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Abstract: This study develops a scalable matrix-free h-likelihood method for spatial-

temporal Gaussian state-space models. The state vectors are constructed in such a

way that they follow spatial-temporal Gaussian autoregressions that are consistent

with the conditional formulation of auto-normal spatial fields. The proposed h-

likelihood method provides the same inferences as those obtained from the Kalman

filter and residual maximum likelihood analyses. However, for data from a large

number of spatial sites, our method has significant computational advantages. Fur-

thermore, we describe inferences in small time steps and indicate how the proposed

method can be adapted to other complex spatial-temporal dynamical models based

on stochastic partial differential equations. The proposed method applies to data

with regularly or irregularly sampled spatial locations. Lastly, we illustrate our

method by means of a simulation study and a data example on atmospheric con-

centrations of total nitrate across eastern North America.
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1. Introduction

This study develops statistical inferences for spatial-temporal Gaussian state-

space models. We focus on dynamical models that are consistent with the condi-

tional formulation of lattice-based Gaussian random fields and that can be used as

building blocks to develop subsequent and more complex spatial-temporal infer-

ences. Following Besag (1974, 1986), Künsch (1987), and Cressie (1993), among

others, an extensive body of literature has been developed on the conditional

modeling of spatial variables. In a spatial setting, conditional modeling gives rise

to sparse dependence structures and swift statistical computations. In contrast,

the aforementioned extensions to spatial-temporal settings require the exponen-

tial of the negative of the spatial precision matrix to define temporal dependence,

which destroys sparse structures and presents computational challenges. For ex-
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ample, traditional time-series methods used for the estimation and conditional

simulation of state variables, such as Kalman filtering (Kalman (1960); Kalman

and Bucy (1961)), work well for data with small to moderately large spatial loca-

tions. However, for data from a large number of spatial locations, implementing

Kalman filtering is not possible without reducing the number of dimensions or re-

placing certain spatial covariance matrices with sample versions constructed from

ensembles of stochastic simulations; see Mardia et al. (1998), Wikle and Cressie

(1999) and Evensen (1994, 2009). Whereas dimension reductions and ensembles

of stochastic simulations can result in a loss of information, parameter estima-

tions, conditional simulations, and log-likelihood computations introduce further

challenges, because they require evaluating the square root or the determinant

of large covariance matrices.

As an alternative, we draw upon the works of Lee and Nelder (1996, 2001)

and Dutta and Mondal (2015, 2016) to develop a scalable matrix-free h-likelihood

method that yields the same inferences obtained from Kalman filtering and

residual maximum likelihood (REML) analyses. The h-likelihood method is

faster than the iteratively nested Laplacian (and related) approximations of

Rue, Martino and Chopin (2009) and Lindgren, Rue and Lindström (2011),

as shown explicitly and numerically for the spatial case in Dutta and Mondal

(2015, 2016). Furthermore, the h-likelihood method explains why Kalman fil-

tering suffers from computational challenges and resolves the inferential chal-

lenges discussed in Sigrist, Künsch and Stahel (2015). The novel elements of

the method include how we represent a spatial-temporal state-space model as

a linear regression model and how the estimations employ matrix-free compu-

tations. These computations include the following: (i) an adaptation of the

two-dimensional discrete cosine transformation that arises in the spectral de-

composition of spatial-temporal autoregressions and that allows fast matrix-free

matrix-vector multiplications; (ii) a preconditioned matrix-free scalable Lanczos

algorithm that solves nonsparse matrix equations; (iii) a matrix-free Hutchinson

trace estimator that stochastically approximates the trace of a matrix; (iv) a

robust matrix-free trust region method that solves the REML score equations;

and (v) a stochastic approximation of the differences in log-REML functions.

The past two decades have witnessed significant advances in general theory

and applications of continuum spatial-temporal dynamical processes. Several

noteworthy works on dynamical models provide different perspectives on the sta-

tistical analyses, including those of Brown et al. (2000), Brix and Diggle (2001),

Cressie and Wikle (2011) and Sigrist, Künsch and Stahel (2015). Thus, as a sec-
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ond development, we show that the spatial-temporal Gaussian autoregressions

and matrix-free method for inferences presented here can be adapted to and em-

bodied in the above-mentioned research. To this end, we also describe inferences

at small time steps, discuss how the proposed method applies to spatial-temporal

models based on stochastic partial differential equations (SPDEs), such as advec-

tion diffusions, and outline an extension to lattice-based dynamical models that

are consistent with fractional and Matérn spatial fields. We illustrate our method

by means of a simulation study and analyze two data sets. The first contains

monthly data on soil moisture content across North America (see Supplementary

Material), and the second contains data on atmospheric concentrations of total

nitrate across eastern North America (Section 6.2).

2. Spatial-temporal Models

2.1. A class of spatial-temporal dynamical models

Let ψ(t) be a stationary spatial-temporal Gaussian process on the two-

dimensional integer lattice Z2 at time t = 0, 1, . . . that evolves from the con-

tinuous-time dynamical model

dψ(t) +Bψ(t)dt = dz(t). (2.1)

In equation (2.1), B is a suitable infinite-dimensional normal matrix, and z(t)

represents an infinite-dimensional vector of independent Brownian motions with

mean zero and variance τ2. The matrix B determines how the instantaneous

change in a spatial location depends on the current values at that location and

the surrounding spatial locations. The solution ψt, for discrete time t = 1, 2, . . . ,

is

ψt = exp

{
−(B +BT )

2

}
ψt−1 + νt, (2.2)

where νt is an infinite-dimensional Gaussian vector with mean zero and covari-

ance matrix τ2(B + BT )−1[I − exp{−(B + BT )}]. Furthermore, it follows that

components of ψt are Gaussian with mean zero and have the infinite-dimensional

covariance matrix τ2(B +BT )−1. Let

C = τ−2(B +BT ), V = C−1{I − exp(−λ0C)}, λ0 = τ2.

We focus on spatial-temporal lattice processes of the form (2.1)–(2.2), follow-

ing Besag (1977). Besag (1977) noted that there is no loss in the distributional

properties of ψt as a result of replacing B in equation (2.1) with (B + BT )/2.

Furthermore, there is a one-to-one correspondence between the inverse covari-
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ance matrix (or precision matrix) C and the conditional probability structures

of ψt; see, for example Besag (1974) and Besag and Kooperberg (1995). Thus,

choices of C made by specifying different sets of spatial conditional probability

structures yield different spatial-temporal Gaussian lattice processes ψt. For ex-

ample, consider the Gaussian conditional autoregression ψt,x, for x ∈ Z2, with a

conditional mean and variance structure of

E{ψt,x | ψt,x′ , x′ 6= x} =
∑

βx′ψt,x−x′ and var {ψt,x | ψt,x′ , x′ 6= x} = σ2

respectively, where the real coefficients βx are nonzero only on a finite set N ,

such that β0 = 0, βx = β−x, and
∑

x βx cos(ωTx) < 1, for ω ∈ (−π, π]2. The set

N defines the neighbors of the lattice point 0, and two lattice points x and x′

are said to be neighbors (written as x ∼ x′) if x− x′ belongs to N . The matrix

C is then specified by

Cx,x = σ−2

(
1−

∑
x

βx

)
, Cx,x′ = −σ−2βx−x′ .

Equation (2.2) together with this choice of C provides a spatial-temporal Gaus-

sian lattice model parametrized by σ2 and βx, x ∈ N , that is consistent with the

lattice-based conditional formulation of spatial fields.

The interpretation of the above discrete-time dynamical model and its pa-

rameters is straightforward. The parameters βx, x ∈ N control the spatial de-

pendence. In fact, βx−x′ is the partial correlation coefficient between ψt,x and

ψt,x′ for x 6= x′ and t. The conditional mean and variance structure suggest that,

for any time point t, the conditional dependence of ψt,x is linear on its surround-

ing values, and that the fluctuation around the conditional mean is relatively

constant. The parameter λ0 controls the strength of the temporal dependence

between ψt and ψt+1. Furthermore, ψt+1 depends linearly on its own previous

value ψt through the matrix exp(−λ0C/2). This dependence generalizes the no-

tion of the correlation parameter of an autoregressive time series of order one.

In particular, all eigenvalues of exp(−λ0C/2) lie in (0, 1], suggesting that we are

focusing on the positive dependence between ψt and ψt+1.

To see how different choices of N lead to different spatial-temporal dynam-

ical models, we consider two examples. In the first example, we take N =

{(0,±1), (±1, 0)}. This choice yields the first neighborhood-order spatial-temporal

autoregression with

E{ψt,k,l | ψt,k′,l′ , (k
′, l′) 6= (k, l)} = β1,0(ψt,k−1,l+ψt,k+1,l)+β0,1(ψt,k,l−1 +ψt,k,l+1)

and
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var {ψt,k,l | ψt,k′,l′ , (k
′, l′) 6= (k, l)} = σ2.

We also need |β1,0| + |β0,1| < 1/2 for the nonnegative definiteness of the matrix

C. In the second example, we consider N = {(0,±1), (±1, 0), (±1,±1)}. This

choice results in the second neighborhood-order spatial-temporal autoregression

with E{ψt,k,l | ψt,k′,l′ , (k
′, l′) 6= (k, l)} equal to

β1,0(ψt,k−1,l + ψt,k+1,l) + β0,1(ψt,k,l−1 + ψt,k,l+1)

+β1,−1(ψt,k−1,l+1 + ψt,k+1,l−1) + β1,1(ψt,k−1,l−1 + ψt,k+1,l+1)

and

var {ψt,k,l | ψt,k′,l′ , (k
′, l′) 6= (k, l)} = σ2.

The parameter values must ensure that C is nonnegative definite, requiring a

stringent sufficient condition such as |β0,1|+ |β1,0|+ |β1,−1|+ |β1,1| < 1/2. Higher

neighborhood-order versions, involving more neighbors, are constructed in a sim-

ilar fashion.

In what follows, we work with the matrix C that arises in the first neighborhood-

order symmetric spatial-temporal Gaussian autoregressions. Specifically, for

k, l ∈ Z, we assume that

E{ψt,k,l | ψt,k′,l′ , (k
′, l′) 6= (k, l)} = β(ψt,k−1,l + ψt,k+1,l + ψt,k,l−1 + ψt,k,l+1),

where 0 < β < 1/4 and

var {ψt,k,l | ψt,k′,l′ , (k
′, l′) 6= (k, l)} = σ2.

Whereas λ0 controls the strength of the temporal dependence, the parameter β

takes into account the spatial dependence. When β is close to 1/4, the spatial

correlation decays very slowly and roughly logarithmically, as shown in Besag

(1981). This is in contrast to the geometric rate of decay of the temporal autore-

gression.

Inferences for higher neighborhood-order spatial-temporal autoregressions

and lattice-based fractional and Matérn dynamical systems are discussed in the

Supplemental Material.

2.2. Restrictions to finite rectangular arrays

Practical applications of spatial-temporal Gaussian autoregressions often

involve random variables on a finite regular lattice. Examples include brain-

imaging, where sites represent pixels (or voxels), and satellite imaging, where

sites represent approximate rectangular areas. Furthermore, when sites are ir-

regularly distributed, it is often possible to embed the spatial locations in a
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fine-scale rectangular lattice, treating unobserved lattice cells as missing data.

Thus, in what follows, we consider a finite restriction of ψt on a two-dimensional

r × c regular lattice, with n = rc. However, to ensure nonnegative definiteness

and the sparsity of the precision matrix, a finite restriction of ψt requires suitable

boundary approximations. Here, we follow the boundary conditions suggested

in Besag and Higdon (1999), Dutta and Mondal (2015), and Mondal (2018).

Let Wm denote an m×m tridiagonal matrix with nonzero off-diagonal elements

Wm,i,i±1 = −1 and Wm,i,i = −
∑

j 6=iWm,i,j . Then, the restriction of C on a

two-dimensional r × c regular lattice takes the form

C = λ1
(Ic ⊗Wr +Wc ⊗ Ir)

2
+ λ2In, λ1 > 0, λ0 > 0, (2.3)

with precision parameters λ1 and λ2, where

β =
λ1

(4λ1 + 2λ2)
, σ2 =

1

(4λ1 + 2λ2)
.

Stationary lattice processes are studied using elegant spectral representa-

tions, and the finite-dimensional matrix C in (2.3) also has an elegant and an-

alytically known spectral decomposition. Let Pm denote the m × m matrix

corresponding to the discrete cosine transformation with entries

pm,1,j = m−1/2, pm,i,j =

(
2

m

)1/2

cos

{
π(i− 1)(j − 1/2)

m

}
,

for i = 2, . . . ,m and j = 1, . . . ,m. Suppose that Dk is a diagonal matrix, where

the ith diagonal entry is

dm,i = 2

[
1− cos

{
π(i− 1)

m

}]
.

It follows that P = Pc ⊗ Pr diagonalizes C and V . Specifically,

PCP T =
λ1(Ic ⊗Dr +Dc ⊗ Ir)

2
+ λ2I = Λ, PV P T = Λ−1(I − e−λ0Λ) = Λ1,

where Λ and Λ1 are both n × n diagonal matrices. The matrices P and P T

correspond to the two-dimensional discrete cosine transformation and its inverse

transformation, respectively. For any vector θ, matrix-vector multiplications of

Pθ and P Tθ require no storage of the matrices P and P T , respectively, and

only O(n log n) computations; see, for example Rao and Yip (2014), Frigo and

Johnson (2005), and the discussion in Dutta and Mondal (2016).

2.3. A state-space model

Let the response variable yt be observed at nt sampling locations and
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yt = Ftψt + εt, t = 1, 2, . . . , s. (2.4)

Assume that the latent state vector ψt obeys spatial-temporal autoregressions on

a fine r × c regular array on which the sampling locations are embedded. The

incidence (or averaging) matrix Ft is known, and indicates whether an observation

corresponds to a particular array cell. The vector Ftψt returns the latent spatial-

temporal variable values for the observed yt. The vector εt represents the residual

terms left unexplained by the variations in Ftψt, and its entries are assumed to

be independent and identically distributed (i.i.d.) Gaussian random variables

with mean zero and precision λ3. Furthermore, suppose that ψt evolves as in

(2.2) and (2.3), that is,

ψt = Gψt−1 + νt, G = exp

(
−λ0C

2

)
, (2.5)

where νt ∼ N(0, V ) with V = C−1{I − exp(−λ0C)} and C as in (2.3).

3. H-likelihood Estimation

3.1. Estimation of state vectors

Let yT = (yT

1 , . . . , y
T

s ), ψT = (ψT

1 , . . . , ψ
T

s ), and λ = (λ0, . . . , λ3)T . Denote

by n+ the total number of observations n1 + · · · + ns. For a fixed precision

parameter λ, the objective is to compute the best linear unbiased predictor of ψ

by maximizing the joint distribution of y and ψ. It follows from equation (2.5)

and the spectral decomposition of C that ψ is normally distributed with mean

zero and a precision matrix Γ, the spectral decomposition of which takes the form

Γ = RTMR. The ns × ns matrix R is a block diagonal with all n × n diagonal

blocks equal to P . The matrix M is a block tridiagonal matrix with blocks M(i,i)

(diagonal), M(i,i+1) (upper diagonal), and M(i−1,i) (lower diagonal), such that

M(1,1) = M(s,s) = Λ−1
1 , M(i,i) = Λ−1

1 (I + e−λ0Λ), i = 2, . . . , s− 1,

M(j,j+1) = M(k−1,k) = −e−λ0Λ/2Λ−1
1 , j = 1, . . . , s− 1, k = 2, . . . , s.

Therefore, all blocks in M are diagonal matrices. We rewrite equations (2.3)–

(2.5) as

yt = Ftψt + εt, 0 = Pψt + ηt, t = 1, 2, . . . , s,

where εts and ηts are independent random error vectors. Let εT = (εT1 , . . . , ε
T

s )

and ηT = (ηT

1 , . . . , η
T

s ). It follows immediately that ε ∼ N(0, λ−1
3 In+

) and η ∼
N(0,M−1). Next, let F be the n+ × ns rectangular block diagonal matrix with
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diagonal blocks F1, . . . , Fs, and assume that

u =

(
y

0

)
, X =

(
F

R

)
, ζ =

(
ε

η

)
, Q =

(
λ3In+ 0

0 M

)
.

The state-space model in equations (2.3)–(2.5) then becomes the linear regression

model

u = Xψ + ζ, (3.1)

where ζ ∼ N(0, Q−1). Following Lee and Nelder (1996, 2001), we can thus obtain

the best linear unbiased prediction of ψ by solving the generalized least squares

estimating equation

XTQXψ̂ = XTQu, (3.2)

which is equivalent to solving Aψ = b with A = XTQX and b = XTQu.

The matrix A is block tridiagonal. When A is tridiagonal, the solution to

the linear equation Aθ = b can be obtained using the forward-backward Thomas

algorithm, which is a simplified version of the Gaussian elimination method.

Thus, when A is block tridiagonal, the traditional backward-forward Kalman

filtering algorithm for solving Aθ = b can be viewed as an extension of the

Gaussian elimination method with blocks. However, unless nt = n and Ft =

In for all t, Kalman filtering requires computations of order O(n3s) and the

storage of O(n2s) variables. Thus, as n becomes large, Kalman filtering becomes

computationally challenging.

3.2. Estimation of the precision parameters

Let ψ̂ be the estimate of ψ from equation (3.2). The results of Harville (1977)

and Lee and Nelder (1996) imply that the log-residual likelihood function of λ

obtained from (3.1) is

2l(λ) = log |Q| − log |XTQX| − (u−Xψ̂)TQ(u−Xψ̂).

Let Qi = ∂Q/∂λi and Qij = ∂2Q/(∂λi∂λj), for i, j = 0, . . . , 3. Denote by

H = X(XTQX)−1XTQ the hat matrix of the regression in (3.1). Treating ψ̂ as

fixed, the score equations become(
1

2

)
{tr(Q−1Qi)− tr(HQ−1Qi)− (u−Xψ̂)TQi(u−Xψ̂)} = 0, (3.3)

for i = 0, . . . , 3. Furthermore, the second derivatives provide the information

matrix I with an (i, j)th entry, for i, j = 0, . . . , 3, equal to

I (i, j) =

(
1

2

)
tr(Q−1QiQ

−1Qj −HQ−1QiHQ
−1Qj +HQ−1Qij).
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The estimation follows an iterative algorithm. It starts with an initial value of

λ. It then computes ψ̂ in (3.2) and updates the estimate of λ by solving the

score equations in (3.3). The algorithm continues until successive estimates of λ

become sufficiently close.

4. Matrix-free Computation

We open with a brief discussion on the importance and necessity of matrix-

free methods. There is no denying that matrices and matrix notation are useful

for succinctly representing arrays of numbers and studying algebraic representa-

tions, including the properties of variances, covariances, and linear mixed models.

However, efficient numerical computations involving matrices (e.g., the multipli-

cation of two matrices) often require refined approaches and sophisticated algo-

rithms that minimize the complexity of the computations (e.g., the number of

elementary operations, such as additions and multiplications, of scalars necessary

to multiply two matrices) and the use of the computer memory. In Section 6, in

the simulation study, we take the size of the matrix A to be 163,840 by 163,840,

whereas in our applications, the size of the matrix A is 153,600 by 153,600 (for

the analysis of soil moisture data) and 333,312 by 333,312 (for the analysis of

atmospheric concentrations of total nitrate). The standard R or Matlab packages

cannot store matrices of these sizes. Thus, direct computations with such ma-

trices are not available. In contrast, the matrix-free algorithm presented in this

section only stores minimal relevant information, such as the analytically derived

nonzero diagonal entries of each block of the block tridiagonal matrix M , the data

vector y, the estimates for ψ and λ, and a few additional vectors of size ns. The

matrix-free algorithm reduces the memory requirement significantly from O(n2s)

to O(ns). All computations are performed using iterative methods and matrix-

vector multiplications (e.g., A times x) in a matrix-free way, that is, by storing a

few vectors. The complexity of these matrix-vector computations is O(ns log n),

whereas a direct matrix-vector multiplication has complexity O(n2s). We now

present a set of matrix-free methods for statistical inferences of the state-space

model defined in (2.3)–(2.5).

4.1. Lanczos algorithm for estimating state vectors

To solve Aψ = b in (3.2), we follow Paige and Saunders (1975, 1982) and

Dutta and Mondal (2015, 2016) and adapt a matrix-free scalable Lanczos algo-

rithm. Starting from u1 = b/‖b‖, the algorithm sequentially computes a set of
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orthonormal vectors u1, u2, . . . from the span of b, Ab,A2b, . . . At the ith itera-

tion, the Lanczos orthonormal vectors u1, . . . , ui reduce A to a partial tridiagonal

form AUi ≈ UiTi, where Ui = (u1, . . . , ui) and Ti is a suitable i×i positive-definite

tridiagonal matrix. As the algorithm progresses, the solution ψ is sequentially

updated by computing

Tiψ̃i = ‖b‖e1, ψi = Uiψ̃i, e1 = (1, 0, . . . , 0)T ,

which requires only a linear solution with the lower bidiagonal Cholesky de-

composition of Ti. The algorithm stops when the solution converges with suffi-

cient numerical accuracy. The multiplication by A is the only large-scale linear

operation, which we compute using the discrete cosine transformation and its

inverse transformation, and requires only O(ns log n) operations. Greenbaum

and Strakos (1992) proved that, for a well-conditioned matrix A (i.e., one with

a bounded conditioned number), the Lanczos algorithm converges geometrically.

Thus, the number of iterations required by the algorithm remains nearly constant

or does not grow more than O(log(ns)). When λ > 0, the algorithm requires

only O(ns log(ns) log n) operations to solve (3.2).

4.2. Stochastic trace approximation

To solve (3.3), we need to compute the trace terms tr(Q−1Qi) and tr((XTQ

X)−1XTQiX), which can be difficult. Here we follow the stochastic approxi-

mations derived in Hutchinson (1990). Let zk, for k = 1, 2, . . . ,K, be i.i.d..

Rademacher random variables, where K is an integer of order at most log(ns).

Assume that

gi(λ) = (2K)−1
K∑
k=1

zTk (Q−1Qi −HQ−1Qi)zk − 2−1(u−Xψ̂)TQi(u−Xψ̂),

for i = 0, . . . , 3. We approximate (3.3) using the unbiased estimating equations

gi(λ) = 0, i = 0, . . . , 3. (4.1)

Each term in (4.1) can be computed in a matrix-free scalable way in conjunction

with the discrete cosine transformation and the Lanczos algorithm.

4.3. Trust region method for precision parameter estimation

To solve (3.3), we follow Powell (1984) and Nocedal and Wright (2006) and

develop an iterative matrix-free trust region algorithm. The trust region algo-

rithm considers the objective function (1/2)‖∇g(λ)‖2, where ∇g(λ) is the gradi-

ent of g(λ) = (g0(λ), g1(λ), g2(λ), g3(λ)) in equation (4.1). The objective function
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is minimized at λ = φ if and only if ∇g(φ) = 0, provided that ∇2g(λ) is positive-

definite. Furthermore, we use the following quadratic function to approximate

(1/2)‖∇g(λ)‖2 around a point φk:

Ωk(α) =

(
1

2

)
‖∇g(φk)‖2 + αT{∇2g(φk)}T∇g(φk) +

(
1

2

)
αT{∇2∇g(φk)}2α.

Evidently, each term in the above quadratic function can also be computed in a

scalable matrix-free way in conjunction with the discrete cosine transformation,

the Lanczos algorithm, and the stochastic trace approximation. The trust region

algorithm is given as follows. First, the algorithm computes the step size αk+1 by

minimizing Ωk(α). Second, it updates the trust region radius and decides whether

αk+1 should be accepted. If αk+1 is accepted, it computes φk+1 = φk + αk+1,

otherwise, it proceeds with φk+1 = φk. The iteration stops when there is no

significant change in φk and the value of the objective function is sufficiently

close to zero. As a byproduct, the algorithm also computes the Hessian matrix

of (3.3), from which we can derive the standard errors of λ̂. Refer to Nocedal

and Wright (2006) and Dutta and Mondal (2016) for further details.

The trust region algorithms are dual to global line search methods, and are

known to have excellent convergence and scalability properties. Global conver-

gence for the trust region method holds when the effective step size is zero, as

proved by Powell (2004). Nocedal and Wright (2006) provide convergence results

when the effective threshold lies in (0, 1/4), assuming that the objective function

is Lipschitz and continuously differentiable and that the corresponding Hessian

is bounded.

4.4. Preconditioning

To solve Aψ = b, a preconditioning matrix L facilitate convergence of the

Lanczos algorithm if the condition number (i.e., the ratio of the largest to the

smallest eigenvalues) of LALT is small compared to that of A, or if its eigenvalues

are clustered around few values. The solution also requires that the scalable

matrix-free matrix vector multiplication of Lx and LTx is possible. Therefore, a

judicious choice of L arises if we have L or L−1 sparse and LLT ≈ A−1. In our

case, A = λ3F
TF + RTMR, and our objective is to find L that solves equation

(3.2) in three steps:

L(λ3RF
TFRT +M)LT x̃ = LRb, x = Lx̃, Rψ = x.

To this end, we consider L = (λ3I + M)−1/2. This choice of L ensures that

the eigenvalues of (λ3I +M)−1/2(λ3RF
TFRT +M)(λ3I +M)−1/2 are bounded
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below by one and that the minimum eigenvalue is bounded above by λ0/(1+λ0).

In many practical applications, F TF is a binary diagonal matrix and, in such

instances, a fraction of eigenvalues of (λ3I + M)−1/2(λ3RF
TFRT + M)(λ2I +

M)−1/2 also clusters around one (see the Supplementary Material). Furthermore,

when F TF is the identity matrix, that is, the regular grid has no missing values,

all eigenvalues of (λ3I + M)−1/2(λ3RF
TFRT + M)(λ3I + M)−1/2 are equal to

one. Then, L = (λ3I+M)−1/2 is the best choice. In practice, we do not actually

work with L = (λ3I + M)−1/2, but instead use the inverse of the sparse incom-

plete Cholesky factorization of the sparse matrix λ3I + M . Unlike the sparse

Cholesky factorization, which incurs a cost of at least O((ns)3/2) in terms of

computation and storage, an incomplete Cholesky factorization requires O(ns)

computations and storage. In addition, the incomplete Cholesky factorization

ensures that LT (λ3I + M)−1L is still a good approximation of the identity ma-

trix. The using this factorization facilitates faster convergence of the matrix-free

Lanczos algorithm. In our applications, we only considered a no-fill incomplete

Cholesky decomposition of the sparse matrix λ2I + M . Such a decomposition

of a matrix S contains nonzero elements in the same positions that S contains

nonzeros. Thus the storage requirement is O(ns) and the decomposition can

be computed in a matrix-free way in O(ns) steps. An algorithm for this oper-

ation is provided by the “ichol” function in Matlab. Various modifications of

an incomplete Cholesky decomposition are also possible. However, these require

some fill-in (see, e.g., Lin and Moré (1999)) with a memory requirement O(ns) to

improve the approximation and reduce the number of steps required for the con-

vergence of the Lanczos algorithm in order to solve Ax = b. Because the storage

requirement does not increase by more than a constant factor, these modifica-

tions of a sparse incomplete Cholesky decomposition can also be applied in a

matrix-free way. Refer to Kershaw (1978) and Benzi (2002) for further details

on incomplete Cholesky factorizations.

4.5. Conditional simulation and log-likelihood calculation

An advantage of the scalable matrix-free h-likelihood method is that it can

be used to generate samples from the conditional distribution of ψ, given obser-

vations y. This is done as follows. First, vectors vi, for i = 1, . . . , s, are generated

from a Gaussian distribution with mean zero and covariance matrix Λ−1
1 . Then,

we compute

ψ̃1 = P Tv1, ψ̃s = P Tvs, ψ̃i = P Tvi−1 +GTP Tvi, i = 2, . . . , s− 1.
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Next, let ψ̃T = (ψ̃T

1 , . . . , ψ̃
T

s ). Then,

ψ = ψ̂ + (RTMR)−1ψ̃

provides a realization from the conditional distribution of ψ1, . . . , ψs, given ob-

servations y1, . . . , ys. Here, the last term (RTMR)−1ψ̃, particularly the mul-

tiplication of M−1 with Rψ̃, can be computed using the incomplete Cholesky

preconditioned Lanczos algorithm. Thus, a matrix-free conditional simulation of

one ψ requires only O(ns log(ns) log n) operations.

The computation of the log-residual likelihood function presents further chal-

lenges, but can be performed using the results of Dutta and Mondal (2016).

5. Extension to Other Spatial-temporal State-space Models

5.1. Inferences for small time steps

If observations y1, . . . ys are made at small time steps ∆, 2∆, . . . , s∆, the state-

space model in (2.3)–(2.5) can be approximated using finite differencing. In

particular, the dynamical model in (2.1) becomes

(ψt+∆ − ψt) +

(
λ0C

2

)
∆ψt = νt, νt ∼ N(0, λ0∆In).

Taking ϕi = ψ∆i for i = 1, . . . , s, we can rewrite the state model in (2.5) as

ϕi = G∆ϕi−1 + νi∆, νi∆ ∼ N(0, λ0∆In), G∆ = I − λ0∆C

2
. (5.1)

Next, let ϕT = (ϕT

1 , . . . , ϕ
T

s ). Then, ϕ follows a multivariate normal distribution

with mean zero and a sparse precision matrix Γ∆, with a spectral decomposition

Γ∆ = RTM∆R. Here, M∆ is a block tridiagonal matrix with diagonal blocks

M∆(i,i),M∆(i,i+1), and M(∆i−1,i), such that

M∆(1,1) = M∆(s,s) = (λ0∆)−1In, M∆(i,i) = 2(λ0∆)−1In − Λ + 4−1λ0∆Λ2,

for i = 2, . . . , s− 1, and

M∆(j,j+1) = M∆(j−1,j) = −(λ0∆)−1In + 2−1Λ, j = 1, . . . , s− 1.

In the h-likelihood formulation, we obtain

yi = Fiϕi + εi, 0 = Pϕi + ηi, i = 1, . . . , s, η ∼ N(0,M−1
∆ ).

Hence, equation (3.1) simplifies to

u = Xϕ+ ζ, ζ ∼ N(0, Q−1
∆ ),
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where Q∆ is derived from Q by replacing M with M∆. Consequently, the esti-

mates of the state vectors ϕ are obtained by solving

XTQ∆Xϕ̂ = XTQ∆u.

The matrix A∆ = XTQ∆X is sparse. This sparsity allows us to simplify the steps

in the matrix-free statistical calculations. In particular, the sparsity allows faster

matrix-vector computations and the derivation of an efficient preconditioning ma-

trix for the Lanczos algorithm by using the incomplete Cholesky decomposition.

5.2. Approximation to stochastic advection-diffusions

The small time step approximations in (5.1) may look naive, but they have

wider relevance in deriving scalable matrix-free statistical computations for spatial-

temporal models based on other complex SPDEs. For example, consider a

stochastic advection-diffusion equation of the form

∂ψ(t, x)

∂t
= −

(
1

2

)
{A ψt}+ z(t, x), (5.2)

where z(t, x) is a temporally uncorrelated Gaussian process and A is a linear

operator given by

A ψ(t, x) =
2µT∂ψ(t, x)

∂x
− tr

{
∂2ψ(t, x)

(∂x∂xT )

}
Σ + 2τψ(t, x). (5.3)

Here, the first term µT∂ψ(t, x)/∂x models the transport effect, with velocity

or drifting rate µ, the second term tr{∂2ψ(t, x)/(∂x∂xT )}Σ models the diffusion,

with Σ controlling the rate and the anisotropy of the diffusion or blurring, and the

third term τψ(t, x) controls the damping or decay, with rate τ . For discussions of

stochastic advection-diffusion equations, see Whittle (1963), Brown et al. (2000),

Cressie and Wikle (2011), and Sigrist, Künsch and Stahel (2015). Unlike (2.1),

the model in (5.2)–(5.3) has no simple and explicit analytic solution. Thus,

approximations are necessary before we can pursue a statistical analysis. Here, we

focus on approximations in small time steps using finite differencing. Specifically,

we consider an approximation of the continuum process ψ(t, x) at time points

t = ∆, . . . , s∆ and regular spatial lattice points x = (x1, x2) at spacing ∆0. For

brevity, we consider µ = 0, Σ = γ1I, and τ = −γ2. Then, the advection-diffusion

equation takes the form

∂ψ(t, x)

∂t
= γ1

{∂2ψ(t, x)/∂x2
1 + ∂2ψ(t, x)/∂x2

1}
2

− γ2ψ(t, x) + z(t, x). (5.4)

By replacing the first-order derivative with a forward difference and the second-

order derivative with a centered difference and discretizing ϕi,x = ψ(i∆, x∆0),
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equation (5.4) is now approximated as

∆
−1(ϕi+1,x − ψi,x)

= γ1∆
−2
0

(ϕi,x1+1,x2
+ ϕi,x1−1,x2

+ ϕi,x1,x2+1 + ϕi,x1,x2−1 − 4ϕi,x)

2
− γ2ϕi,x + zi,x.

On a finite r× c spatial array, with boundary approximations that use a forward

difference to replace the second-order derivative, (5.4) reduces to the state model

ϕi+1 = G†ϕi + zi, (5.5)

where

G† = (1− γ2∆)In − γ1∆∆0
−2 (Ic ⊗Wr +Wc ⊗ Ir)

2
.

Thus, the state equation (5.5) has a form very similar to that of (5.1). The matrix

G† has the spectral representation PG†P T = Λ† = (1 − γ2∆)I − γ1∆∆0
−2(Ic ⊗

Dr +Dc ⊗ Ir)/2, with the diagonal matrix Λ† providing the eigenvalues.

Assuming zt is normally distributed, with mean zero and precision matrix

γ3In, the state-space model takes the form

yt = Ftϕt + εt, ϕt = G†ϕt−1 + zt, i = 1, . . . , s,

where εt and zt are independent and εt ∼ N(0, γ−1
4 I). Here, ϕ is normally

distributed with mean zero and precision matrix Γ†. Furthermore, Γ† = RTM †R,

where M † is a block tridiagonal matrix, with diagonal blocks M †(i,i),M
†
(i,i+1), and

M †(i−1,i), such that

M †(1,1) = M †(s,s) = γ3I, M †(i,i) = γ3(I + (Λ†)2), i = 2, . . . , s− 1,

M †(j,j+1) = M †(k−1,k) = −γ3Λ†, j = 1, . . . , s− 1, k = 2, . . . , s.

In the h-likelihood formulation, the discretized stochastic advection-diffusion

equation has the regression form

u = Xϕ+ ζ, ζ ∼ N(0, (Q†)−1),

which is very similar to that in (3.1). The state vectors are estimated as

XTQ†Xϕ̂ = XTQ†u.

As in Section 5.1, the matrix A† = XTQ†X is sparse, which allows us to use no-fill

incomplete Cholesky preconditioning. This enables fast and efficient matrix-free

computations and resolves the inferential challenges discussed in Sigrist, Künsch

and Stahel (2015).
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Table 1. Summary of the simulation study with spatial data generated in an 128× 128
array with s = 10. The standard errors are given in parentheses.

Parameters λ0 λ1 λ2 λ3
(true value) (1.0) (2.0) (0.01) (1.0)

Initial estimates
1.0 1.949 0.007 1.009
– (0.127) (0.003) (0.025)

Final REML estimates
0.999 2.015 0.007 0.979

(0.002) (0.006) (0.001) (0.014)

6. A Simulation Experiment and Data Examples

6.1. A simulation study

To illustrate how the method works, we sample y1, y2, . . . , y10 from the state-

space model (2.3)–(2.5) on a 128× 128 array at time t = 1, . . . , 10, with λ0 = 1,

λ1 = 2, λ2 = 0.01, and λ3 = 1. The sampling is done in three steps. First, using

the spectral representation, we generate θ1, . . . , θ10 on a 128×128 array, with λ0 =

1, λ1 = 2, and λ2 = 0.01. Second, we generate Gaussian white noise ε1, . . . , ε10,

with mean zero and precision λ3 = 1. Third, we compute εt + θt and, for each t,

discard 20% of the entries at random to obtain y1, . . . , y10. Thus, r = c = 128,

s = 10, and Ft 6= In. The total sample size is n+ = 131,072 and rcs = 163,840.

The method requires working with matrices of size 163,840 × 163,840, which is

quite daunting.

Next, we apply the matrix-free computation in Section 4 to estimate the

precision parameters. The initial estimate λ̂(0) of λ is derived by fitting the

corresponding spatial model on y1 and setting λ̂
(0)
0 = 1. To compute the trace

terms in (4.1), we use p = 50 Rademacher vectors. The trust region iteration

stops when sufficient numerical accuracy is achieved, yielding the overall REML

estimates λ̂ for the precision parameters.

Table 1 summarizes these results, along with the standard error values. Note

that the initial estimates based on y1 are fairly accurate. The final estimates

based on y1, . . . , y10 are consistent with the true values and have smaller standard

errors.

6.2. Analysis of atmospheric concentrations of total nitrate

The Environmental Protection Agency provides output from its numerical

model called Models-3, which includes the atmospheric total nitrogen concentra-
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Table 2. REML estimates of the precision parameters for total nitrogen concentration
data under no splitting (Scenario 1) and 2×2 splitting (Scenario 2) of the original array.
The standard errors are given in parentheses.

Parameters λ0 λ1 λ3

Scenario 1
7.536 7.894 14.571

(0.062) (0.088) (0.062)

Scenario 2
28.726 2.285 13.931
(0.118) (0.028) (0.119)

Figure 1. The left panel shows a map of the study region. The right panel displays the
average total nitrogen concentration over 12 months.

tion level as one component. This concentration level is defined as the gas-phase

nitric acid plus particle-phase nitrate, and is vital for air quality assessment.

Models-3 estimates the average concentration levels over regions of size 36 × 36

km2 and a period of 28 days by combining pollution emissions data with numer-

ical models of regional weather, the emission process, and land use. For further

inferences using Model-3 output and their statistical analyses, see Fuentes and

Raftery (2005) and Ghosh et al. (2010). In particular, Fuentes and Raftery (2005)

do not consider any spatial-temporal modeling. Instead, they combine Model-3

data with observations from certain monitoring stations. On the other hand,

Ghosh et al. (2010) use an elaborate Bayesian dynamical model for atmospheric

total nitrate.

Here, we consider the Models-3 output (provided by Montse Fuentes) for the

total nitrogen concentrations for the first 12 time periods of 2001. The left panel
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of Figure 1 provides a map of the region. The latitudes are between 18◦N and

58◦N and the longitudes are between 59◦W and 94◦W. The total nitrate data are

embedded in a spatial array of size 62 × 112, and we take a log-transformation

of the data to reduce skewness and to improve the normality assumption. The

right panel of Figure 1 displays an image plot of the mean log-total nitrogen

concentrations across the region. We see that there is strong spatial dependence

across the entire region. The nitrogen concentration is high across continental

North America, where the population is dense and urbanism and industrialization

are compact. Furthermore, the nitrogen concentrations thin out over the North

Atlantic Ocean, the Gulf of Mexico, and northern Canada.

Our objective is to investigate how the spatial-temporal state-space models

in (2.3)–(2.5) perform in terms of explaining the variation in the Models-3 output.

To this end, let y1, . . . , y12 be the standardized monthly log-averaged total nitro-

gen concentrations from the numerical models. It is not unreasonable to consider

that large-scale atmospheric pollution is driven by forms of advection-diffusion

equations. However, we lack certain information, such as pollution sources, the

effects of wind speed and wind direction, and the rates of atmospheric deposits of

pollution on land and into the ocean. Instead, we fit the parsimonious stochastic

advection-diffusion equation given in Section 5.2, with µ = 0, ∆ = 0.01, ∆0 = 1,

G† = (1− 0.01γ2)In −
0.01γ1(Ic ⊗Wr +Wc ⊗ Ir)

2
,

and

Λ† = (1− 0.01γ2)In −
0.01γ1(Ic ⊗Dr +Dc ⊗ Ir)

2
.

We apply two scenarios. In Scenario 1, we assume that the underlying state vec-

tors ψt, for t = 1, . . . , 12, follow spatial-temporal autoregressions, as in equation

(5.5), at the original spatial resolution of 36× 36 km2. In Scenario 2, we assume

that the state vectors follow spatial-temporal autoregressions at a finer spatial

resolution of 18 × 18 km2. Here, we split each region into 2 × 2 subregions so

that ψt, for t = 1, . . . , 12, lie on a 124 × 224 spatial array and rcs = 333,312.

Accordingly, we construct the averaging matrix Ft, of order 27,776× 6,944, such

that Ftψt provides a vector of average state values at the original 36 × 36 km2

spatial resolution. Scenario 2 is particularly useful for obtaining a spatial in-

terpolation at a finer resolution. Furthermore, the finer resolution allows us

to achieve an approximate inference from the limiting continuum geostatistical

model. See Besag and Mondal (2005) and Dutta and Mondal (2015, 2016) for

examples of such inferences in spatial statistics. At the 18× 18 km2 spatial res-
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Figure 2. The top panel shows image plots of y9, . . . , y12. The bottom panel displays
ψ̂9, . . . , ψ̂12 at the 18× 18 km2 spatial resolution.

olution, computations are particularly challenging because we need to deal with

a 333,321 × 333,312 sparse block triangular matrix A, where each block of A is

of order 27,776× 27,776, and Ft is not an identify matrix. Thus, the traditional

Kalman filtering algorithm does not work in this case.

For this model, the REML estimation encounters a boundary problem. Specif-

ically, we found that the estimate of γ2 tends to the boundary point 0. Therefore,

we set γ2 = 0, which then results in a simpler model with

G† = In −
0.01γ1(Ic ⊗Wr +Wc ⊗ Ir)

2
, Λ† = In −

0.01γ1(Ic ⊗Dr +Dc ⊗ Ir)
2

.

This is the same as the small-time-step state-space model (5.1) with ∆ = 0.01

and

C =
λ1(Ic ⊗Wr +Wc ⊗ Ir)

2
, Λ =

λ1(Ic ⊗Dr +Dc ⊗ Ir)
2

.

The relationship between λ and γ is given by

γ1 =
λ0λ1

2
, γ3 =

1

(λ0∆)
, and γ4 = λ3.

Furthermore, for this model, β = λ1/(4λ1+2λ2) = 1/4 and σ2 = 1/((4λ1). Thus,

we are considering an intrinsic spatial-temporal autoregression model, rather

than a second-order stationary version.

Table 2 summarizes the REML estimates for the standardized log-transformed

numerical values for total nitrogen concentrations using the methods in Sec-

tion 5.1. As before, we used p = 50 Rademacher vectors to approximate the
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trace terms. For verification, we also compute the precision parameters using

the methods in Section 5.2. The estimate of (γ1, γ3, γ4) is found to be (29.745,

13.271, 14.569) in Scenario 1 and (32.851, 3.483, 13.926) in Scenario 2. Therefore,

the relationship defined in (5.1) between (λ0, λ1, λ3) and (γ1, γ3, γ4) is satisfied.

Finally, Figure 2 displays the actual observations and the predictions for the la-

tent variables at a finer spatial resolution of 18×18 km2 for the final four months.

Here, we find that a parsimonious advection-diffusion model is quite effective in

downscaling and in explaining a large fraction (about 96%) of the total variation

in the data.

7. Discussion

Using circulant embedding (see the Supplementary Material), the score equa-

tion (3.3) can be shown to be equivalent to a gamma nonlinear regression model.

This contrasts with the results of Lee and Nelder (1996) and Dutta and Mondal

(2015), where the estimation of the precision parameters is equivalent to fitting

a gamma generalized linear model. Thus, the optimization in (4.1) is nonconvex

and can suffer from multiple modes, boundary problems, and long flat ridges.

While finding the global maxima can become challenging if multiple modes are

present, long flat ridges around the maxima make the information matrix nearly

singular and the standard error computation difficult. We encountered some of

these issues in this study. Thus, the starting value of λ can play an important role,

and in certain applications, we may need to run the algorithm several times with

different initial values for the parameters. For spatial models, multi-modality has

been studied by Mardia and Watkins (1989) and Dietrich (1991), among others,

and is often related to range parameter estimation. Similarly, long flat ridges

in the likelihood function of spatial models have been studied by Zhang (2004).

However, further work is needed to reveal the nature of multi-modality and long

flat ridges in a spatial-temporal setting.

Notwithstanding these expected issues, this study advances the computations

and methods in spatial-temporal settings and resolves the inferential challenges

discussed in Sigrist, Künsch and Stahel (2015). To achieve this, we needed to

impose assumptions in addition to the modeling assumptions in equations (2.1)

and (5.3). First, some edge correction is necessary when we restrict an infinite

lattice spatial process to a finite rectangular lattice. The edge corrected matrix C

used in equation (2.3) is introduced by Besag and Kooperberg (1995) and Besag

and Higdon (1999), and is linked to reflective boundary conditions; see Mondal
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(2018) for further details. Second, in Section 5.2, we considered a discrete time

approximation of the stochastic advection-diffusions, as discussed in Cressie and

Wikle (2011). Third, we assumed that spatial sampling locations are embeddable

on a (fine) rectangular lattice of size r × c and that observations are sampled at

regular time intervals. These are the only assumptions imposed in this study.

Supplementary Material

The Supplementary Material includes the following: (1) an example of the

effect of preconditioning; (2) a derivation of the connection between the REML

estimation and a nonlinear gamma regression; (3) an analysis of monthly soil

moistures across North America; and (4) possible extensions to the proposed

method.
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