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Abstract: This study examines optimal design problems in multiresponse linear

models. We investigate the optimality, admissibility, and invariance of approx-
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admissible and invariant. Elfving’s theorem for D-optimality is established for the
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1. Introduction

Optimal experimental designs have been applied successfully in many areas,

including engineering, biomedical, environmental, and epidemiological research,

since the seminal work of Smith (1918). Identifying an optimal design often

results in an intricate optimization problem that is difficult to handle. In the

field of optimal designs, current available tools are based mainly on the general

equivalence theorem of Kiefer and Wolfowitz (1959) and the geometric approach

of Elfving (1952). The general equivalence theorem provides the necessary and

sufficient conditions for a design to be optimal under a specific criterion. This

provides a way to check the optimality of a candidate design and to construct

optimal designs iteratively. The geometric approach presents a geometric char-

acterization of optimal designs and allows us to search for designs with support

included only in the “extreme points” of the Elfving set. See Silvey and Titter-

ington (1973), Dette (1993), Dette and Studden (1993), Dette and Holland-Letz

(2009), and Holland-Letz, Dette and Pepelyshev (2011), for example. Because of

the complicated structure of the corresponding optimization problems, general

results are extremely difficult to obtain. This means that results can only be

obtained on a case-by-case basis.

A useful strategy is to simplify the design problem by identifying a complete

subclass, Ξcom, composed of relatively simple designs. In addition, the subclass
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is sufficiently small that for any design ξ not belonging to this class, there is a

design in the class that has an information matrix dominating that of ξ in the

Loewner ordering. We may then restrict our attention to this subclass Ξcom.

Along this line, a series of remarkable papers by Yang and Stufken (2009, 2012);

Yang (2010); Dette and Melas (2011), and Dette and Schorning (2013) derived

several complete classes of designs for single-response models with respect to

the Loewner ordering of the information matrices, based on considerations of

admissibility and invariance.

In many experimental situations, especially in engineering, pharmaceutical,

biomedical, and environmental research, more than one response is measured for

each unit. Thus, multiresponse models play an important role in many areas of

science. For example, the model of Berman (1983) is used to analyze data ob-

tained when calibrating apparatus in microwave engineering. Another example is

a bioassay experiment that measures a response from different doses of standard

and test preparations, which can be fitted by the parallel linear model introduced

in Huang et al. (2006). For more examples of multiresponse statistical models,

refer to Atkinson and Bogacka (2002) and Uciéski and Bogacka (2005). Although

work on the theory of an optimal design for single-response models dates back as

far as 1918, multiresponse models did not appear in the optimal design literature

until 1966. Draper and Hunter (1966) developed a criterion for selecting addi-

tional experiment runs after a certain number of runs have already been chosen.

However, the literature in this area is relatively sparse owing to the increased

theoretical and computational challenges associated with multiresponse models.

For further reference, refer to Khuri (1990, 1996) and Liu, Yue and Hickernell

(2011), and the literature cited therein.

As mentioned above, considerations of admissibility and invariance are key

to reducing complicated design problems, which have been applied successfully to

finding optimal designs by many authors, including Kiefer and Wolfowitz (1959).

However, while these techniques have been discussed in detail in the context

of single-response models (see Pukelsheim (1993)), they are underdeveloped for

multiresponse models.

In the present study, we consider admissibility and invariance in the design

problem for multiresponse linear models. Our strategy is to reformulate the mul-

tiresponse linear model in a simple form so that the original design problem can

be transformed into an equivalent problem for a corresponding single-response

model.

The rest of the paper is organized as follows. In Section 2, we first specify the
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multiresponse linear model, and then provide reformulations of the multiresponse

linear model and its information matrix. Three examples of multiresponse models

are also given in this section. Sections 3 and 4 consider design admissibility

and invariance, respectively. In Section 5, we establish Elfving’s theorem for

D-optimality in the multiresponse linear models. Section 6 concludes the paper.

2. Model Specification and Reformulation

2.1. Model specification

We consider the following multiresponse linear model:

Y (x) = F (x)θ + ε, (2.1)

where Y (x) = (y1(x), . . . , yr(x))T is an r-dimensional response, x = (x1, . . . , xq)

is a setting of q control variables, F (x) = (f1(x), . . . , fr(x))T is an r × p matrix

of regression functions, θ is a vector of p unknown parameters, and ε is an r-

dimensional vector of random errors, with mean zero and nonsingular covariance

matrix Σ = (σij)r×r. The following are three examples of multiresponse linear

models.

Example 1. Linear and quadratic model (see Krafft and Schaefer (1992)).

The linear and quadratic model on X = [−1, 1] is as follows:{
y1(x) = θ10 + θ11x+ ε1,

y2(x) = θ20 + θ21x+ θ22x
2 + ε2,

(2.2)

or simply by (2.1), where

F (x) =

(
1 x 0 0 0

0 0 1 x x2

)
, θ = (θ10, θ11, θ20, θ21, θ22)

T .

Models of this type are frequently used to describe chemical reactions, where x

may represent time or temperature and yi describes concentrations of the various

substances involved. Consider, by way of illustration, an experiment on the

decomposition of aspartame, a synthetic sweetener (see (Soo and Bates, 1996,

Sec. 5)). The principal product of the decomposition of aspartame (APM) is

diketopiperazine (DKP). Model (2.2), with x ∈ [a, b] = [0, 5], can be used to

describe the concentrations of APM and DKP during the first five seconds of the

experiment.

Example 2. The Berman model in Berman (1983).

The Berman model on a circular arc X = [−α/2, α/2], for an arc of length

α ∈ [0, 2π], is represented by
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y1(t) = θ1 + θ3 cos t− θ4 sin t+ ε1,

y2(t) = θ2 + θ3 sin t+ θ4 cos t+ ε2,
(2.3)

or simply by (2.1), where

F (t) = (I2, A(t)), where A(t) =

(
cos t − sin t

sin t cos t

)
,

and θ = (θ1, θ2, θ3, θ4)
T . The covariance matrix of ε = (ε1, ε2)

T is assumed to be

Σ = σ2I2.

This model was proposed by Berman (1983) with two particular applications:

(i) the calibration of an impedance measuring apparatus in microwave engineer-

ing, and (ii) the analysis of megalithic sites in Britain, in which archaeologists

need to fit circles to stone rings. Model (2.3) assumes that the angular differences

between sample points are known in advance, either from the special structure

of the problem or through experimental design. It is a frequently used model for

fitting circular data.

Example 3. Parallel linear model with two responses (see Huang et al. (2006)).

The parallel linear model on X = [−1, 1]2 is described by{
y1(x) = θ01 + θ1x1 + ε1,

y2(x) = θ02 + θ1x2 + ε2.
(2.4)

The covariance matrix of ε = (ε1, ε2)
T is assumed to be Σ = (1 − ρ)I2 + ρJ2,

where I2 is the identity matrix of order 2 and J2 is an all-ones matrix of order 2.

In this model, r = 2, p = 3, and

F (x) =

(
1 0 x1

0 1 x2

)
, θ = (θ01, θ02, θ1)

T .

This model can be used in analyses of bioassay experiments to measure responses

from different doses of the standard and test preparations. The expectation of the

response at a dose level d ∈ [a, b] under the standard preparation is E(y1|d) =

η1(d). The expected response for the test preparation is E(y2|d) = η2(d) =

η1(τd), where τ is an unknown constant representing the relative potency between

the standard and test preparations. It is common practice to assume η1(d) is

linearly related to x = log(d), and that the two responses are correlated.

This study investigates approximate designs that are probability measures

on the design region X with finite support, which we denote by
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ξ =

{
x1 x2 . . . xn
w1 w2 . . . wn

}
, 0 < wi ≤ 1,

n∑
i=1

wi = 1.

Here, xi denotes a support point at which a measurement is taken, and wi is the

weight assigned to each level in the design. The information matrix of a design

ξ for the model (2.1) is given by

M(ξ) =

∫
X
F T (x)Σ−1F (x)dξ(x). (2.5)

We use the notation Ξ for the set of all approximate designs, andM(Ξ) for the set

of all information matrices on Ξ. It is assumed that Ran(F T (x)) ⊂ Ran(M(ξ)),

which implies that the r responses are estimable by the design ξ, where Ran(A)

denotes the range of matrix A.

2.2. Model reformulation

In this subsection, we reformulate the multiresponse model (2.1) and its

information matrix (2.5), which are used in the following sections.

Let f(x) = (l1(x), . . . , lk(x))T be a vector consisting of all different elements

in F (x), where k is the total number of different elements in F (x). Then the

i-th regression vector is denoted as fi(x) = V T
i Uif(x), where Ui and Vi, for

i = 1, . . . , r, are full row-rank matrices satisfying fTi (x)θ = fT (x)UT
i Viθ, for

i = 1, . . . , r. Then, the r × p matrix F (x) in (2.1) can be rewritten as

F (x) = (f1(x), . . . , fr(x))T = (V T
1 U1f(x), . . . , V T

r Urf(x))T (2.6)

=


fT 0 . . . 0

...
... . . .

...

0 0 . . . fT



UT
1 V1

...

UT
r Vr

 = [Ir ⊗ fT (x)]LUV , (2.7)

where LUV = (V T
1 U1, . . . , V

T
r Ur)

T . Consequently, model (2.1) can be rewritten

in the following form:

Y (x) = [Ir ⊗ fT (x)]LUV θ + ε. (2.8)

Correspondingly, the information matrix (2.5) of design ξ is expressed as follows:

M(ξ) =

∫
X

([Ir ⊗ fT (x)]LUV )TΣ−1[Ir ⊗ fT (x)]LUV dξ(x) (2.9)

=

∫
X
LT
UV [Σ−1 ⊗ (f(x)fT (x))]LUV dξ(x)

= LT
UV [Σ−1 ⊗Mf (ξ)]LUV ,
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where

Mf (ξ) =

∫
X
f(x)fT (x)dξ(x) (2.10)

is the information matrix of ξ under the following single-response linear model

with homoscedastic errors:

y(x) = fT (x)β + e. (2.11)

The above reformulations are demonstrated by the three examples given in

the previous section. The linear and quadratic model (2.2) can be represented in

the form of (2.8), with

f(x) = (1, x, x2)T , U1 = (I2, 02×1) , U2 = I3, V1 = (I2, 02×3), V2 = (03×2, I3).

The Berman model in (2.3) can be represented in the form of (2.8), with

f(t) = (1, cos t, sin t)T , U1 = diag(1, 1,−1), U2 = (e1, e3, e2),

V1 = (e1, 03×1, e2, e3), V2 = (03×1, I3),

where ei is the i-th unit vector in R3, that is, ei has all-zero elements, except the

i-th, which is unity. The parallel linear model in (2.4) can be represented in the

form of (2.8), with

f(x) = (1, x1, x2)
T , U1 = (I2, 02×1) , U2 = (e1, 02×1, e2),

V1 = U2, V2 = (02×1, I2),

where ei is the i-th unit vector in R2.

3. Admissible Designs

To discuss the admissibility of designs in multiresponse linear models, we

start with the concept of admissibility introduced by Pukelsheim (1993). We

first introduce some notation: A ≥ 0 means that A is a positive semidefinite

(i.e., nonnegative definite) matrix. Two matrices A,B are said to satisfy the

inequality A ≥ B in the Loewner partial ordering if A−B is positive semidefinite.

Moreover, we use NND(p) for the set of nonnegative definite matrices of order p,

and Sym(p) for the set of symmetric matrices of order p.

Definition 1. An information matrix M ∈ M(Ξ) is called admissible in M(Ξ)

when every competing information matrix A ∈ M(Ξ), with A ≥ M , is actually

equal to M . A design ξ is called admissible in Ξ when its information matrix

M(ξ) is admissible in M(Ξ).

Definition 2. A criterion function φ on NND(s) is a function φ : NND(s)
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→ R that is positively homogeneous, superadditive, nonnegative, nonconstant,

and upper semicontinuous.

The following two lemmas provide the basic tools for the main results on the

admissibility of designs in multiresponse linear models.

Lemma 1. Let A be an n × n positive semidefinite matrix and C be a p × n
matrix of rank q (q ≤ p). Then,

a. CACT ≥ 0; in particular, CACT ≥
6=0 if A≥6=0 and C is full column rank.

b. CA = 0 if CACT = 0.

Lemma 2. Suppose k ≤ p. Let T be an r × r positive definite matrix, L an

rk×p matrix of rank p, and ei the i-th unit vector in Rp. If esk+1, . . . , e(s+1)k ∈
Ran(L) for some s ≥ 0, then

A≥6=B ⇐⇒ LT [T ⊗A]L≥6=L
T [T ⊗B]L.

Proof. By part (a) of Lemma 1, if A≥6=B, then LT [T ⊗A]L≥6=L
T [T ⊗B]L.

To prove the converse of the statement, we suppose that L is partitioned

as [LT
1 , . . . , L

T
r ]T , where Li is a k × p matrix. If esk+1, . . . , e(s+1)k ∈ Ran(L),

for some s ≥ 0, then there exist cj 6= 0 (j = 1, . . . , k) in Rp, such that Lcj =

esk+j . Thus, Ls+1C = Ik and LiC = 0 (i 6= s + 1), where C = [c1, . . . , ck].

If LT [T ⊗ A]L≥6=L
T [T ⊗ B]L, then CTLT [T ⊗ A]LC≥6=C

TLT [T ⊗ B]LC, that is,

Ts+1,s+1A
≥
6=Ts+1,s+1B. Hence, A≥6=B because Ts+1,s+1 is the (s + 1)-th diagonal

element of matrix T , which is positive definite. The proof is complete.

The first result on admissibility in the set Ξ of all designs is about the location

of the support points of admissible designs. To this end, we define the Elfving

set by

Rf = conv ({f(x) | x ∈ X} ∪ {−f(x) | x ∈ X}) , (3.1)

where conv(c) denotes the convex hull of vectors c ∈ Rk. The Elfving set Rf is

a symmetric compact convex subset of Rk that contains the origin in its relative

interior.

The following theorem states that in order to find optimal support points,

we need to search the “extreme points” of the Elfving set Rf only.

Theorem 1. Let R̃f be the set consisting of extreme points of the Elfving set

Rf that do not lie on a straight line connecting any other two distinct points of

the Elfving set Rf . Then, for every design η ∈ Ξ with support not included in
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R̃f , there exists a design ξ ∈ Ξ with support included in R̃f , such that

M(ξ)
≥
6=
M(η). (3.2)

Proof. From Theorem 8.5 in Pukelsheim (1993), there is a design ξ ∈ Ξ such that

Mf (ξ)
≥
6=
Mf (η). (3.3)

Hence,

Σ−1 ⊗Mf (ξ)
≥
6=

Σ−1 ⊗Mf (η),

and then

M(ξ) = LT
UV [Σ−1 ⊗Mf (ξ)]LUV

≥
6=
LT
UV [Σ−1 ⊗Mf (η)]LUV = M(η),

by part (a) of Lemma 1.

Theorem 2. Let φ be a criterion function. If there is a φ-optimal informa-

tion matrix Mf for the k-dimensional full parameter vector β under the single-

response model (2.11) in Mf (Ξ), then there exists a φ-optimal design ξ for θ

under the multiresponse model (2.1) in Ξ such that its support size, ] supp(ξ), is

bounded according to

p

r
≤ ] supp(ξ) ≤ min

(
k(k + 1)

2
,
p(p+ 1)

2

)
. (3.4)

Proof. By Corollary 8.3 in Pukelsheim (1993), for a design η that has Mf as its

information matrix, there is an improved design ξ with support size bounded

from above by k(k + 1)/2 and some δ ≥ 1 such that

φ(M(ξ)) = φ(LT
UV [Σ−1 ⊗Mf (ξ)]LUV )

= φ(LT
UV [Σ−1 ⊗ (δMf (η))]LUV )

= δφ(LT
UV [Σ−1 ⊗Mf (η)]LUV )

= δφ(M(η))

≥ φ(M(η)). (3.5)

On the other hand, Theorem 5.1.1 in Fedorov (1972) yields that

p

r
≤ ] supp(ξ) ≤ p(p+ 1)

2
. (3.6)

This completes the proof of the theorem.

Theorem 3. Suppose k ≤ p. If esk+1, . . . , e(s+1)k ∈ Ran(LUV ), for some s ≥ 0,

then a design ξ is admissible in Ξ for the multiresponse model (2.1) if and only
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if ξ is admissible in Ξ for the single-response model (2.11).

Proof. The proof follows immediately from Lemma 2 and Definition 1.

To illustrate the results given by Theorems 1–3, let us consider the linear

and quadratic model in Example 1. The Elfving set corresponding to model (2.2)

is given by

R1 = conv ({f(x) | x ∈ [−1, 1]} ∪ {−f(x) | x ∈ [−1, 1]}) , (3.7)

where f(x) = (1, x, x2)T . Its graph is shown in Pukelsheim (1993). In order to

find optimal designs, we need only consider designs supported on the extreme

points of R1. Furthermore, the support size is not more than six by Theorem 2.

Finally, note that esk+1, . . . , e(s+1)k ∈ Ran(LUV ) for s = 1. Then the admissible

designs in the linear and quadratic model (2.2) are described by the following

corollary.

Corollary 1. A design ξ ∈ Ξ is admissible in the linear and quadratic model

(2.2) on the experimental region [−1, 1] if and only if ξ has at most one support

in the open interval (−1, 1).

Proof. The proof follows immediately from Theorem 3 above and Claim 10.7 in

Pukelsheim (1993).

4. Invariant Designs

In order to discuss the invariance of designs for the multiresponse model, we

need the following concepts.

Definition 3. The design problem for θ in M(Ξ) is said to be Q-invariant

when Q is a subgroup of the general linear group of order p, GL(p), and all

transformations Q ∈ Q fulfill

QM(Ξ)QT =M(Ξ). (4.1)

Definition 4. A criterion function φ on NND(p) is called H-invariant when H
is a subgroup of the general linear group GL(p) and all transformations H ∈ H
fulfill

φ(C) = φ(HCHT ) for all C ∈ NND(p). (4.2)

Definition 5. Let L: NND(s) → Sym(p) be the mapping L(B) = LTBL, where

L has full column rank p. Assume Q is a subgroup of the general linear group
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GL(s), and that there exists a group homomorphism H from Q into GL(p), such

that

L(QBQT ) = H(Q)L(B)H(Q)T , for all B ∈ NND(s), Q ∈ Q, (4.3)

holds for the matrix H(Q) in the image group HQ = {H(Q)|Q ∈ Q}. Then, the

mapping L is said to be Q−HQ-equivariant.

To present the main result on the invariance of designs for multiresponse

linear models, we need the following lemma.

Lemma 3. Let LT : NND(k)→ Sym(p) be the matrix mapping LT (A) = LT (T⊗
A)L corresponding to an rk × p matrix L of full column rank p and a positive-

definite matrix T of order r. Assume Q is a subgroup of the general linear group

GL(k). Define NQ : NND(rk) → NND(rk) by NQ(B) = (Ir ⊗Q)B. Denote by

NQ the set {NQ|Q ∈ Q}. We then have the following claims.

a. (Equivariance) There exists a group homomorphism H : Q → GL(p) such

that LT is equivariant under H,

LT (QAQT ) = H(Q)LT (A)H(Q)T , for all A ∈ NND(k), Q ∈ Q, (4.4)

if the range of L is invariant under each transformation NQ ∈ NQ,

Ran(NT
QL) = Ran(L) for all NQ ∈ NQ. (4.5)

b. (Uniqueness) Suppose LT is equivariant under the group homomorphism

H : Q → GL(p). Then, H(Q) or −H(Q) is the unique nonsingular p × p
matrix H that satisfies NT

QL = LH, for all NQ ∈ NQ.

c. (Orthogonal transformation) Suppose LT is equivariant under the group ho-

momorphism H : Q → GL(p). If matrix L fulfills LTL = Ip and Q ∈ Q is

an orthogonal matrix of order k, then H(Q) = ±LTNT
QL is an orthogonal

matrix of order p.

Proof. We only prove part (a). Let gT : NND(k) → NND(rk) be the matrix

mapping gT (A) = T ⊗ A. Define N :Q → NQ by N(Q) = NQ. Then, N is a

group isomorphism such that the mapping gT is Q − NQ-equivariant under N ;

that is,

gT (QAQT ) = N(Q)gT (A)N(Q)T , for all A ∈ NND(k), Q ∈ Q. (4.6)

On the other hand, by a similar argument to Lemma 13.5 in Pukelsheim (1993),

there exists a group homomorphism H : NQ → GL(p) such that the mapping L
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is equivariant under H,

L(NQBN
T
Q) = H(NQ)L(B)H(NQ)T , for all B ∈ NND(rk), NQ ∈ NQ,(4.7)

if and only if the range of L is invariant under each transformation NQ ∈ NQ,

Ran(NT
QL) = Ran(L) for all NQ ∈ NQ. (4.8)

Therefore, H = H ◦ N : Q → GL(p) is a group homomorphism such that the

mapping LT is equivariant under H.

The set

HQ =
{
H ∈ GL(p) | NT

QL = LH for some NQ ∈ NQ
}

(4.9)

is called the equivariance group induced by the NQ-invariance of the design prob-

lem for the multiresponse model (2.1) inM(Ξ). Accordingly, the mapping LT is

then said to be Q−HQ-equivariant.

The main result on invariant designs for the multiresponse model (2.1) is an

immediate consequence of Lemma 3.

Theorem 4. Let Q be a subgroup of the general linear group GL(k) and NQ the

set {NQ|Q ∈ Q}. If all transformations Q ∈ Q fulfill

QMf (Ξ)QT =Mf (Ξ) (4.10)

and

Ran(NT
QLUV ) = Ran(LUV ) for all NQ ∈ NQ, (4.11)

then the design problem for the multiresponse model (2.1) in M(Ξ) is HQ-

invariant.

As an example, consider the linear and quadratic model (2.2) and the re-

flection transformation acting on the experimental domain X : x→ R(x) = −x.

The reflection R(x) = −x leads to the 3 × 3 matrix QR=diag (1,−1, 1), which

reverses the sign of the linear component x in the power vector f(x) = (1, x, x2)T ;

that is, f(−x) = (1,−x, x2)T = QRf(x). Then, the reflection R(x) = −x and

the identity transformation induce a group Q of order 2:

Q = {I3, QR} =




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 −1 0

0 0 1


 ⊂ GL(3). (4.12)

Because LUV = (e1, e2, e4, e5, e6) and (I2⊗QR)LUV = (e1,−e2, e4,−e5, e6), where

ei is the i-th unit vector in R6, this implies that LUV and (I2⊗QR)LUV have the

same range. By Theorem 4, this means that the design problem for the linear
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and quadratic model (2.2) is HQ-invariant. Here, the equivariant group HQ is

of order 2, as is Q, containing the identity I5 and HR = diag (1,−1, 1,−1, 1),

which is obtained by part (c) of Lemma 3, because LT
UV LUV = I5 and QR ∈ Q

is an orthogonal matrix.

Let H be a finite subgroup of GL(s) of order ]H and C : Sym(s) → Sym(s)

be the balancing operator defined by

C =
1

]H
∑
H∈H

HCHT for all C ∈ NND(s). (4.13)

If φ is an H-invariant criterion function, then the balancing operator leads to an

improvement of a given information matric C,

φ(C) = φ

(
1

]H
∑
H∈H

HCHT

)
≥ 1

]H
∑
H∈H

φ(HCHT ) = φ(C), (4.14)

utilizing the concavity and H-invariance of the criterion function φ. Together

with Corollary 1, we obtain a complete class Ξcom with minimum support size

for the linear and quadratic model (2.2), composed of the following designs:

ξ =

{
−1 0 1

w 1− 2w w

}
, w ∈

[
0,

1

2

]
. (4.15)

Note that the equality condition (4.11) is only sufficient. When it does not hold,

there may exist a group HQ such that the design problem for the multiresponse

model (2.1) in M(Ξ) is HQ-invariant. A simple example is provided by the

Berman model in (2.3), where the group Q, induced by the reflection R(t) = −t
and the identity transformation, has order 2:

Q = {I3, QR} =




1 0 0

0 1 0

0 0 1

 ,


1 0 0

0 1 0

0 0 −1


 ⊂ GL(3). (4.16)

Because LUV = (e1, e4, e2+e6,−e3+e5) and (I2⊗QR)LUV = (e1, e4, e2−e6, e3+

e5), where ei is the i-th unit vector in R6, it is easy to see that Ran(LUV ) is not

the same as Ran((I2 ⊗QR)LUV ). However, there exists a group H of order 2:

H = {I4, HR} =

{(
I2 0

0 I2

)
,

(
0 I2

I2 0

)}
⊂ GL(4). (4.17)

To this end, for every design ξ ∈ Ξ, we consider the reflected design ξR given

by ξR(t) = ξ(−t), for all t ∈ X = [−α/2, α/2]. The information matrix of ξ is
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M(ξ) =

(
I2 A(ξ)

AT (ξ) I2

)
,

where

A(ξ) =

∫
X
A(t)dξ =

(
c(ξ) −s(ξ)
s(ξ) c(ξ)

)
, c(ξ) =

∫
X

cos tdξ, s(ξ) =

∫
X

sin tdξ.

The information matrix of ξR is

M(ξR) =

(
I2 A(ξR)

AT (ξR) I2

)
=

(
I2 AT (ξ)

A(ξ) I2

)

=

(
0 I2

I2 0

)(
I2 A(ξ)

AT (ξ) I2

)(
0 I2

I2 0

)T

.

That is, the information matrix M(ξR) is obtained from M(ξ) by the congruence

transformation,

M(ξR) = HRM(ξ)HT
R .

Consequently, M(Ξ) is invariant under transformation HR. According to Theo-

rem 3 and Lemma 1 in Wu (2002), we obtain a complete class Ξcom with minimum

support size for the Berman model (2.3), composed of the following designs:

ξ =

{
−t 0 t

w 1− 2w w

}
, t ∈

[
0,
α

2

]
, w ∈

[
0,

1

2

]
. (4.18)

5. Elfving’s Theorem for D-optimality

In this section, we establish Elfving’s theorem for D-optimality for multire-

sponse linear models. Define an Elfving set for the multiresponse linear model

(2.1) by

Rp = conv
{
F T (x)Σ−1/2K

∣∣ x ∈ X ,K ∈ Rr×p, ‖K‖ = 1
}
⊆ Rp×p, (5.1)

where conv(B) denotes the convex hull of matrices B ⊆ Rp×p, and ‖K‖ is the

Frobenius norm of the matrix K; that is, ‖K‖2 = tr(KTK). Note that the

Elfving set Rp is a compact, symmetric, and convex subset of Rp×p and contains

the origin 0.

Theorem 5. A design ξ = {xv, wv}sv=1 is D-optimal in Ξ for the multire-

sponse linear model (2.1) if and only if (pM(ξ))−1/2 ∈ Rp×p is a supporting

hyperplane of the Elfving set Rp, with supporting points F T (xv)Σ−1/2Kv, where

Kv = (pΣ)−1/2F (xv)M−1/2(ξ), for v = 1, . . . , s.
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The proof Theorem 5 is based on the general equivalence theorem for D-

optimality in multiresponse linear models (see Theorem 5.2.1 in Fedorov (1972))

and is similar to that of Theorem 3 in Liu, Yue and Lin (2013). Thus, the details

of the proof are omitted here. To illustrate Theorem 5, we consider the parallel

linear model given in (2.4).

The D-optimal design for estimating θ in model (2.4) is

ξ∗D =

{
(−1, 1) (1,−1)

1/2 1/2

}
if ρ > 0, (5.2)

and

ξ∗D =

{
(−1,−1) (1, 1)

1/2 1/2

}
if ρ < 0 (5.3)

(see Huang et al. (2006)). Now, Theorem 5 provides another way to verify that

ξ∗D is D-optimal for model (2.4). Only the case ρ > 0 is shown below. The case

ρ < 0 can be treated in a similar way. The information matrix of design ξ∗D is

M(ξ∗D) =
1

1− ρ2


1 −ρ 0

−ρ 1 0

0 0 2(1 + ρ)

 . (5.4)

Let H(x) = (Hij)3×3 = F T (x)Σ−1/2K, for x = (x1, x2) ∈ X = [−1, 1]2 and

K ∈ R2×3, with ‖K‖ = 1. The Elfving set R3 defined in (5.1) is given by Liu,

Yue and Lin (2013) as follows:

R3 =

{
(Hij)3×3

∣∣∣∣∣
2∑

i=1

3∑
j=1

H2
ij + 2ρ

3∑
j=1

H1jH2j ≤ 1,

|H3j | ≤ |H1j −H2j |, j = 1, 2, 3

}
,

and the boundary of R3 is obtained from the points x = (−1, 1) and x = (1,−1).

Therefore, (−1, 1) and (1,−1) are the support points of the D-optimal design in

the case ρ > 0. Corresponding to the two support points (−1, 1) and (1,−1), we

take

K1 = (pΣ)−1/2F (−1, 1)M−1/2(ξ∗D) and K2 = (pΣ)−1/2F (1,−1)M−1/2(ξ∗D).

From (5.4) and the Cauchy–Schwarz inequality, we get

(tr{(pM(ξ∗D))−1/2F T (x)Σ−1/2K})2

≤ tr(KTK)tr{(pM(ξ∗D))−1F T (x)Σ−1F (x)}



DESIGN ADMISSIBILITY, INVARIANCE, AND OPTIMALITY 2201

=
4 + 4ρ+ x21 + x22 − 2ρx1x2

6 + 6ρ
≤ 1,

for all x ∈ X , whenever the matrix K satisfies the equation ‖K‖ = 1. Moreover,

a straightforward calculation gives

tr{(pM(ξ∗D))−1/2F T (−1, 1)Σ−1/2K1} = 1,

tr{(pM(ξ∗D))−1/2F T (1,−1)Σ−1/2K2} = 1,

and ‖Kv‖2 = tr(KT
v Kv) = 1, for v = 1, 2. It follows that tr(M−1/2(ξ∗D)H) ≤ 1

for every H ∈ R3, and that each Kv is on the boundary of R3. Thus, by Theorem

5, ξ∗D is D-optimal for model (2.4).

6. Concluding Remarks

Motivated by real applications, it is increasingly recognized that the mul-

tiresponse model is a useful tool for analyzing data from experiments with a

multiple-outcome variable. While numerous excellent studies examine admissi-

bility and invariance in single-response models, few address multiresponse models

at the design stage.

In this study, we obtained the necessary and sufficient conditions for a de-

sign to be admissible and invariant, which are always helpful when investigating

optimal designs for multiresponse linear models. We also established Elfving’s

theorem for D-optimality, which can be used to characterize D-optimal designs.
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