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Abstract: Motivated by quantifying the monotonic relationship between gray mat-

ter (GM) volume and age in the older population, this study proposes a constrained

nonparametric estimation and statistical inference for the monotone mean function

of functional/longitudinal data. Under some mild conditions, we systematically

investigate the asymptotic properties of the proposed estimators, using a general

weighting scheme that includes an equal weight per observation (OBS) and an

equal weight per subject (SUBJ) as special cases. Most existing methods without

a structural constraint can handle sparse or dense data only. Thus, a subjective

choice between the two types may lead to erroneous conclusions from statistical

inferences. Our proposed method and theories adapt to sparse and dense cases on

a unified platform under a monotonic constraint. The asymptotic results enable us

to categorize functional/longitudinal data into three data types (i.e., sparse, dense,

and ultra–dense), based on the relative order of the number of repeated measure-

ments relative to the total number of subjects. Simulation studies are conducted

to examine the finite-sample performance of the estimating and statistical infer-

ence procedures. Our analysis of GM volume data, obtained from the Alzheimer’s

Disease Neuroimaging Initiative study, confirms the accuracy and rationality of the

constrained estimators in characterizing cerebellar GM volume with increasing age.

Key words and phrases: Asymptotic normality, isotone regression, kernel smooth-

ing, monotonicity constraint, nonparametric estimation, sparse and dense func-

tional/longitudinal data, weighting schemes.

1. Introduction

This study is motivated by an analysis of structural brain magnetic resonance

imaging (MRI) data extracted from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI). The ADNI is an ongoing public–private partnership that tests

whether genetic, structural, and functional neuroimaging and clinical data can

be combined to measure the progression of mild cognitive impairment and early

Alzheimer’s disease. Subjects in the ADNI have been recruited from over 50
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sites across the United States and Canada. Our problem of interest is to study

the effect of aging on the progression of Alzheimer’s disease. In general, aging

can be referred to as a progressive deterioration of physiological function, leading

to impairments in cognitive function and the ability to execute and learn new

movements. Recent methodological advances in MRI allow us to characterize

the structural changes that accompany the aging of a healthy brain, such as

changes in the volume of gray matter (GM). In addition to devastating cognitive

impairment, disorders of degenerative dementia such as Alzheimer’s disease are

characterized by accelerating cerebral atrophy. MRI is often used to differentiate

normal aging from the neurodegeneration evident in early Alzheimer’s disease.

These results all show that cerebellar GM volume decreases with increasing age

in elderly people (Henkenius et al. (2003); Hoogendam et al. (2012)), suggesting

a monotonic relationship between GM volume and age.

Functional/Longitudinal data analyses are applied widely in the biomedical,

psychometric, and environmental sciences (Fitzmaurice, Laird and Ware (2004);

Yao, Muller and Wang (2005); Wu and Zhang (2006); Wang, Chiou and Muller

(2016); Zhu et al. (2018)). In this type of analysis, subjects are measured re-

peatedly over time, and measurements from the same subject are usually highly

correlated. Let ni be the number of repeated measurements for subject i, and n

be the total number of subjects. The observations from each subject are assumed

to be noisy, discrete realizations of an underlying process {X(·)}, and are given

by

yij = Xi(sij) + σ(sij)εij for j = 1, . . . , ni; i = 1, . . . , n, (1.1)

where yij is the response variable of interest for subject i, measured at time

sij , Xi(·) denotes an independent realization of the underlying process {X(·)},
and εij is a random error with mean zero and variance one. Using a mixed

effects approach, we decompose Xi(sij) into an unknown population mean m(·) =

E{Xi(·)} and a subject-specific trajectory ηi(·), with mean zero and covariance

function γ(s, t) = cov{ηi(s), ηi(t)}. Then, we can rewrite (1.1) as

yij = m(sij) + ηi(sij) + σ(sij)εij for j = 1, . . . , ni; i = 1, . . . , n. (1.2)

Throughout the paper, the density f(s) of time points {sij} is defined on [0, 1].

Estimating the mean function m(·) is an important research topic in func-

tional/longitudinal data analysis. Almost all existing methods estimate a non-

parametric regression function without a structural constraint; see Li and Hs-

ing (2010), Kim and Zhao (2012), Zhang and Wang (2016), and the refer-

ences therein. For instance, local linear and polynomial methods are the most
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popular for an unconstrained nonparametric estimation of m(·) in the func-

tional/longitudinal data framework (Kim and Zhao (2012); Zhang and Wang

(2016)). However, the mean response function can be a monotonic function of s

in some cases. For example, as shown in Section 5, GM volume decreases after

age 40 (Henkenius et al. (2003)). The hippocampus volume decreases rapidly

for those suffering from Alzheimer’s disease (Dawson and Muller (2018)). To

the best of our knowledge, few studies have attempted to estimate the monotone

mean function for functional/longitudinal data.

However, there is a large amount of literature on estimating monotonic re-

gression functions for cross-sectional data. Please see Gijbels (2005), and the

references therein. For instance, Brunk (1955) proposed a modified maximum

likelihood estimator of m(s), although the estimator may not be smooth. Muker-

jee (1988) and Mammen (1991) proposed a smooth monotonic estimator of m(s),

and constrained smoothing spline methods have been proposed for estimating

m(s) (Ramsay (1988, 1998); Kelly and Rice (1990); Mammen and Thomas-Agnan

(1999); Mammen et al. (2001)). Hall and Huang (2001) proposed monotoniz-

ing general kernel-type estimators by tilting the empirical distribution. Dette,

Neumeyer and Pilz (2006) proposed a nonparametric estimate of the inverse of

a monotonic regression function, denoted as m−1(·), and then calculated its nu-

merical inversion.

The aim of this study is to develop a constrained nonparametric estimate

of m(·) under model (1.2) and three different types of {ni : i = 1, . . . , n} rel-

ative to n. Compared with the existing literature (Zhang and Wang (2016);

Gijbels (2005)), we make several important contributions. First, we construct

a constrained nonparametric estimator of monotone m(·), denoted as m̂I(·), for

functional/longitudinal data, based on local kernel methods. Moreover, under a

monotonicity constraint, we construct an asymptotic pointwise 1− α confidence

interval for the monotone mean function, without estimating the functions γ(s, s)

and σ2(s). Second, we establish a unified theory of m̂I(·) for all three relative

orders of {ni} to n under a general weighting scheme. This theory allows us to

define three types of functional/longitudinal data: sparse data, dense data, and

ultra-dense data. The type depends on whether m̂I(·) can achieve the root-n

convergence rate and have a negligible asymptotic bias. Our estimation and con-

fidence interval construction methods do not need to distinguish between sparse

and dense data; that is, we allow the magnitude of ni to vary freely, relative

to the sample size n. In contrast, most existing methods without a structural
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constraint can handle individual sampling design scenarios only (Yao, Muller and

Wang (2005); Hall, Muller and Wang (2006); Zhang and Chen (2007)). Third, we

consider two commonly used weighting schemes for unconstrained mean function

estimations, introduced by Zhang and Wang (2016), and compare them both the-

oretically and numerically in terms of estimation efficiency under the monotonic

constraint. Finally, we have developed companion software, called monfuncreg,

which is available at https://github.com/BIG-S2/monfuncreg.

The rest of this paper is organized as follows. We propose the nonparametric

estimating procedure for the monotone regression function m(·) in Section 2.1.

Section 2.2 shows the asymptotic properties of the estimators discussed in Sec-

tion 2.1. Section 2.3 presents an adaptive confidence interval for the constrained

nonparametric mean function. Section 3 describes our simulation studies, and

Section 4 conducts a real ADNI data analysis to show that the proposed nonpara-

metric estimators perform well and reasonably. Section 5 concludes the paper.

All assumptions are provided in the Appendix. All lemmas and detailed proofs

are deferred to the Supplementary Material.

2. Estimation Procedure and Theory

2.1. Monotone mean function estimation

We construct a constrained nonparametric estimator of m(·) in model (1.2),

as follows. Without loss of generality, we consider the case of isotonic (strictly

increasing) regression functions only. Let ∂u = d/du, Kd(·) and Kr(·) be kernel

functions, hd and hr be bandwidths, and Ka,h(v) = h−1Ka(v/h) be the rescaled

kernel function with bandwidth h, for a = d and r.

We start by reviewing several key ideas from Dette, Neumeyer and Pilz

(2006). Consider an independent and identically distributed (i.i.d.) sample of

N uniform random variables, say U1, . . . , UN ∼ U [0, 1]. If m(·) is a strictly

increasing function on [0, 1] with a positive derivative, then a density estimator

of m(U) for U ∼ U [0, 1] is
∑N

i=1Kd,hd
(m(Ui)−u)/N, which is also the estimator

of ∂u(m−1)(u)1(u ∈ [m(0),m(1)]), where 1(A) is an indicator function of event

A. Thus, as hd → 0 and Nhd →∞, a consistent estimate of m−1(t) is

N−1
∫ t

−∞

N∑
i=1

Kd,hd
(m(Ui)− u)du, for any point t ∈ (m(0),m(1)). (2.1)

Moreover, estimator (2.1) is a strictly increasing function, almost surely, when

N is sufficiently large (Dette, Neumeyer and Pilz (2006)).

https://github.com/BIG-S2/monfuncreg


MONOTONE NONPARAMETRIC REGRESSION 2233

To obtain an estimator of m−1(t) in (2.1), we need an unconstrained estima-

tor of m(t), that is, m̂(s) = β̂0, where

(β̂0, β̂1) = arg min
β0,β1

n∑
i=1

ωi

ni∑
j=1

{Yij − β0 − β1(sij − s)}2Kr,hr
(sij − s),

and ωi is a weight satisfying
∑n

i=1 niωi = 1. We consider two commonly used

weighting schemes: equal weight per observation (OBS) and equal weight per

subject (SUBJ) (Yao, Muller and Wang (2005); Li and Hsing (2010); Kim and

Zhao (2012); Zhang and Wang (2016)). Specifically, we set ωi = 1/(
∑n

i=1 ni) for

OBS, whereas we set ωi = 1/(nni) for SUBJ. Moreover, m̂(s) is a local linear

estimator ofm(·) (Li and Hsing (2010); Zhang and Wang (2016)). By substituting

m̂(s) into (2.1), we obtain

m̂−1I (t) = N−1
∫ t

−∞

N∑
i=1

Kd,hd

(
m̂

(
i

N

)
− u
)
du.

Our constrained estimator of m(s), denoted as m̂I(s), is then calculated using a

numerical inversion.

2.2. Theoretical results

In this subsection, we systematically investigate the asymptotic properties

of m̂I(s). Kd(v) and Kr(v) are symmetric kernels, with compact support [−1, 1],

and are twice continuously differentiable on [−1, 1]. For a specific kernel func-

tion K, we define κ2(K) = (1/2)
∫ 1
−1 u

2K(u)du. Let
d−→ denote the conver-

gence in distribution as n → ∞. We also define ṁ(s) = dm(s)/ds and m̈(s) =

d2m(s)/ds2. Following the arguments in Zhang and Wang (2016), we consider

three types of data, which vary according to the number of repeated measure-

ments {ni}:

(i) Sparse data: n̄/n1/4 → 0, with n̄ =
∑n

i=1 ni/n;

(ii) Dense data: n̄/n1/4 → C, with 0 < C <∞;

(iii) Ultra–dense data: n̄/n1/4 →∞.

To establish the asymptotic properties of general weighted estimators, we treat

ni and ωi as fixed quantities, while allowing them to vary with n. When ni is

random, the theory can be regarded as conditional on the value of ni.

Define

ΓA0 (t) :=

{∫
K2
r (u)du

}
γ(m−1(t),m−1(t)) + σ2(m−1(t))

{ṁ(m−1(t))}2f(m−1(t))
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and ΓB0 (t) :=
γ(m−1(t),m−1(t))

{ṁ(m−1(t))}2
.

The assumptions for the following theorem are provided in the Appendix. The

theorem is obtained by Lemmas 1 and 5, given in the Supplementary Material.

Theorem 1. Suppose that Assumptions (A)–(C) in the Appendix hold. In ad-

dition, assume

• (i) min[hr/(
∑n

j=1 ω
2
jnj), 1/{

∑n
j=1 ω

2
jnj(nj − 1)}]h6r → 0;

• (ii) hr
∑n

j=1 ω
2
jnj(nj − 1)/

∑n
j=1 ω

2
jnj → C0 ∈ [0,∞];

• (iii) Nhdh
2
r →∞;

• (v) m(s) is strictly increasing.

Then, for a fixed interior point t ∈ (m(0),m(1)) satisfying ṁ(m−1(t)) > 0, we

have

Γ(t)−1/2
{
m̂−1I (t)−m−1(t) + h2rκ2(Kr)

(
m̈

ṁ

)
(m−1(t))

}
d→ N(0, 1), (2.2)

where Γ(t) is equal to the sum of ΓA(t) = ΓA0 (t)(
∑n

j=1 ω
2
jnj)/hr and ΓB(t) =

ΓB0 (t)
∑n

j=1 ω
2
jnj(nj − 1).

Theorem 1 can be regarded as a generalization of Theorem 3.1 in Dette,

Neumeyer and Pilz (2006). Specifically, the asymptotic bias is the same as that

for cross-sectional studies (Dette, Neumeyer and Pilz (2006)), whereas the vari-

ance term Γ is more complex. Specifically, ΓA characterizes the variances of

all observations, and ΓB comes mainly from the correlations between repeated

measures across all subjects. Corollary 1 follows directly from Theorem 1.

Corollary 1. Suppose that the assumptions of Theorem 1 hold. Let t be a fixed

interior point in (m(0),m(1)) satisfying ṁ(m−1(t)) > 0.

(a) OBS: If min{nn̄hr, n(n̄)2/(n̄S2
− n̄)}h6r → 0 and hr(n̄S2

− n̄)/n̄→ C0 ∈
[0,∞], where n̄S2

=
∑n

i=1 n
2
i /n, then the asymptotic normality (2.2) holds with

Γ(t) for OBS, denoted as Γobs(t), equal to the sum of ΓAobs(t) and ΓBobs(t), given

by

ΓAobs(t) =
ΓA0 (t)

(nn̄hr)
and ΓBobs(t) =

(n̄S2
− n̄)

nn̄2
ΓB0 (t).

(b) SUBJ: If min{nn̄Hhr, n/(1 − 1/n̄H)}h6r → 0 and hr(n̄H − 1) → C0 ∈
[0,∞], where n̄H = (n−1

∑n
i=1 n

−1
i )−1, then the asymptotic normality (2.2) holds

with Γ(t) for SUBJ, denoted as Γsubj(t), equal to the sum of ΓAsubj(t) and ΓBsubj(t),
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given by

ΓAsubj(t) =
ΓA0 (t)

(nn̄Hhr)
and ΓBsubj(t) = n−1(1− n̄−1H )ΓB0 (t).

Three types of asymptotic normality emerge for the two schemes from Corol-

lary 1, depending on the order of n̄ and n̄H relative to that of n.

Corollary 2. Suppose that the assumptions of Theorem 1 hold.

(a) OBS: Assume lim supn n̄S2
/n̄2 <∞.

Case 1 (Sparse data) When n̄/n1/4 → 0 and hr � (nn̄)−1/5, we have√
nn̄hr

{
m̂−1I(OBS)(t)−m

−1(t) + h2rκ2(Kr)

(
m̈

ṁ

)
(m−1(t))

}
→d N(0,ΓA0 (t)).

Case 2 (Dense data) When n̄/n1/4 → C and hrn̄S2
/n̄ → C1, for 0 < C,

C1 <∞, we have√
nn̄2

n̄S2

{
m̂−1I(OBS)(t)−m

−1(t) + h2rκ2(Kr)

(
m̈

ṁ

)
(m−1(t))

}
→d N

(
0,

ΓA0 (t)

C1
+ ΓB0 (t)

)
.

Case 3 (Ultra-dense data) When n̄/n1/4 → ∞, hrn
1/4 → 0, and hrn̄ → ∞,

we have √
nn̄2

n̄S2

(
m̂−1I(OBS)(t)−m

−1(t)
)
→d N

(
0,ΓB0 (t)

)
.

(b) SUBJ: We can obtain similar asymptotic normality results corresponding

to sparse, dense, and ultra-dense data for m̂−1I(SUBJ)(t) by replacing n̄, n̄S2
/n̄, and

n̄2/n̄S2
in (a) with n̄H , n̄H , and 1, respectively.

Corollary 1 indicates that m̂−1I(OBS)(t) and m̂−1I(SUBJ)(t) have an identical

asymptotic bias. However, their asymptotic variances are different.

We observed from Corollary 2 that, for sparse data, ΓAobs and ΓAsubj dominate

ΓBobs and ΓBsubj , respectively, and we obtain ΓAobs ≤ ΓAsubj using arguments similar

to Corollary 3.3 in Zhang and Wang (2016). Thus, the OBS scheme achieves

a more efficient estimator of m−1(t) than the SUBJ scheme does. Intuitively,

for sparse data, the bandwidth satisfies n̄hr → 0 or n̄Hhr → 0. A special and

simple case is nihr → 0, for i = 1, . . . , n, where each subject contributes only one

observation for estimating m−1(t). That is, for a given t, the data for estimating

m−1(t) are i.i.d. Therefore, the OBS scheme, which assigns the same weight to

each observation, yields a more efficient estimator.
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In contrast, for ultra-dense data, ΓBobs and ΓBsubj dominate ΓAobs and ΓAsubj ,

respectively, and ΓBobs ≥ ΓBsubj . Thus, the SUBJ scheme is preferable to the OBS

scheme. The conclusions here are consistent with those of Zhang and Wang

(2016) for unconstrained nonparametric estimates of m(·) in model (1.2). In-

tuitively, for a given t, there exist subjects who contribute infinitely many ob-

servations to the estimation of m−1(t), because n̄hr → ∞ or n̄Hhr → ∞. The

observations from the same subject are correlated; thus, the covariances within

one subject tend to dominate the variances, and could have an undue influence

on the variance of m̂−1(t). The SUBJ scheme avoids this situation by assigning

the weight 1/ni to subject i and, thus, yields a more efficient estimator than

the OBS scheme does. Essentially, for ultra-dense data, the SUBJ scheme is

equivalent to the so-called “smooth-first-then-estimate” approach (Hall, Muller

and Wang (2006); Zhang and Chen (2007)), which first preprocesses the discrete

functional data for subject i (i = 1, . . . , n) using smoothing, and then adopts a

sample mean of the smoothed functional data.

Remark 1. The asymptotic normality for “sparse data” is consistent with Theo-

rem 3.1 in Dette, Neumeyer and Pilz (2006), which is established for independent

data. Moreover, the convergence rate of m̂−1I(OBS)(t) is (nn̄)2/5 or (nn̄H)2/5, and

both are of the order op(n
1/2).

Remark 2. The convergence rate of m̂−1I(OBS)(t) for both“dense data” and “ultra-

dense data” is Op(n
1/2). Furthermore, “ultra-dense data” fall within the para-

metric paradigm, where the limiting normal distribution has a zero mean.

Remark 3. An explicit partition of functional/longitudinal data can be con-

cluded from Corollary 2 based on the asymptotic properties of the proposed

monotonicity-constraint nonparametric regression. Specifically, the functional/

longitudinal data can be divided into three types: sparse data, dense data, and

ultra-dense data. The type is based on the relative order of n̄ and n̄H to n1/4

under the OBS or the SUBJ scheme, respectively. This partition is consistent

with that of Zhang and Wang (2016).

The functions m̂−1I and m−1N are strictly increasing, regardless of the mono-

tonicity of the “true” regression function m, for sufficiently large n and N . The

following theorem states that the corresponding inverse function m̂I of m̂−1I also

satisfies an asymptotic normal distribution. Its proof is similar to that of Theo-

rem 3.2 in Dette, Neumeyer and Pilz (2006) and, hence, is omitted here.

Theorem 2. Suppose that the assumptions of Theorem 1 hold. For a fixed in-
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terior point s ∈ (0, 1), with ṁ(s) > 0, we have

Γ∗(s)
−1/2 {m̂I(s)−m(s)− h2rκ2(Kr)m̈(s)

} d→ N(0, 1),

where Γ∗ is given by

Γ∗(s) = h−1r

n∑
j=1

(ω2
jnj)

{∫
K2
r (u)du

}
{γ(s, s) + σ2(s)}

f(s)
+

n∑
j=1

ω2
jnj(nj−1)γ(s, s).

We can see that our proposed constrained estimator and the unconstrained

estimator of Zhang and Wang (2016) have the same asymptotic distribution.

Similarly to Corollary 2, we can show the following results for m̂I(OBS) and

m̂I(SUBJ).

Corollary 3. Suppose that the assumptions of Theorem 1 hold and s is a fixed

interior point in (0, 1) satisfying ṁ(s) > 0.

(a) OBS: Assume lim supn n̄S2
/n̄2 <∞.

Case 1 (Sparse data) When n̄/n1/4 → 0 and hr � (nn̄)−1/5, we have√
nn̄hr

{
m̂I(OBS)(s)−m(s)− h2rκ2(Kr)m̈(s)

}
→d N

(
0,

{∫
K2
r (u)du

}
{γ(s, s) + σ2(s)}

f(s)

)
.

Case 2 (Dense data) When n̄/n1/4 → C and hrn̄S2
/n̄ → C1, where 0 <

C,C1 <∞, we have√
nn̄2

n̄S2

{
m̂I(OBS)(s)−m(s)− h2rκ2(Kr)m̈(s)

}
→d N

(
0,

{∫
K2
r (u)du

}
{γ(s, s) + σ2(s)}
{C1f(s)}

+ γ(s, s)

)
.

Case 3 (Ultra-dense data) When n̄/n1/4 → ∞, hrn
1/4 → 0, and hrn̄ → ∞,

we have √
nn̄2

n̄S2

(
m̂I(OBS)(s)−m(s)

)
→d N

(
0, γ(s, s)

)
.

(b) SUBJ: We can obtain similar asymptotic normality results corresponding

to sparse, dense, and ultra-dense data for m̂I(SUBJ)(s) by replacing n̄, n̄S2
/n̄, and

n̄2/n̄S2
in (a) with n̄H , n̄H , and 1, respectively.

Remark 4. An important implication of Corollary 3 is that the partition of

functional/longitudinal data for estimating m(·) is the same as that discussed

in Remark 3. Consistent with the results of m̂−1I(OBS) for sparse data, OBS out-

performs SUBJ by achieving a smaller asymptotic variance of m̂I(OBS)(s). For
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ultra-dense data, however, SUBJ outperforms OBS.

Remark 5. Corollary 3 indicates that the asymptotic normality results corre-

sponding to the sparse, dense, or ultra-dense data vary significantly under the

monotonicity constraint. For instance, their corresponding asymptotic variances

are different. To construct a confidence interval, we may need to estimate σ2(s)

and γ(s, s) for each of the three types. Next, we show how to construct an

adaptive confidence interval for all three data types.

2.3. Adaptive confidence interval

In this subsection, we construct an adaptive confidence interval for a mono-

tone mean function, that can be adapted to the three data types (Kim and Zhao

(2012)). Recall that the asymptotic distribution of the constrained mean func-

tion estimator is the same as that of the unconstrained one. Specifically, for s

a fixed interior point in (0, 1) satisfying ṁ(s) > 0, we estimate the variance of

m̂I(s) using

U2
n(s) = H−2n (s)

n∑
i=1

ωi ni∑
j=1

{yij − m̂(sij)}Khr
(s− sij)

2

,

where Hn(s) =
∑n

i=1 ωi
∑ni

j=1Khr
(s− sij) . We define

U
2
n(s) = H−2n (s)

n∑
i=1

ωi ni∑
j=1

{yij −m(sij)}Khr
(s− sij)

2

.

It follows from Lemma 3 in the Supplementary Material that U2
n(s) = U

2
n(s){1+

op(1)}. After some calculation, we have U
2
n(s) = Γ∗(s){1 + op(1)}. Thus, it

follows from Slutsky’s theorem that we have

Un(s)−1
{
m̂I(s)−m(s)− h2rκ2(Kr)m̈(s)

} d→ N(0, 1). (2.3)

Therefore, (2.3) can be used to construct a unified asymptotic pointwise 1 − α
confidence interval for the monotone mean function m(s), which can then be

adapted for each type of data.

Remark 6. We can also use

Un(s)−1
{
m̂(s)−m(s)− h2rκ2(Kr)m̈(s)

} d→ N(0, 1) (2.4)

to construct a good asymptotic pointwise 1−α confidence interval for the mean

function m(s) (Zhang and Wang (2016)) using the unconstrained estimator.

However, m̂(s) does not satisfy the monotonic constraint. Thus, we show in
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the simulation studies that the standard deviation of m̂I(s) may be smaller than

that of m̂(s) in the finite-sample performance. If true, the average coverage rate

of the 1−α confidence interval based on (2.3) may be better than that based on

(2.4) in terms of the finite-sample performance.

Remark 7. Define

U2
In(s) =

1

H2
n(s)

n∑
i=1

ωi ni∑
j=1

{yij − m̂I(sij)}Khr
(s− sij)

2

.

We can also show that

UIn(s)−1
{
m̂I(s)−m(s)− h2rκ2(Kr)m̈(s)

} d→ N(0, 1) (2.5)

holds as n → ∞. Similarly, we may use (2.5) to construct an asymptotic point-

wise 1− α confidence interval for m(s). Because the unconstrained estimator is

constructed by minimizing the difference between the responses yij and the esti-

mated mean values m̂(sij), U
2
n(s) may be slightly smaller than U2

In(s). Thus, the

average length of the confidence interval based on (2.3) may be slightly shorter

than that based on (2.5), in which case, the confidence interval based on (2.3)

may be a better one.

3. Simulation Studies

We carried out the following simulation studies to examine the finite-sample

performance of the proposed estimation method. The data were simulated ac-

cording to

yij = m(sij) +

3∑
k=1

αikΦ(sij) + σεij , for j = 1, . . . , ni; i = 1, . . . , n,

where m(s) = sin(s), for s ∈ [0, 1], αik ∼ N(0, ωk), and εij is i.i.d. Let Φ1(s) = 1,

Φ2(s) =
√

2 sin(2πs), Φ3(s) =
√

2 cos(2πs), (ω1, ω2, ω3) = (0.6, 0.3, 0.1), and n =

150. The design points sij were uniformly simulated on [0, 1]. Two distributions

of εij were considered: N(0, 0.5), and a T distribution with three degrees of

freedom. For each distribution, we considered the following three cases for the

vector n = (n1, . . . , nn)T :

(Case 1) n1 : ni ∼ U [{1, 2, . . . , 5}], (Case 2) n2 : ni ∼ U
[{

n

10
, . . . ,

n

5

}]
,

(Case 3) n3 : ni ∼ U
[{

n

3
, . . . ,

2n

3

}]
,
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where U [D ] denotes a discrete uniform distribution on a finite set D . Here, n1

can be regarded as the case of sparse data, and n3 denotes cases of ultra-dense

data. For each case, the simulation was repeated Q = 500 times. We used the

commonly used Gaussian kernel function Kr(u) = Kg(u) = φ(x), where φ(x)

is the standard normal density. Let S = {sij , j = 1, . . . , ni; i = 1, . . . , n}. We

followed Silverman’s rule of thumb to choose the bandwidth parameters by setting

hr = 1.06(
∑n

i=1 ni)
−1/5 min{σ̂S , (S[0.75]−S[0.25])/1.34}, where σ̂S is the standard

deviation of S, and S[0.25] and S[0.25] are the 25% and 75% sample quantiles of

S, respectively. We set hd = h3r/4 (Dette, Neumeyer and Pilz (2006)). The N

used to estimate m−1(t) is set to 500.

We compared our proposed estimator with the unconstrained estimator of

(Zhang and Wang (2016)). Let Sl = 0.04 + l × 0.01, for l = 1, . . . , E = 91. We

calculated the bias and standard deviation (SD) at each of the 91 points {Sl},
based on 500 replications, to obtain the average bias and SD. Here, “SD” can be

viewed as the true standard deviation of the resulting estimates and, thus, can

be used to measure the efficiency of the methods. We define the empirical mean

integrated squared error (EMISE) and empirical mean supremum absolute error

(EMSAE) as follows:

EMISE(m̂I) =

Q∑
q=1

E∑
l=1

{m̂(q)
I (Sl)−m(Sl)}2

(QE)
,

EMSAE(m̂I) =

Q∑
q=1

maxl |m̂
(q)
I (Sl)−m(Sl)|
Q

,

where m̂
(q)
I (·) is the estimator of m(·) using the qth data set, for q = 1, . . . , Q. We

use the EMISE and EMSAE to measure the estimation accuracy and efficiency

of all estimates of m(·). Furthermore, we built confidence intervals based on

(2.3) and (2.4), and measured their accuracy by using the average empirical

coverage probability (AECP) and average length (AL) of the confidence intervals.

For each Sl and the given nominal level 95%, we built a confidence interval for

m(Sl) for each data set, and then calculated the empirical coverage probabilities

and average lengths based on 500 replications. We then averaged the empirical

coverage probabilities and lengths across all 91 points Sl.

Table 1 presents the simulation results. We have three important observa-

tions. First, our constrained estimator is more efficient and accurate than the

unconstrained estimator. Second, the confidence intervals of our constrained

estimator have the same width, but obviously better coverage probabilities com-
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Table 1. The Bias, SD, EMISE, EMSAE, AECP and AL for the unconstrained estimators
(UE) and the proposed estimators (PE) for either the OBS or the SUBJ scheme.

N(0, 0.5) T(3)
Scheme Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

UE OBS Bias −0.005 −0.005 0.002 −0.003 −0.002 −0.001
SD 0.133 0.092 0.086 0.196 0.114 0.095

EMISE 0.018 0.009 0.007 0.039 0.013 0.009
EMSAE 0.252 0.158 0.135 0.393 0.207 0.165

AECP 93.54 94.35 94.76 93.19 93.93 94.73
AL 0.499 0.360 0.337 0.712 0.427 0.366

SUBJ Bias −0.003 −0.006 0.002 0.007 −0.002 −0.001
SD 0.141 0.091 0.084 0.216 0.114 0.094

EMISE 0.020 0.008 0.007 0.048 0.013 0.009
EMSAE 0.279 0.156 0.133 0.448 0.208 0.165

AECP 93.29 94.57 94.85 93.54 93.92 94.78
AL 0.524 0.357 0.332 0.782 0.427 0.362

PE OBS Bias −0.005 −0.004 0.002 −0.003 −0.002 0.000
SD 0.119 0.089 0.085 0.156 0.104 0.091

EMISE 0.014 0.008 0.007 0.025 0.011 0.008
EMSAE 0.216 0.154 0.134 0.302 0.182 0.156

AECP 96.17 95.05 95.01 97.12 95.79 95.58
AL 0.499 0.360 0.337 0.712 0.427 0.366

SUBJ Bias −0.003 −0.005 0.002 0.006 −0.002 0.001
SD 0.124 0.088 0.083 0.164 0.103 0.090

EMISE 0.015 0.007 0.006 0.029 0.011 0.008
EMSAE 0.227 0.152 0.132 0.328 0.183 0.156

AECP 96.44 95.23 95.05 97.40 95.80 95.69
AL 0.524 0.357 0.332 0.782 0.427 0.362

pared with those of the unconstrained estimator. Third, compared with the

SUBJ scheme, the OBS scheme produces more efficient and accurate estimators

for sparse data and less efficient and accurate estimators for ultra-dense data, in

general. These conclusions hold even when the normal distribution assumption

of the random error ε is violated.

4. ADNI Real-Data Analysis

The structural brain MRI data and corresponding clinical and genetic data

from the baseline and follow-up observations were downloaded from the publicly

available ADNI database (http://adni.loni.ucla.edu/). The structural MRI

data were collected across a variety of 1.5 Tesla MRI scanners, with protocols

individualized for each scanner. The data include standard T1-weighted images

http://adni.loni.ucla.edu/


2242 CHEN ET AL.

obtained using volumetric three-dimensional sagittal MPRAGE (or equivalent)

protocols, with varying resolutions. The settings for the typical protocol were as

follows: repetition time = 2,400 ms, inversion time = 1,000 ms, flip angle = 8o,

and field of view = 24 cm, with a 256× 256× 170 acquisition matrix in the x−,

y−, and z−dimensions, yielding a voxel size of 1.25× 1.26× 1.2 mm3. The MRI

data were preprocessed by standard steps, including anterior commissure and

posterior commissure corrections, skull-stripping, cerebellum removal, intensity

inhomogeneity correction, segmentation, and registration (Shen and Davatzikos

(2004)). Automatic regional labeling was then carried out by labeling the tem-

plate, and then transferring the labels following the deformable registration of

the subject images. We were able to compute volumes for each region of interest

for each subject after labeling 93 regions of interest.

We wish to estimate the monotonic relationship between the mean of the

GM volume and age. The ADNI data set considered here includes 562 sub-

jects with longitudinal measurements of GM volumes. Among them, 39 subjects

have one observation, 56 subjects have two observations, 117 subjects have three

observations, 255 subjects have four observations, 88 subjects have five obser-

vations, and seven subjects have six observations. We scaled the age sij to

{sij −mins}/(maxs−mins) ∈ [0, 1], where sij denotes the jth observation time

point (age) for the ith subject, and mins and maxs denote the minimum and

the maximum values of {sij , j = 1, . . . , ni; i = 1, . . . , 562}, respectively. We stan-

dardized the GM volume yij to (yij− ȳ)/sy, where yij denotes the GM volume for

the ith subject, measured at the jth time point, and ȳ and sy denote the sample

mean and sample standard deviation for {yij , j = 1, . . . , ni; i = 1, . . . , 562}, re-

spectively. The longitudinal trajectories of the standard GM volumes at different

scaled ages are shown in Figure 1 (A).

Figure 1 (A) and Figure 2 (A) and (B) show that GM volume tends to

decrease as age increases, at the individual level, indicating that the proposed

constrained estimation method may be a good choice for establishing such a

monotonic relationship. In contrast, the local linear regression method (Zhang

and Wang (2016)) cannot automatically impose a monotonic relationship be-

tween age and GM volume. Inspecting Figure 1 (A), Figure 2 (A) and (B), and

Table 2 reveals that: (i) female subjects tend to have a lower GM volume than

male subjects do; (ii) the number of female subjects is higher than that of male

subjects, and the age of females corresponding to the first visiting time is younger

than that of males before 63 years old; and (iii) the number of male subjects is

higher than that of female subjects around age 63. This characteristic of the data
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Figure 1. ADNI data analysis. Panel (A) is the standardized volume of gray matter
versus scaled age, where thin denotes male and bold denotes female. Panel (B) shows the
unconstrained estimators m̂(OBS)(s) and the corresponding lower and upper bounds of
the 95% confidence intervals (solid). Those for the unconstrained estimators m̂(SUBJ)(s)
and the constrained estimators m̂I(OBS)(s) and m̂I(SUBJ)(s) are dashed, dotted, and
dot-dash, respectively.

Table 2. ADNI data analysis: Demographic information for subjects. “Number of Subj”
means the number of subjects with the age of first visit in a certain range, “Average
Visit” is the average number of visits for the subjects in a certain range.

Age range (years) [55, 63] (63, 73] (73, 83] (83, 93]
Number of Subj 32 174 281 75
Male/Female 14/18 102/72 162/119 50/25
Average Visit 3.6875 3.5862 3.6192 3.2667

creates an illusion that the GM volume increases before age 63, and decreases

after age 63. Therefore, as shown in Figure 1 (B), the local linear method does

not ensure the monotonicity of the GM volume curve with a turning age around

0.22, which corresponds to a true age of around 63.

The unconstrained estimator m̂(s) yields a monotonically decreasing curve

based on male observations, as shown in Figure 2 (C), but it produces monoton-

ically increasing estimated curves before 63 years old, as shown in Figure 2 (D),
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Figure 2. ADNI data analysis. Panels (A) and (B) are the standardized volume of
gray matter versus scaled age for male and female subjects, respectively. The bold
lines are subjects with scaled ages of first visits less than 0.22. Panels (C) and (D),
for male and female, respectively, show the unconstrained OBS estimators and their
corresponding lower and upper bounds of the 95% confidence intervals (solid). Those
for the unconstrained estimators m̂(SUBJ)(s) and the constrained estimators m̂I(OBS)(s)
and m̂I(SUBJ)(s) are dashed, dotted, and dot-dash, respectively.
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based on the female observations. This is caused by possible data sparsity and

biased data sampling for earlier ages. Specifically, only 32 subjects have a scaled

age of the first visit less than 63 years old, including 14 males and 18 females

(Table 2). Although the GM volume tends to decrease for each female subject,

as shown in Figure 2 (B), it shows an opposite trend before 63 years old, caused

by biased sampling. That is, subjects who are much younger than 63 have much

smaller GM volumes than subjects aged about 63. In contrast, our proposed

method m̂I(s) produces more reasonable results based on the male observations,

female observations, and all observations.

5. Discussion

We have estimated a mean regression function with a monotonicity con-

straint for functional/longitudinal data. We proposed a two-stage estimating

procedure. The first stage obtains a local linear estimator of the mean func-

tion, without a constraint. The second stage refines the unconstrained estimator

based on Equation (2.1), and then performs a numerical inversion. The theo-

retical results, simulations, and real-data analysis confirm the good performance

of our proposed estimating procedure. The asymptotic normality properties are

consistent with those of the unconstrained estimator (i.e., the local linear estima-

tor). However, when the true mean regression function is known to be monotone,

our proposed method can take the monotonicity constraint into account. Thus,

more information is incorporated, making the proposed estimator more efficient

and accurate than the local linear estimator in terms of the finite-sample perfor-

mance. Furthermore, we compare two commonly used weighting schemes (OBS

and SUBJ; see Zhang and Wang (2016)), both theoretically and numerically, for

our proposed estimators.

Theorem 1 shows that the correlated structure from the same subject plays

a key role in the asymptotic variance of the asymptotic distribution. However,

our estimating procedure does not take into account such correlation. In the first

estimating stage, we can use the idea in Chen et al. (2011); Chen, Tang and Gao

(2018) to incorporate the correlation. That is, we can regress the error on its

predecessors and implement the local linear procedure based on the prediction

error. In practice, we can test the monotonicity assumption (Ghosal, Sen and van

der Vaart (2000); Wang and Meyer (2011); Ahkim, Gijbels and Verhasselt (2017))

before performing our proposed method. Recently, Dawson and Muller (2018)

developed an estimation based on conditional quantile trajectories under the
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monotonicity constraint of the underlying processes. The proposed estimation

method can be extended to estimate conditional quantile functions with the

monotonicity constraint. However, these topics are beyond the scope of this

study, and thus are left to future research.

Supplementary Material

All lemmas and technical proofs are included in the Supplementary Material.
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Appendix

Assumptions

We present all the assumptions as follows.

(A) Kernel function.

Kr(·) is assumed to be a symmetric probability density function on [−1, 1]

and Kr is twice continuously differentiable on its support such that

κ2(Kr) <∞,
∫
K2
r (u)du <∞.

The assumptions on Kd are the same as those on Kr.

(B) Time points and true functions

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads /how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads /how_to_apply/ADNI_Acknowledgement_List.pdf
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(B1) {sij : i = 1, . . . , n; j = 1, . . . , ni} are i.i.d. copies of a random variable

S defined on [0, 1]. The density f(·) of S is bounded from below and above

with 0 < mf ≤ mins∈[0,1] f(s) ≤ maxs∈[0,1] f(s) ≤Mf <∞ and f̈(s), the second

derivative of f(·), is continuous on [0, 1].

(B2) m̈(s), the second derivative of m(s), is continuous on [0, 1].

(B3) σ̈(s), the second derivative of σ(·), is continuous on [0, 1].

(B4) {ηi(·)}i are i.i.d. copies of η(·) and {εij}ij are i.i.d. copies of ε. Fur-

thermore, E(ε) = 0, E(ε2) = 1.

(B5) X is independent of S and ε is independent of S and η.

(B6) ∂2γ(s, t)/∂s2, ∂2γ(s, t)/∂s∂t and ∂2γ(s, t)/∂t2 are continuous on [0, 1]2.

(C) Bandwidths and moments

(C1) hr → 0, hd → 0, h2r/hd → 0, hr/hd →∞, hd/ log(n)2 = O(1),

h2dh
−8
r max

{∑n
i=1 niω

2
i /hr,

∑n
i=1 ω

2
i ni(ni − 1)

}
→∞,

log(n)2h−2r h−1d max{
∑n

i=1 niω
2
i /hr,

∑n
i=1 ω

2
i ni(ni − 1)} → 0,∑n

j=1 ω
4
j (n

4
j + n3j/hd + n2j/h

2
d + nj/h

3
d){
∑n

j=1 ω
2
jnj/hr +

∑n
j=1 ω

2
jnj(nj −

1)}−2 → 0.

(C2) E(ε5) <∞, E sups∈[0,1] η
5(s) <∞, and Eη5(s) is continuous on [0, 1].

(C3)

n

{
n∑
i=1

niω
2
i hr +

n∑
i=1

ni(ni − 1)ω2
i h

2
r

}{
log(n)

n

}−3/5
→∞.

(C4) supn(nmaxi niωi) ≤ B <∞.
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