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A NEW APPROXIMATION TO THE DISTRIBUTION OF
PEARSON’S CHI-SQUARE
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Abstract: A new approximation to the distribution of Pearson’s chi-square statistic
for testing independence in two-way contingency tables is described. Using the exact
first three moments of the test statistic under the conditional permutation distribu-
tion, the distribution is approximated by that of (aW)*, where W has a chi-square
distribution. In an extensive comparison of the new generalized chi-square proce-
dure and several other tests of independence with the “exact” conditional test, the
new method consistently yields estimated p-values which agree closely with the exact
results.
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1. Introduction

When a sample of N observations is classified with respect to two qualitative
variables, the resulting frequencies are often displayed in an r X ¢ contingency
table, in which case n;; is the observed count in the ith row and jth column.
Let n;. and n.; denote the row and column marginal totals, respectively, and let
E;; = ninj/N. In testing the independence of the two qualitative variables,

Pearson’s statistic e )2
n. * — E. .
X?=3 3
=1 j=1 E"J

is commonly used. If the expected counts are not “too small”, X 2 has an approx-
imate chi-square distribution with (r —1)(c— 1) degrees of freedom (x?r_l)(c_l)).

For contingency tables with many small expectations, Cochran (1954) fitted
a normal approximation to the distribution of X 2. using the exact mean and vari-
ance given by Haldane (1940). Alternative gamma and lognormal two-moment
approximations were studied by Nass (1 959) and Lawal and Upton (1984). Lewis
et al. (1984) derived the exact third central moment of X 2 and studied a three-
moment location-shifted gamma approximation. The third moment was inde-
pendently derived by Mielke and Berry (1985), who proposed a Pearson type III
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approximation. Both approaches are equivalent to a location-shifted chi-square
approximation a + bxp, where a, b and p are chosen to match the first three mo-
ments of X2. In empirical studies reported by Lewis et al. (1984) and Berry and
Mielke (1988), the three-moment %2 approximation resulted in significance levels
closer to the nominal levels than the other tesfs considered.

A generalized chi-square approximation to the distribution of X 2 is proposed
in Section 2. The distribution is approximated by that of (aW)F, where W
has a x2 distribution and the parameters a, k and p are chosen to match the
first three moments of X2. A simple iterative procedure for determining the
moment estimators of the parameters is described. Like the location-shifted chi-
square approximation, this method uses the first three moments of X2 and thus
may yield more accurate results than the asymptotic x(r 1)(e=1) distribution or
a two-moment approximation. An important advantage over the location-shifted
approximation is that the generalized chi-square approximation has the same
range as that of X2(0, o).

Section 3 summarizes an extensive numerical comparison of the generalized
chi-square approximation and several other approximate tests with the “exact”
conditional test. In contrast with published empirical studies emphasizing com-
parisons between nominal and actual significance levels under the null hypothe-
sis, differences between approximate and exact p-values are studied. Over a large
number of configurations of two-way tables with dimensions ranging from 2 x 3 to
4 x 5, the new approximation consistently yields estimated p-values which agree
closely with the exact results.

2. A New Approximation to the Distribution of X 2

Let Y = (aW)¥, where W has a x2 distribution. Note that ¥ has the
generalized gamma distribution (Stacy (1962), Johnson and Kotz (1970, p.197)).
The tth moment about the origin of Y is

(2a)*T (kt + v)
I'(v) ’
where I'(z) = [~ v~ le=tdy and v = p/2. For a given r X c table, the distribution
of X2 can be apprommated by that of Y, where a, k and p are chosen to match
the exact first three moments of X2. The case a = k=1, p = (r — 1)(c — 1)
corresponds to the usual asymptotic approximation.
In solving for a, k and p, it is convenient to define

W(¥) _ D)2k +1)

WOPE = TE+oF 1
Wy(Y) _ {T()}*T@k +1) o
WOFE - TE+oPF

wm(Y) =

M (Y)

My(Y')
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Now let p, pb and pf denote the exact first three moments about the origin of
X2 and let Mq(X?) = ph/p? and Ma(X?) = ph/ud. Given values of k and p
satisfying (1) with M1(X?) and M2(X?) replacing M1(Y') and M2(Y), the value
of a can be found by equating the means of X 2and Y.

This method was studied by Davis (unpublished M.Sc. Thesis, McMaster
University (1975)) and used by Solomon and Stephens (1977, 1980, 1983) in
approximating positive random variables with known first three moments. How-
ever, explicit solutions for k and p were not provided due to the complexity of
(1). Instead, values of M1(Y) and M2(Y) were tabulated over an extensive grid
of (k,p) values. For given (My, M3) of the random variable to be approximated,
the corresponding (k,p) values were found by inverse double interpolation.

Explicit solutions can be found by rewriting equation (1) as

log M1(Y) = logI'(v)+logT'(2k +v) — 2log I'(k + v),

log Ma(Y) = 2logT(v) +log'(3k + v) — 3logI'(k + v), @
where logI'(z) is the natural logarithm of the gamma function. The partial
derivatives of (2) with respect to k and v are in terms of the ¢ function (Abramo-
witz and Stegun (1965, p.258)). Since fast and accurate algorithms for computing
log I'(z) and % (z) are available (MacLeod (1989), Bernardo (1976)), Equation (2)
can easily be solved using Newton’s method and starting values of kg = 1 and
vg = 3(r —1)(c—1). If the calculated value of X2 for a given r X c table is z, we
then approximate the tail probability pr(X2? > z) by pr(W > (z/ a)'/*), which
can be calculated for nonintegral degrees of freedom using the algorithm of Shea
(1988).

3. Numerical Comparisons

Most studies of the empirical properties of Pearson’s X? and other tests
of independence have assessed the accuracy of significance levels under the null
hypothesis. Due to recent developments enabling the computation of exact con-
ditional tail probabilities for 7 X ¢ tables once beyond the range of computational
feasibility, more extensive evaluations were carried out.

The basic design of the empirical study involved the following factors:

1. eight table dimensions (2 x 3,2 x 4,2 x 5,3 x 3,3 x 4,3 x 5,4 X 4,4 X §);
2. three average expected cell frequencies (3, 6, 9);

3. three row marginal total patterns (ratios of largest marginal total to smallest
marginal total of 1, 2 and 5, with a common value for the remaining margins);

4. three column marginal total patterns (same as for row marginal totals).
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These define a reasonably comprehensive set of contingency table configurations
covering most practical settings involving small and moderately-small expecta-
tions. Tests of independence in 2 X 2 tables are not considered, since this case
has been studied extensively, e.g., Haber (1980).

For each combination of the design factors, multiple random contingency
tables were generated using the algorithm of Patefield (1981); random numbers
from the uniform (0, 1) distribution were obtained using the Wichmann and Hill
(1982) generator. Exact two-tailed p-values were calculated using the algorithm
of Mehta and Patel (1986). The sampling scheme involved the generation of
tables over a wide range of exact p-values; further details are available from the
author. In all, 5532 unique tables were used in the study.

For each table generated, the exact p-value was compared with the approxi-
mate p-value resulting from each of the following nine statistics:

A. Pearson’s X?;

B. Likelihood ratio (LR) chi-square statistic: 2371 271 Rij log(nij/Eij);

C. Cressie-Read (1984) power divergence statistic with A = 2/3;

D. Three-moment generalized chi-square approximation;

E. Location-shifted chi-square approximation (Lewis et al. (1984), Mielke and
Berry (1985));

F. William’s (1976) corrected LR statistic (with correction term calculated using

expected values);

G. William’s (1976) corrected LR statistic (using the minimum value of the
correction term);

H. Gart’s (1966, p.170, Equation 5.8) modified LR statistic;
I. Gart’s (1966, p.169, Equation 5.6) simpler modified LR statistic.

These methods include the classical statistics (A, B), the Cressie-Read power di-
vergence statistic (C), the three-moment approximations (D, E) and “corrected”
LR tests (F-I). Two-moment approximations were not included since these have
been shown to be less accurate than approximation E (Lewis et al. (1984), Berry
and Mielke (1988)). Significance levels for all statistics except D and E were
calculated using the asymptotic x%r_l)( c-1) distribution.

Table 1 displays average (3°d/5532) and root mean square (3 d2/5532)1/2
errors of the nine approximate tests over all 5532 tables, where d denotes ap-
proximate p-value — exact p-value. In addition, separate tabulations are given
for exact p-values in the range 0-0.15 (2448 tables), 0.15-0.85 (1707 tables) and
0.85-1 (1377 tables). Overall, the generalized chi-square approximation (D) has
the smallest average and root mean square errors. This approximation has the
smallest average error when the exact p-value is in either tail and is nearly as
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accurate as the location-shifted chi-square approximation (E) when the exact
p-value is in the range 0.15-0.85.

Table 1. Average and root mean square error of differences
between p-values (approximate — exact)

Exact p-value range

All tables < 0.15 0.15-0.85 > 0.85
(n = 5532) (n = 2448) (n = 1707) (n = 1377)

Method™ Mean RMSE Mean RMSE Mean RMSE Mean RMSE

-0.0139  0.040 0.0012 0.020 -0.0313 0.058 -0.0193 0.038
-0.0351 0.062 -0.0170 0.026 -0.0635 0.092 -0.0322 0.061
-0.0169 0.039 -0.0016 0.015 -0.0353 0.058 -0.0213 0.041
-0.0077 0.035 -0.0004 0.020 -0.0180 0.051 -0.0080 0.029
-0.0080 0.035 -0.0007 0.021 -0.0175 0.051 -0.0092 0.029
-0.0116 - 0.042 -0.0007 0.020 -0.0232 0.061 -0.0167 0.043
-0.0189 0.047 -0.0065 0.019 -0.0352 0.070 -0.0209 0.049

0.0509 0.078 0.0580 0.079 0.0747 0.101 0.0088 0.028

0.0538  0.083 0.0621 0.085 0.0779  0.106 0.0090 0.028

—HQEEOQW >

*See text for definition of the approximations

Method E also provides accurate approximations over the wide range of ta-
bles considered here, but does less well in the lower tail of the distribution. Based
on average approximation errors, William’s (1976) corrected LR test (F) appears
to be the third best overall method, followed by Pearson’s X?2 (A). William’s
(1976) simpler corrected test (G) and the Cressie-Read (1984) statistic (C) are
consistently less accurate than methods A, D, E and F. While the Gart (1966)
approximations (H, I) do well in the lower tail, they are noticeably less accurate
otherwise. The poor performance of the LR statistic (B) agrees with the results
of other studies (e.g., Larntz (1978), McCullagh (1986)). The same general con-
clusions follow based on the magnitudes of the root mean square errors, although
the absolute rankings of the approximate methods vary somewhat.

For each table size and exact p-value range, Table 2 displays the average
approximation errors for the three tests with smallest absolute average errors.
With four exceptions, the generalized chi-square method (D) was always one of
the top three approximations. For 2 x 5, 3 X 4 and 4 x 4 tables with exact p-values
less than 0.15, the average errors for approximation D were —0.0012, 0.0021 and
0.0033, respectively. Similarly, the average error for 2 x 3 tables with exact p-
values in the range (0.15, 0.85) was —0.0468. In each case, these average errors
are comparable to those for the third best approximation.
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Table 2. Average differences (x10%) between approximate and exact p-values for the
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three best approximations at each table size and exact p-value range

Exact p-value range

Table
size All tables < 0.15 0.15-0.85 > 0.85

2x3 H 68 F -40 H 22 1 -53b
I 88 A 41 I 43 H -536
D -249 D 46 E -445 D 615
(n=384) (n=213) (n=132) (n= 39)
2x4 D -107 A -9 E -183 I 231
E -110 F -18 D -193 H -233
F -144 D -20 F -302 D -339
(n=693) (n= 409) (n =209) (n = T75)
2x5 D -83 F 3 E -170 1 ~70
E -86 A 9 D -176 H -T1
F -106 C -10 F -265 D -182
(n=2843) (n=480) (n=243) (n= 120)
3x3 D -58 D -5 E -116 H 7
E -60 E -6 D -119 1 9
F -80 A 7 F -184 D -121
(n = 848) (n = 454) (n =254) (n=140)
3x4 D -53 C -4 F -156 D -39
E -54 F -9 E -162 E —43
F 94 E 18 D -166 H 133
(n=1160) (n= 481) (n=357) (n= 322)
3x5 D -46 E 4 E -113 D -24
E -47 D 5 D -115 E -26
F -102 C -12 F -162 F -119
(n=2808) (n=239) (n= 271)  (n = 296)
4x4 D =27 C 1 E -133 E 2
E -28 . F -11 D -135 D 3
F -82 E 32 F -162 F -74
(n=623) (n=165) (n= 173) (n = 285)
4x5 D -127 C -7 E -214 D =37
E -128 E 23 D =276 E -39
F -210 D 24 F 337 F -132
(n = 175) (n=17) (n=68) (n=100)
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4. Discussion

Relative to the other methods studied, the generalized chi-square approxi-
mation (D) consistently resulted in estimated p-values which agree more closely
with the exact results. Both this method and its closest competitor, the location-
shifted chi-square approximation (E), are best suited for machine computation.
Although the improvement over the location-shifted chi-square method is rela-
tively modest, there is also little additional cost in obtaining a better approxi-
mation.

Based on the commonly used criteria, the sample sizes and configurations
used in this study involve “small” expected counts. Of the 155 marginal total
configurations, 121 (78%) had 25% or more of the expected cell frequencies which
were less than 5. Even in this sparse data setting, it was possible to obtain -
relatively accurate approximations to the exact p-value. Although the Mehta and
Patel (1986) algorithm has greatly extended the capability for exact tests, the
extensive computing time requirements still necessitate the use of approximate
methods for tables with at least three rows and three columns.
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