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ON THE IDENTIFICATION OF ACTIVE CONTRASTS IN
UNREPLICATED FRACTIONAL FACTORIALS

Fang Dong

University of Wisconsin-Madison

Abstract: Lenth (1989) introduced a very simple method for identification of active
contrasts in unreplicated factorial and fractional factorial experiments. This article
gives another method which is as simple as Lenth’s method. The method is compared
with that of Lenth in both theoretical study and simulation experiments. Also, the
method is illustrated with examples from Box and Meyer (1986) and compared with
other existing methods.
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1. Introduction

In the screening stage of industrial experimentation, people usually try to
consider as many factors as possible from the information available. Therefore a
large number of factors are considered and little information is left for estimating
the variance. This is the case in unreplicated fractional factorial experiments,
where there is no reliable estimate of the standard deviation 7 of the contrasts.
This make it difficult to identify the “active” contrasts, defined as those contrasts
having large mean effects.

One way to deal with this is to construct a half-normal plot or a normal
plot of the contrasts (Box, Hunter and Hunter (1978), Daniel (1959,1976)). A
disadvantage of the normal-plot method is that its interpretation is somewhat
subjective. The plotted points will not lie perfectly on a straight line even when
all the contrasts (or residuals) are noise. An idea of the extent of nonlinearity to
be expected may be obtained by looking at the forty pages of plots of pure noise
given in Daniel (1976, pp.84-123). Also there is a problem of non-uniqueness for
a normal plot. For a fractional factorial experiment, there can be many different
normal plots of estimated contrasts for the same set of observations since the set
of estimated contrasts is not unique in the sense that their signs are dependent

on the experimenter’s choice of labels for the “+” and “—” levels of each factor
(see Loh (1992)).
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A Bayesian solution was given by Box and Meyer (1986) which consists of
modeling the contrasts as a sample from a scale-contaminated normal distribu-
tion. The prior information is summarized in two parameters a (the probability
that a contrast is active) and k (the inflation in the standard deviation produced
by an active contrast). The authors suggested using o = 0.2 and k = 10 which
is based on an empirical study of published examples.

Another method, which is the simplest to apply up to now, is proposed in
Lenth (1989). Lenth’s method first computes an initial estimate of 7 and uses
this to re-estimate 7 using a trimmed median procedure.

Loh (1992) proposed a method which is an extension of Daniel’s normal
probability plot technique. It eliminates the non-uniqueness of the normal plots.
Based on a simulation experiment, Loh showed that this method is more likely
to identify the correct number of active contrasts than Lenth’s method.

In the present paper we propose to use a trimmed mean procedure instead
of trimmed median in Lenth’s method. The methods are described in Section 2.
Monte Carlo comparisons of the level and power of our method versus Lenth’s
method are reported in Section 3. The estimated asymptotic mean square errors
for Lenth’s pseudo standard error (PSE) and our estimate are derived and an-
alyzed in Section 4. In Section 5, four examples in Box and Meyer (1986) are
considered.

2. The Methods

Given a set of responses from an unreplicated 2°~P fractional factorial exper-
iment, let B, ... ,Bn denote the set of estimated contrasts. Here n = 2FP — 1.
Assume the responses are #d with N(0,02). Then the estimated contrasts are
also independent and normally distributed with constant variance 72 = o2/2F-P.

Lenth proposed using sp = 1.5xmedian{|6j|; j = 1,...,n} as the initial
estimate of 7, and the pseudo standard error (PSE), defined as 1.5xmedian
{1B;; 5 € J} where J = {j : |B;] < 2.5s0}, as the final estimate of 7. He then de-
fined the simultaneous margin of error SME= t(-y, d)PSE, where t(v, d) is the yth
quantile of the t distribution with d degrees of freedom and y = [1 + 0.951/ /2,
d = n/3. One of Lenth’s suggestions is to use the simultaneous confidence inter-
val 3;+SME to determine whether a contrast §; is active or not. The relationship
d = n/3 was recommended by Lenth after he fitted the empirical distribution of
PSE? with scaled chi-squared distributions by matching the first two moments.
The degrees of freedom d is usually not an integer. Although Lenth used a si-
multaneous 95% confidence interval in his method, we will see, in the simulation
study later, that his actual error rate level is closer to 3% than 5%.

In our method, we use s; instead of PSE where s% =m™! EI 4;1<2.580 ﬁ? and
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m=#{7 | ﬂjl < 2.5s0). Instead of using a t distribution with fractional degrees
of freedom we use t(y,m), the yth quantile of the ¢ dlstrlbutlon, where v =
[1+0.981/7]/2; and we use the 98% simultaneous confidence interval ﬂj +t(y,m)s;
to determine whether a contrast §; is active or not. We choose 0.98 because it will
make the actual a-levels closer to those of Lenth’s procedure. Because ordinary
t tables may be used, our method is simpler to use than Lenth’s. To make our
method work well when the percentage of active contrasts is large, we iterate, i.e.
treat s; as so and go through the 2nd step again. The iteration is used in the
simulation study reported in the next section.

We shall see that our method works better than Lenth’s when the hypothesis
of effect sparsity is true, i.e. when the percentage of active contrasts is not large,
say less than 20% and the size of the active contrasts are not too small.

3. Simulation Experiments

A simulation experiment was conducted to evaluate the power of the proposed
procedure for identifying the correct number of active contrasts and to compare it
with Lenth’s (1989) method. The nominal level of significance used was 0.03. The
values of n used were n = 7,15,31; and 0%, 5%, 20% and 40% active contrasts
were employed. The experiment was performed as follows. Given n and p%
active contrasts, n pseudo standard normals (zi,...,2,) were first generated in
each trial. Let n; be the nearest integer to np/100 and define B; tobe zi +4+1i
wheni=1,...,n; and z; when ¢ = n1+1,...,n. That is, the means of the active
contrasts start from 5 and increment by 1 for each additional active contrast.

The results reported in Table 1 are based on 10,000 Monte Carlo trials. The
column labeled “n” gives the number of contrasts in the design. The column
labeled “active” gives the number of active contrasts found. A box around a
number in this column indicates that it is the true number of active contrasts. The
column labeled “Initial” gives the frequencies of detection of active contrasts using
sp as the final estimate of 7 and the simultaneous confidence interval ,fij:!:t('y, n)sg,
where v = [1 + 0.971/]/2, to determine whether a contrast 8; is active or not.
Here we choose 0.97 because it will make the actual a-levels closer to those of
Lenth’s. The columns labeled “Lenth” and “Proposed” give the frequencies of
detection of active contrasts using Lenth’s (1989) and the proposed methods.

The results in Table 1 show that for low percentages of active contrasts (e.g.
0%, 5%), the initial method is more likely to identify the correct number of active
contrasts than Lenth’s method and the proposed method is more likely to identify
them than the initial method except for the case that n = 7 and 0% active. For
higher percentages of active contrasts (e.g. 20%, 40%), Lenth’s method is much
better than the initial method and the proposed method is better than Lenth’s.
A similar conclusion was reached for other levels of significance.
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Table 1. Frequencies of correct selection of the number of active contrasts by 10,000
Monte Carlo Experiments (Standard errors < 0.005). Boxed numbers denote the true

numbers of active contrasts.

0% active
n  active Initial Lenth Proposed

7 [o] o978 0975  0.968
T 0020 0019 0027
>2 0002 0006  0.005

15 [0] 0975 0972 0971
1 0023 0021  0.025
>2 0002  0.007  0.004

31 [0] 0974 0970 0974

0.024 0.024 0.023
0.002  0.006 0.003

5% active
n  active Initial Lenth Proposed

v
[V

15 0 0287 0463  0.164
0.698 0510  0.813

>2 0015 0.007 _ 0.003

31 0 0034 0041 _ 0.005
1 0207 0201 0120

[+]

0.746 0.733 0.854

0.012  0.021 0.019

0.001  0.004 0.002
20% active

n  active Initial Lenth Proposed

IV ol
S

15 0 0084 0108  0.024
1 0169 0153  0.038

2 0288 0241  0.182

0.456  0.479  0.742

>4 0003 0019  0.014

31 <4 0168 0057 0012

0326 0.193 0.144

0.504 0.727 0.832

0.002  0.020 0.011

0.000 0.003 0.001
40% active

n  active Initial Lenth Proposed

E}m

IV
co

7 0 0668 0581  0.588
1 0123 0079  0.026

2 0099 0101  0.055

[3] o110 0230 0331

>4  0.000 0.009  0.000

156 <3 0591 0220  0.194
4 0170 0124  0.036

5 0143 0178  0.117

[6] 0096 0458 0548

7 0.000 0017  0.005

>8  0.000 0.003  0.000

31 <8 0305 0007  0.026
9 023 0026  0.024

10 0237 008  0.068

11 0157 0221  0.148

0.065  0.643 0.729

13 0000 0018  0.005

>14  0.000 0.002  0.000
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To help understand why our method is better, estimates of the precision of
the various estimates of T are given in Table 2. The columns labeled “s¢”, “PSE”
and “s;” give the Monte Carlo means, variances and MSEs for sp, PSE and s;
respectively.

We see that when the percentage of active contrasts is not too large, the MSE
of PSE is smaller than that of sg, and the MSE of s; is in turn smaller than that
of PSE. In the next section we give some theoretical support for this.

Table 2. Means, variances and MSEs of so, PSE and s,
by 10,000 Monte Carlo Experiments with 7 =1.

0% active
n  active S0 PSE 81
7 0 mean 1.05440.004 0.759£0.004 0.890+0.003
var 0.18240.003 0.13940.002 0.096+0.001
MSE 0.185+0.003 0.198+0.002 0.108+0.001
15 0 mean 1.031+£0.003 0.873+£0.003 0.915%0.002
var 0.089+0.001 0.083%+0.001 0.0474+0.000
MSE 0.090+0.001 0.0994+0.001 0.054=£0.000
31 0 mean 1.02240.002 0.941+0.002 0.930+0.002
var 0.04440.000 0.045+0.000 0.02340.000
MSE  0.044:+0.000 0.049+40.000 0.028+0.000
5% active
n  active So PSE 81
15 1 mean 1.11440.003 0.932+0.003 0.934+0.002
var 0.104+0.002 0.10140.001 0.05240.000
MSE 0.117£0.002 0.106£0.001 0.057+0.000
31 2 mean 1.106+£0.002 0.9444-0.002 0.9414-0.002
var 0.051+0.000 0.047+0.000 0.023+0.000
MSE 0.06240.000 0.051£0.000 0.027+40.000
20% active
n  active So PSE $1
15 3 mean 1.341+0.004 0.942+0.003 0.978+0.003
var 0.13940.002 0.113+0.002 0.085+0.002
MSE 0.255+0.002 0.11740.002 0.085+0.002
31 6 mean 1.32440.003 0.944+0.002 0.955+0.002
var 0.071£0.001 0.05540.000 0.026+0.000
MSE 0.176+0.001 0.059+0.000 0.028+0.000
40% active
n  active S0 PSE 81
7 3 mean 2.1854+0.009 1.0974+0.007 2.203+0.015
var 0.73240.012 0.500+0.008 2.200+40.015
MSE 2.135+0.012 0.509+0.008 3.6474-0.015
15 6 mean 2.0514+0.006 1.005£0.005 1.468%+0.010
var 0.3274+0.005 0.2344+0.004 1.030%0.020
MSE 1.43140.005 0.234£0.004 1.25040.020
31 12 mean 1.987+0.004 0.9884+0.003 1.036+0.003
var 0.154+4-0.002 0.085+0.001 0.1084+0.004
MSE 1.12740.002 0.085%+0.001 0.110+£0.004
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4. Theoretical Study

In this section we will give some theoretical justification for why the MSE of
PSE is smaller than that of sg and the MSE of s; is smaller than that of PSE
when the percentage of active contrasts is not too large.

Let n, denote the number of active contrasts among the contrasts we consider.
Theorems 4.1, 4.2 and 4.3 give the asymptotic distributions and the asymptotic
mean square errors for sg, PSE and s; respectively, as n increases. The proofs
are omitted, they are given in Dong (1990).

Theorem 4.1. Let p be the median of the half normal distribution and suppose

ne = o(n*?) as n — oo. (1)
Then
Valso — 1.5ur] - N (0, (1/8)(1.5)2””%2)
and
MSE(sg) = 1'2[(1/8n)(1.5)27re"2 + (151 —1)?] (2)
~ 72[1.393/n+ (0.012)2]. (3)

Now consider the PSE. Let
PSE = 1.5 median IﬁjIS(2-5)TI'35I
¢ = FU1/2)F(@25)]

where F is the cdf for the half normal distribution. The following theorem gives
an estimate for the mean square error of the PSE.

Theorem 4.2. If (1) holds for n,, then
V/n[PSE - (1.5)¢r| =5 N (o, (1/8)(1.5)*7 F(2.5)e" %)
and
MSE(PSE) = r2{(1/8n)(1.5)2rF(2.5)e¢” +[(15)¢ — 1)°} (4)
~ 2[1.358/n + (~0.0028)?]. (5)
Now we derive an estimate for the mean square error of s;. Let

g0 =amt Y B

1B;1<(2.5)r
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where m = #{j : |8;] < (2.5)7} and X is a coefficient to be determined later.
Also let mg = [, o5 9(2)dz = 0.9876, mo = [, 125 z2¢(z)de ~ 0.8999, and
my = f|2|<2_5 zt¢(z)dz ~ 2.1522 where ¢(z) is the pdf for the standard normal -
distribution. Then we have the following

Theorem 4.3. Assume (1) holds for n, and the means of the active contrasts
are bounded. Then

\/ﬁ[él()\) - A'rm;/zmgl/z] 4, N(O, 2272 (momy — mg)/4m2mg)

and
— A2(momy — m3) -
N 2 0774 2 1/2 1/2 2
MSE[5:(A)] = T [ Tnmam? + (Amgy' “my —1)]
2
72 [Q'—N—?ﬁ— + (0.9546) — 1)2] .

If A = md?m;/? ~ 1.048, and 8, = 5,(1.048) then
MSE(s1) ~ 72(0.4113/n). (6)

Comparing (3), (5) and (6) we see that when the hypothesis of effect sparsity
is true, the asymptotic mean square error of PSE is smaller than that of sg, and
the asymptotic mean square error of s; is smaller than that of PSE.

5. Examples

Four examples were given by Box and Meyer (1986). These examples are also
analyzed in Loh (1992). All of them consist of 16 runs in unreplicated two-level
designs. Example 1 is a 2* design from Daniel (1976). Example 2 is a 235 design
from Taguchi and Wu (1980). Example 3 is a 2%7 4 design from Box, Hunter and
Hunter (1978). Example 4 is a 2* design from Davies (1954). The level is .05 for
all examples and all methods. Normal probability plots for these examples are
given in Figure 1.

Example 1. Using Box and Meyer’s, or Loh’s method, the conclusion is that
there are 3 active contrasts. For Lenth’s and our method, so = 1.5 x .02 = .03,
PSE= 1.5 x .02 = .03, SME= 5.22 x .03 = 0.157, s; = .026 and m = 12. Using
Lenth’s method, the conclusion is that there are 2 active contrasts. Using our
method, the conclusion is that there are 3 active contrasts.

Example 2. Box and Meyer’s, Loh’s and Lenth’s methods all suggest that there
are 2 active contrasts. For this example, sp = 1.5 x .3 = .45, PSE= 1.5 x .15 =
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225, SME= 5.22 x .225 = 1.17, s; = .271 and m = 13. Our method also suggests
that there are 2 active contrasts.

Example 3. Using Box and Meyer’s, or Loh’s method, the conclusion is that
there are 3 active contrasts. For Lenth’s and our method, sg = 1.5 x .6 = .9,
PSE= .75, SME= 3.915, s; = .593 and m = 12. Using Lenth’s method, the
conclusion is that there are 2 active contrasts. Using our method, the conclusion
is that there are 3 active contrasts.

Example 4. Box and Meyer were not so certain about this example. They
claim that “it is impossible on the evidence of these data alone to draw reliable
inferences about active and inert contrasts” and conclude that it is possible that
as many as 5 of the 15 contrasts are active (see Box and Meyer (1986)). Using
Lenth’s or Loh’s method the conclusion is that there are no active contrasts (see
Lenth (1989), Loh (1992)). Using our method, the conclusion is also that there
are no active contrasts. For this example, sp = PSE = .114 (nothing is excluded
in the 2nd step), SME= 5.22 x .114 = 0.595, s; = .132 and m = 15.

Example 1 Example 2
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Figure 1. Normal plots for Examples 1-4
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6. Discussion

The performance of both Lenth’s and the proposed method depend on the
success of the preliminary estimate of the standard deviation of the contrasts.
Therefore the size of the active contrasts as well as their number will have an
effect on the performance of the methods. In the simulation results in Section
3, the size of the active contrasts begins with 5 standard deviations and then
increases by 1 for each additional active contrast. In some applications, the size
of the active contrasts might be smaller. Additional simulations (not included
here) show that if there are a couple of active effects with size about 3 standard
deviations, both the proposed and Lenth’s method are not good but neither
dominates the other in detecting active contrasts.

Acknowledgement

I am grateful to Professor Wei-Yin Loh for introducing the problem and for
many helpful discussions during the preparation of the paper. I was able to read
his paper at an early stage. Also I am grateful to his suggestions on improving
the presentation. I also thank the referees for helpful comments. I am aided
by access to the research computer at the Statistics Department of University of
Wisconsin-Madison.

References

Box, G. E. P. and Meyer, R. D. (1986). An analysis for unreplicated fractional factorials. Tech-
nometrics 28, 11-18.

Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978). Statistics for Ezperimenters. John Wi-
ley, New York.

Daniel, C. (1959). Use of half-normal plots in interpreting factorial two-level experiments. Tech-
nometrics 1, 311-341.

Daniel, C. (1976). Applications of Statistics to Industrial Ezperimentation. John Wiley, New
York.

Davies, O. L. (1954). The Design and Analysis of Industrial Ezperiments. Oliver and Boyd,
London.

Dong, F. (1990). An easy method for identification of active contrasts in unreplicated fractional
factorials. Ph.D preliminary examination paper, Department of Statistics, University of
Wisconsin-Madison.

Lenth, R. S. (1989). Quick and easy analysis of unreplicated factorials. Technometrics 31, 469
473.

Loh, W. Y. (1992). Identification of active contrasts in unreplicated fractional factorial experi-
ments. Comput. Statist. Data Anal. In press.

Taguchi, G. and Wu, Y. (1980). Introduction to Off-line Quality Control. Central Japan Qual-

ity Control Association, Nagoya, Japan.

Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, U.S.A.
(Received January 1991; accepted June 1992)



