01—1)

<E<1. (39)

The value of Ey was computed for all Group-divisible, Triangular and Latin-
square-type PBIB designs given in Clatworthy (1973) and satisfying the condi-
tions of Corollary 2. Recall that designs listed in Corollary 3 also satisfy the
conditions of Corollary 2. The results of these computations for Triangular and
Latin-square type designs are given below:

Number of designs with
Type of design Ey; <080 0.80< E; <090 E;>0.90
Triangular 7 3 90
Latin-square type 2 1 143

Ghosh et al. (1991) have already shown that GD designs are quite robust as
per Criterion 2 against the loss of a single observation. This fact, along with the
present analysis shows that for two-associate PBIB designs of major types, the
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loss of efficiency is generally small when a single observation is lost, as Ey is only
a lower bound to the actual efficiency. In other words, most PBIB designs with
two associate classes are robust according to Criterion 2.

Remark 4. Ghosh et al. (1991) have derived lower and upper bounds for the
efficiency when dj is a Regular GD design with A; > 0. A comparison of these
bounds with (38) reveals that the bounds of Ghosh et al. are sharper than those
given by (38). This however is expected, as Ghosh et al. take a specific class of
designs while in obtaining (38), no information regarding the design structure
is used. Moreover, the bound (38) is applicable to any incomplete block design
with equal block sizes.
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