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ESTIMABILITY AND EFFICIENCY IN NEARLY
ORTHOGONAL 2™ x 3™ DELETION DESIGNS
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Abstract: This article considers single replicate factorial experimental designs in in-
complete blocks. A single replicate 2™* x 3™2 deletion design in 3 incomplete blocks
is obtained from a single replicate 3™ (m = m; + m3) preliminary design by deleting
all runs (or treatment combinations) with the first m; factors at level two. A sys-
tematic method for determining the unbiasedly estimable (u.e.) and not-unbiasedly
estimable (n.u.e.) factorial effects is provided. Specifically, it is shown that, for
mz > 0, all factorial effects of the form F(o1...0my,®my+41...0m), where a; = 0,1
fori=1,...,m, o = 0,1,2, for i = my + 1,...,m, with (a1...am) # (0...0),
and (@m,+41.--am) # a(l...1) for @ = 1,2, are u.e. and the remaining effects are
n.u.e. The result that identifies u.e. factorial effects is derived as a special case of a
theorem developed herein for general deletion designs obtained from a single replicate
p™ preliminary design. It is noted that (2™! — 1) factorial effects of 2™ factorial
experiments, and (3™2 — 3) factorial effects of 3™2 factorial experiments, which are
embedded in 2™ x 3™? experiments, are u.e. The 2 x 3™~! deletion designs were
considered in the work by Voss (1986). By defining the single-degree-of-freedom com-
ponents F(a1 ...am) of the factorial effects of a 2™ x 3™? factorial experiment in a
form different from that of Voss (1986), our simple representation of u.e. and n.u.e.
effects identifies more u.e. effects than is done in the representation by Voss (1986).
The relative efficiency expressions, and their bounds, in the estimation of factorial
effects of 2™! x 3™? deletion designs are also given, along with methods for adjusting
n.u.e. effects to be u.e. when certain higher order effects are assumed negligible.

Key words and phrases: Confounding, factorial experiment, single replicate, unbias-
edly estimable.

1. Introduction

There is a vast literature on the construction of single replicate asymmetric
factorial designs in incomplete blocks. The reader is referred to Voss (1986) and
Raktoe, Hedayat and Federer (1981) for the list of references. The concept of
deletion designs was introduced in Kishen and Srivastava (1959). The deletion
technique in deletion designs was then used by many authors, among them Ad-
delman (1962, 1972) and Voss (1986). This article considers 2™ x 3™2 deletion
designs in three incomplete blocks and presents a systematic method for classify-
ing all the factorial effects as either u.e. or n.u.e. Recently Chauhan (1988) has
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considered (g —a)™ x ¢™2 deletion designs in m = mj + my blocks, and obtained
results for determining unbiased estimability of some (but not all) factorial effects
(see discussion in Section 5). However, by considering the particularly useful spe-
cial case ¢ — a = 2 and ¢ = 3, we are able to classify all the factorial effects as
either u.e. or n.u.e., a much stronger result than that of Chauhan (1988). While
the smaller values of m; and ms are the most practically important cases, we do
not consider the case my = 0, since, there, the blocks are of unequal sizes and
main effects are confounded. This work is based on Mahoney (1988) and Ghosh
and Mahoney (1988), where several generalizations are discussed.

The model assumed is the linear fixed effects model. A factorial effect is
estimable if, and only if, it can unbiasedly estimated with a linear combination
of the observations. An unadjusted estimator of a factorial effect is simply the
factorial effect with the treatment effects replaced by the observed response at
the corresponding treatment combination. The unadjusted estimators can be
unbiased or biased. When they are biased, then under the assumption that
certain higher order factorial effects are negligible, it is possible to adjust them
to be unbiased in minimum variance fashion. The unbiased estimators of factorial
effects obtained in this fashion are called adjusted estimators.

The relative efficiency in the estimation of a factorial effect is the ratio of
the variance of its unadjusted estimator to its adjusted estimator. Under the
assumption that certain higher order effects are negligible, the relative efficiency
considered in this paper is identical to the standard efficiency factor. (See John
(1987), Equation (2.1), page 24.) If the unadjusted estimator is unbiased there
is no need for adjustment, and hence the relative efficiency is unity. Otherwise,
the relative efficiency is less than unity, and the closer the relative efficiency to
unity, the lesser the effect of adjustment on the variance of the estimator.

For the general definition of estimable parametric functions, the reader is
referred to Scheffe (1959), page 13, and Lehmann (1983), page 75. In this pa-
per the parametric functions are factorial effects and contrasts of block effects.
Definitions of factorial effects and deletion designs are given in Section 2. An
orthogonal block design is a block design that has the property that the least
squares estimators of all factorial effects are not only orthogonal to each other
but also orthogonal to the least squares estimators of a complete orthogonal set
of block effect contrasts. (See Raktoe, Hedayat and Federer (1981), Definition
8.1, page 102.) For a single replicate factorial design in incomplete blocks, an
orthogonal design does not exist. It is, however, observed in Section 4, under
the assumption that two of the highest order factorial effects are zero, that the
deletion designs are nearly orthogonal. Section 3 presents the systematic method
(Theorem 2) of determining which factorial effects are unbiasedly estimable (u.e.)
by their unadjusted estimators. Determination of the u.e. effects is accomplished
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as a special case of a general theorem proved in Section 3 (Theorem 1) that iden-
tifies estimable contrasts related to factorial effects for general deletion designs
derived from a preliminary p™ design. Section 4 discusses the relative efficiency
with an illustrative example.

2. Definitions and Notation

Consider a single replicate 2™! x 3™2 factorial experiment in incomplete
blocks. There are m factors (m = mj + my) in the experiment. Runs and
their effects are denoted by the same notation (z1...Zm;,Tm,+1...2Zm), Where
z; =0,1for 1 <i<my,and z; = 0,1,2 for m; +1 < i < m. The observation
on the run (zj...2Zn) is denoted by y(z; ...z,,). With this notation, the model
can be written as

Ey(xi...2m) = (21...Zm) + G;
Vary(zy...2m) =02 >0 (1)

Cov(y(:cl cee ),y ... a:'m)) =0,

where [3; is the effect of the jth block containing the run (z; ...p), and (21 ... Zx,)
# () ...z,,). The model assumed is equivalent to the linear fixed effects model:

Ynx1) = T(ax1) + Nmxk)Bkx1) T €(nx1)-

Here, 7 = (7;) is the vector of run or treatment effects, where z = (z1...24,) is
a treatment combination and is ordered in lexicographical order, with z; being
the level of factor <. The matrix N is the incidence matrix. That is, N = (6. 4)
where 6, p, = 1 if treatment combination = appears in block h, and is 0 otherwise.

Factorial effects are denoted by F(oj...0m;,®m,+1...am),a; = 0,1 for
1 <1< mq,and o; = 0,1,2 for m; +1 <7 < m. (This notation is equivalent to
F ... F2m which is only used in examples.) A factorial effect is a contrast in
7, c!7, where c'1 = 0 and 1(0) denotes a column vector of 1s (0s) whose dimension
will be clear from context. The factorial effect c'r is estimable if, and only if,
c!N = 0. This result, due to Dean (1978), simply states that if c!'N = 0 (i.e.,
the block effects cancel one another), then c'Y is an unbiased estimator of ctr
which, by the Gauss-Markov theorem, is the Best Linear Unbiased Estimator
(BLUE). In general, the estimator c'Y of the factorial effect c'r will be called the
unadjusted estimator of the effect, and will be denoted by c*7. When ¢!N # 0,
then E(cir) = c'7 + ¢!NB. For our problem, each row of N contains exactly
one entry equal to 1 and the rest equal to 0. Hence, c!N1 = 0, so 9! = ¢!N is
a contrast. Now, if e; are vectors and e{7 = eb7 = .- = elT = 0 are negligible
factorial effects, elc = 0, ¢ = 1,...,r, ele; = 0, 1 # j, and E(ef‘r) = ¢'B,
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t=1,---,r, then it is possible to adjust ¢! ‘r to be unblased in minimum variance
fashion, by subtracting a linear combination of the ei7,i =1,. .,7. The resulting
estimator, denoted by (c! 'r)adJ, is given by

(ctes)”
h N s e,l:ei)
(CtT)adj = clr — Zwi (efT), where w; = -, i=1,.

3
-1
=1 ¢
? Z (eiei)
=1

The notation {0121 4 -+ + @m,Tm,; = u1} represents the sum of all points
(€1 ...Zm,) which are solutions of Q1Z1 4+ + Qm, Tm, = uj over the Galois Field
GF(2), u1 = 0,1. Note that it is the sum of all points (1...Tm,), z; € {0,1}, if
(a1...am,) = (0...0) and u; = 0 and is taken to be 0 if (o .. .0m,) = (0...0)
and u; = 1. Similarly, the notation {am,+1%Tm, 41+ + AmTm = ug} represents
the sum of all points (Zm, 41 -..2Zm,m) which are solutlons of Ay 41Tm, 41 + -+ +
amTm = ug over the Galois Field GF(3), 1s = 0,1, 2, with the same conventions
involving the case (am;41...am) = (0...0).

The “x” product of {a121 + -+ + o, Tm; = u1} and {@m, 41Tm 41+ -« +
OmTm = ug} is denoted by :

e (2)

{011331 +ortam T, = ul} x {am1+1wm1+1 oot ATy, = uz}-

It represents the sum of all run effects (1 ... Zm,, Tm;+1- . . Zm) where (z; . .. Tm,)
is a solution of @11+ -+ am; = u; over GF(2) and (Zm, 41 ...Zn) is a solution
of m; +1Zm, 41+ *+AmTm = up over GF(3). To handle the cases (a; ... A, ) =
(0...0) and/or (am;+1...2m) = (0...0), make the convention that A x B = 0
if either A=0or B = 0.

The factorial effects of a 2™ x 3™ factorial experiment are defined as con-
trasts of run effects as follows. Let o = (oy. Qg Oy 41 - - - Oy ), and define
row vectors u(a) and v(a) as

_ (1,1,1,1,1), 1fa1—a2 “=Qp, =0
u(e) = (-1,1,1,1,1), otherW1se,
(1,1,1, 1), famy1= - =am=0
v(i@) = (1,1,-1,0,1), if the ﬁrst non zero value in (am,41...04p) is 1
(1,1,1,-2,1), if the first non zero value in (Cmyt1 .- Q) is 2.

Finally, define the coefficients (co, ¢1,dp, d1, d2) = u(a)v(a) where the product of
u and v is taken coordinate by coordinate. Here, the dependence of ¢; and d; on
a is suppressed, but will be clear from context. A factorial effect is now deﬁned
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as

2
X [Z di{am1+1°’cm1+l +tanT, = z}} . (3)

i=

ci{alml +oor A Ty, = z}]

Ezample 1. Consider a 22 x 32 factorial experiment. We have my = 2,ms = 2, and
m = 4. The notation {z;+z2 = 0} represents (00)+(11); the notation {z3+2z4 =
1} represents (10)-+(02)+(21). Finally, the notation {z1+zs = 0} x{z3+2z4 = 1}
represents (0010) -+ (0002) + (0021) + (1110) + (1102) + (1121). The factorial effect
F(0120) = FoFf = [—{z2 = 0} + {2 = 1}] x [{z3 = 0} — 2{z3 = 1} + {z3 =
2}] = [-(00) — (10) + (01) + (11)] x [(00) + (01) + (02) — 2(10) ~ 2(11) — 2(12) +
(20) + (21) + (22)] = —(0000) — - - - + 2(0010) + - - - — (0020) — - - - + (1122).

A 2™ x 3™2 deletion design D in three incomplete blocks is described as
follows. Consider a 3™ (m = m; + mg) factorial experiment in 3 blocks by
confounding the two degrees of freedom in F(11...1) and F(22...2). The block
u consists of runs which are solutions over GF(3) of the equation z;+- - -+z,, = u
for u = 0,1,2. From every block, the runs with level 2 for the first m; factors
are deleted. The resulting design is D with 2™ x 3™2~! runs in every block. It
is assumed that mo > 2.

Ezample 2. The runs in the three blocks of a 22 x 32 deletion design D are given
by:

Block 0: 0000, 0012, 0021, 1020, 1002, 1011, 0120, 0102, 0111, 1110, 1101, 1122
Block 1: 0010, 0001, 0022, 1000, 1012, 1021, 0100, 0112, 0121, 1120, 1102, 1111
Block 2: 0020, 0002, 0011, 1010, 1001, 1022, 0110, 0101, 0122, 1100, 1112, 1121.

The unadjusted estimators of factorial effects F(a; . .. ap,, Omy+1 .- . Q) are
obtained by replacing the run effect (21 ...z,) with the observation y(z; ...zn,)
in (3), and are denoted by F\(a; ... Oty y Qg +1 - - - Qn )

Let B, (u = 0,1,2) be the sum of all run effects in the uth block. Let
X =—-B1+ By andY = 2By — B; — By. Clearly, X and Y are confounded with
blocks in D.

Let By(ayzi+ -+ am&m;, =1),fori=0,1,and u = 0,1, 2, denote the sum
of all run effects satisfying the equation a12; + - - - + am, Tm, = i over GF(2) in
the uth block. Consistent with previous conventions, B, (a1z; + - - + Qmy Ty, =
i)=Byif(e1...am;) = (0...0) and i = 0, and is 0 otherwise, so that in general,
By =Y i_oBu(a1z1+ -+ + O, T, = i).
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Now, define the following linear combinations of factorial effects:

F(al...aml)X
= —[B1(a1m1 + ...+am1:cm1 = 1) —Bl(alml +"'+am1$m1 — O)]

+[Bg(a1m1 + -t am, Ty, = 1) — Bz(alxl + ot U T, = 0)], (4a)

F(a1...am1)Y
= 2[B0(a1:c1 + ot oy Ty, = 1) — Bo(azr + -+ + g T, = 0)]

_[B1(a1:cl + e 4 Ay Ty = 1) - Bl(alzl +eee 4 Uy Ty = O)]

- [Bg(al:cl + -t amy Ty, =1) — Bo(a1z1 + - + Oy T, = 0)] (4b)

3. Properties

Consider, for the moment, a preliminary p™ (p a prime or prime power)
design in p blocks with the hth block containing the runs satisfying > i~ ; z; = h
over GF(p). Now, delete the treatment combinations having any of the g; levels of
the ith factor, i =1,...,5,1 < ¢; <p—2, yieldinga (p—q1) X -- - X (p—¢qs) xp™*
deletion design. Call this design D, to distinguish it from the previously defined
deletion design D. The following general theorem identifies u.e. contrasts of the
run effects in DC.

Theorem 1. Assume the design is D€. Let a,i1,...,an be elements of {0,1,...,
p — 1} such that for some i < j, o; # ;. Then (a ® c)'r is ue. by (a ® ¢)'Y,
where a is any (p — q1) ... (p — gs) by one, nonzero vector, ¢ = (cs,,;...c,n) 5 aNY
p™~° by one contrast vector such that the component c.,, . =, depends only on
the value of 3 7%, 1 a;zi, and ® is the Kronecker product.

Proof. If a; = 0 for some 7 > s, the result follows from Theorem 2 of Chauhan
(1988). Assume, then, that o; # 0 for all ¢« > s. For each subtreatment combi-
nation z1...2,(0 < z; < p — ¢;), each block By = {z1...&m : > =1 z; = h over
GF(p)} of D, and each j in {0,1,...,p — 1}, the block contains exactly p™~*~2
treatment combinations which simultaneously have z;1...z, as a subtreatment
combination and satisfy 3%, ; a;z; = j over GF(p). To see this, without loss of
generality, suppose that a,,_1 # a,,. Then for each possible subtreatment com-
bination 2 ... ZTm_2 in DY, and for fixed j and h, it follows from the properties of
GF(p) that there exists a unique 2-tuple Z,,_1Z,, such that z1...Tm 9Zm_1Tm
satisfies both 307, ; oyz; = j and }[%; z; = h. The block effects in E((a®¢)'Y’)
therefore cancel, and the result follows.
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We now consider the 2™ x 3™2 deletion design D previously defined. We
say that a factorial effect in D is unbiasedly estimable.(u.e.) if its unadjusted
estimator is unbiased, and that it is not unbiasedly estimable (n.u.e) otherwise.
(Note that we are not at this point assuming that any factorial effects are negli-
gible.) The following theorem allows one to classify all the factorial effects of D
as u.e. or n.u.e. It is assumed that mg > 1.

Theorem 2. If (o1...am) # (0...0), the factorial effects F(ay ... Qm,, m, 41
... Q) are:

(i) u.e. under D for (am,41.--am) #F a(l...1), a=1,2;

(ii) n.u.e under D for (am,+1-.-.am) =a(l...1), a=1,2.

Proof. Part (i) follows from Theorem 1 and the definition of the factorial effects
in D given by (3).

For the proof of part (ii), if (@1...am,) = (0...0), then the result follows
from the fact that the grand total of run effects in the embedded 2™ design is
n.u.e. Next, if (@1...am,) # (0...0), consider a fixed block, block u say. Then
the runs in that block satisfy z; + - -+ + z,,, = u over GF(3), and those runs can
be divided into six mutually exclusive sets of runs that satisfy

(*) a1z1 + -+ - + amy Tm, =1 over GF(2),

(**) Amy+1Zm 41 + -+ + amTm = J over GF(3),
for i = 0,1, and j = 0,1,2. The runs in each of these six sets therefore satisfy
three linear equations. Suppose that (am,+1...0am) = a(1...1) for either a =1
or 2. Then (**) and the linear equation defining block u can be combined to
form a new linear equation, placing another constraint on z ...Zn,, in addition
to (*). In this case, the six sets of runs have different numbers of elements, and
the net block effect will not cancel from E(F(oq...Qm;,@my41---0m)). This
completes the proof of (ii).

Ezample 3. In example 2, the following factorial effects are n.u.e. in addition to
the general mean p = 1' : F3Fy, F2F}, F1F3Fy, FaF3Fy, F{FaF3F,, FiF2F},
F2F32F42, F1F2F32Ff. The other factorial effects are u.e.

Corollary 1. Under D,F(ay...am,)X and F(a1...am,)Y with (a1...am,) #
(0...0), defined in (4), are u.e.

Proof. By Theorem 2, all effects F(aj...am,,0...0) are-u.e., so each run
subcombination (1 ...Zm,,) occurs equally often in each block. It now follows
from (4) that the block effects cancel in the unadjusted estimators of the effects
defined by (4).

Observe that p (the general mean), X and Y are confounded with blocks
in D. The (2™ (3™2 — 2) — 1) factorial effects F(aj...om,,@m 41 ... 04m) With
(Cmy+1---0m) # a(l...1), @ = 1,2, and (a1...0m) # (0...0), are u.e. under
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D. The (2™ - 1)2 linear functions of factorial effects F(oy...am,)X and
Floy...am,)Y with (a1...am,) # (0...0), are u.e.under D. Thus, we have
B+ (2™(3™2 —2) - 1)+ (2™ — 1)2] = 2™ x 3™2 linear functions of factorial
effects which are also orthogonal linear functions of run effects (orthogonality
follows from the definitions (3) and (4)).

4. Relative Efficiency

When certain higher order factorial effects are assumed negligible, then n.u.e.
factorial effects become estimable through adjustment as discussed earlier. In this
section the relative efficiencies of adjusted estimators of n.u.e. factorial effects are
calculated. It can be easily verified that for a = 1 or 2,

Var (I:"(al Oy, O a)) = g2gmitigmita=2 (5)

Let S = wt(ay...am,;) be the number of non zero elements in (o .. Oy )y
= (Bo, 41, B2) the block effects, and [+] the usual greatest integer function. It
follows after straightforward, but tedious, computations that for o = 1 or 2,
E(I:‘(al...aml,a...a)) =F(a1...0m,a...a)+ 3m21H(5+e-1)/2 5 Bs,.a(B).
(6)
In (6), the absolute value of the term (s o(B) is

85(B)] = |{@s.a(1,~2,1) + (1 - Q5a)(=1,0, )} PrymoayB|  (7)
where Q5o = (S+a—1)mod(2), and Py, P; and P, are the permutation matrices

00
0
1

010 1
0 0}, P=}|0 1
01 0 0

It follows from (6) and (7) that if F(1...1,1...1) and F(1...1,2...2) are
zero, the bias in the unadjusted estimator of F(aj ... am,,a...a), (o ... O, ) #
(1...1), can be removed by subtracting from it a constant multiple of the un-
adjusted estimator of either (but not both) F(1...1,1...1) or F(1...1,2...2).
Whether F(1...1,1...1) or F'(1...1,2... 2) is used depends on whether or not
(S —m1) = 0 mod(2). The adjusted estimator will thus be of the form

100
PB=|l010]|, P=]1
00 1 0

)

F(al «Qm,y, O a)a.dj F(al -0, , a) +wF(1 L. 7) (8)
where v = 1 or 2. Thus, using (5), the relative efficiency in the estimation of
Flag...am,a...0), (a1...am, ) # (1...1),a=1,2, is

Va,rF(al...aml,a...a) _ 1

(9)

B Var F(a; .. cQmy Q... O)adj T 14 w?30r-e)
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It is seen from (6) and (7) by considering the two cases (m; — S) = 0,1 mod(2)
that
w = 3(E—mte=7)/2, (10)

Using (10) in (9), it follows that in every case,

3/4 <RE = il < A (11)
(3m +35) = (3™ +1)

It is noted that under the assumption that F/(1...1,a...a),a = 1 and 2, are
negligible, the RE in (11) is the standard relative efficiency or the efficiency factor
for the factorial effect F(ay...0m,,a...@), (a1...am,) # (1...1), a = 1,2.
(See John (1987), Equation (2.1) on page 24.)

We thus observe that under the assumption that F(1...1,e...a), a =1,2,
are negligible, all the factorial effects (except the general mean) are estimable in
these deletion designs. Furthermore, the unbiased estimators which are unad-
justed are mutually orthogonal and also orthogonal to the unbiased estimators
which are adjusted. Pairs of unbiased estimators which have been adjusted are
orthogonal when they are adjusted with orthogonal bias corrections. Hence, the
deletion design is a nearly orthogonal design under the aforementioned negligi-
bility assumptions.

Ezample 4. In Example 2, m; = 2. Assume that F1 F»F3F, and F1F2F32FZ‘ are
zero. For the factorial effects F3Fy and F2F2, we have S = 0. For the factorial
effects F;F3F4 and F,-F32Ff, t = 1,2, we have S = 1. The REs for estimating
F3F4 and F32F42 attain the maximum value .90. The REs for estimating F;F3F,
and F;F2F},i = 1,2, attain the value.75. There are (2232 —1 - 2) = 33 factorial
effects, excluding the general mean and the two negligible factorial effects. Thus,
out of these 33 factorial effects, all but 4 factorial effects attain the maximum
values of RE, 1 (for u.e. factorial effects) or .90 (for n.u.e. factorial effects). These
4 factorial effects are all three factor interactions. We note that in this example,
there are at most 3 pairs of correlated effect estimators (possibly correlated due
to adjustment). All others are uncorrelated, and uncorrelated with the adjusted
estimators. This illustrates that the design is nearly orthogonal.

5. Conclusions

A general theorem that identifies certain estimable functions in a general
deletion design has been developed, and systematic methods for determining the
u.e. and n.u.e unbiasedly estimable factorial effects in 2™* x 3™2 deletion designs
in three incomplete blocks of equal sizes have been presented. In addition, a
method for correcting the bias in estimators of n.u.e.factorial effects and the
resulting relative efficiency in doing so was discussed.
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These deletion designs, with two and three level factors and relatively small
values of mj and mgy are of the most practical significance, since larger val-
ues for the numbers of levels result in much larger total run numbers. In-
deed, if much larger run numbers are actually feasible, it would be advisable
to use a more standard, well-studied and easily analyzed design (e.g. a full,
symmetrical factorial design). In more generality, Chauhan (1988) has consid-
ered the (¢ — a)™ x ¢™2 deletion design obtained from a ¢™ (m = m + my)
design in m blocks with initial block containing the runs (zj...z,,) satisfying
zy+ -+ + &m = 0 mod(m), and showed that any main effect or interaction not
involving all of the factors Fi,, 11,...,F, is estimable. Theorem 1 of this pa-
per generalizes that result. Also, by considering the special case of ¢ — a = 2
and ¢ = 3, we were able to obtain a stronger result (Theorem 2) than that of
Chauhan. Specifically, Theorem 2 identifies the same effects as being estimable as
does the result of Chauhan (1988), but in addition identifies some single-degree-
of-freedom factorial effects involving all of the factors Fp,, 41, ..., Fy, which are
also estimable. For example, in Example 3, of the effects determined to be es-
timable by an application of Theorem 2, Chauhan’s result establishes estima-
bility of all but F3F7, F{Fy, F\F3F}, FiF2Fy, FoFsF}, FoF2Fy, FiFyF3F? and
F1FyF2Fy. Therefore, while Chauhan (1988) covers more general designs, the
results contained herein for the special case of ¢ — a = 2 and ¢ = 3 are stronger.
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