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Abstract: This article presents a general single-index hazard regression model to

assess the effects of covariates on a failure time. Based on left-truncated and

right-censored survival data, a new partial-rank correlation function is proposed

to estimate the index coefficients in the presence of covariate-dependent truncation

and censoring. Furthermore, an efficient computational algorithm is proposed for

the computation that maximizes the constructed target function. The developed

approach can be extended to include right-truncation and left-censoring under a

reverse-time hazard regression model. Based on the maximum rank correlation

estimator in the literature, we establish the consistency and asymptotic normality

of the maximum partial-rank correlation estimator. A series of simulations shows

that the proposed estimator has satisfactory finite-sample performance compared

with that of its competitors. Lastly, we demonstrate our methodology by applying

it to data from the US Health and Retirement Study.

Key words and phrases: Asymptotic normality, consistency, left-censoring, left-
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1. Introduction

In survival analyses, samples are often collected using the incident and preva-

lent cohort sampling schemes. Owing to cost and time constraints, the prevalent

cohort approach is generally the more efficient of the two in terms of collecting

sufficient failure cases, especially when studying a rare disease. For example, the

US Health and Retirement Study (HRS) initially recruited noninstitutionalized

persons using a cross-sectional sampling criterion between 1992 and 1993. Prior

to the recruitment, the white nonHispanic men and women in these data had ex-

perienced initiating events (birth), but not failure events (death). In the context

of this research, the survival time T ∗ and the truncation time A∗ are defined as

the times from the calendar date of the initiating event to the calendar dates of

the failure event and recruitment, respectively. On the other hand, individuals
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who had experienced failure events before the recruitment are not observed and,

thus, their failure times are left-truncated (i.e. {T ∗ ≤ A∗}). If individuals are

not available for follow-up or if they drop out during the study period, their

failure times are right-censored. Under a general single-index hazard regression

model, we develop a new approach to estimate the index coefficients based on

left-truncated and right-censored survival data.

To simplify the presentation, the observed survival time, truncation time,

and covariates are denoted by the triplets (T,A,Z), and their joint distribution

is the same as the conditional distribution of (T ∗, A∗, Z∗) on {T ∗ ≥ A∗}, where

Z∗ = (Z∗1 , . . . , Z
∗
p)> are the covariates of interest with support Z. We also assume

a mild covariate-dependent truncation and censoring mechanism in our study. In

addition, we explore the relation between the continuous failure time T ∗ and the

covariates Z∗ using the following single-index hazard regression model:

λ(t|z) = λ(t, β>0 z), t ∈ [0, τ ], (1.1)

where λ(t|z) is the hazard function of T ∗, given Z∗ = z, λ(t, u) is an unknown

nonnegative bivariate function that is strictly decreasing in u for each t, β>0 z

is a single index, with β0 denoting the index coefficients, and τ is the end of

the study period. Owing to the identifiability of β0 up to a scale, a parametric

system is adopted, where β0 = (1, θ>0 )> and θ0 = (θ01, . . . , θ0p−1)> is an interior

point of the compact parameter space Θ ⊆ Rp−1. As a result, the coefficient

β0k (= θ0k−1) is interpreted as the relative effect of Z∗k , compared with Z∗1 , on

the hazard function, for k = 2, . . . , p. Specific forms of model (1.1) include the

proportional hazard regression λ0(t) exp(β>0 z) (Cox (1972)), the additive hazard

regression λ0(t) + β>0 z (Aalen (1980)), and the transformation regression model

H(T ∗) = −β>0 Z∗ + ε (Cheng, Wei and Ying (1995)) with a monotonic hazard

function of ε, where λ0(t) is an unknown baseline hazard function, H(·) is an

unknown increasing function, and ε is a random error. Under Cox’s propor-

tional hazard model and the assumption of covariate-dependent truncation and

censoring, Wang, Brookmeyer and Jewell (1993) proposed a maximum partial

likelihood estimator of β0 based on left-truncated and right-censored survival

data. Lin and Ying (1994) provided an estimation for the additive hazard model

with censored survival data, which Huang and Qin (2013) extended to include

left-truncation, proposing a modified conditional estimating equation estimator.

Currently, there is no estimation approach for the transformation model when

the distributions of the truncation and censoring times are covariate-dependent.

In the data analysis of the HRS, the violation of the covriate-dependent
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truncation is supported by the proposed Hausman-type test. Therefore, the ex-

isting approaches in the literature for left-truncated and right-censored survival

data with stationary or nonstationary disease incidence are not appropriate for

describing the effects of body mass index (BMI), level of education, and smoking

status on life expectancy. In addition, our testing procedure confirms the in-

adequacy of the proportional and additive hazard regression models. Thus, the

general formulation in model (1.1) and its statistical inferences become necessary

in application. Based on a new partial-rank correlation function, we develop an

approach to estimate β0 in model (1.1). We also propose an efficient algorithm

is provided to compute the maximum partial-rank correlation estimator. The

partial-rank correlation estimation of Khan and Tamer (2007) for right-censored

survival data shows that each pair of units should be comparable in the con-

structed estimation criterion. In our estimation, the compared units are further

required to come from the same truncated population. Moreover, the consistency

and asymptotic normality of the proposed estimator can be established using the

theoretical frameworks in Han (1987) and Sherman (1993). Interestingly, the

developed approach can also be extended to estimate the regression coefficients

in a reverse-time hazard regression model

λr(t|z) = λr(t, β
>
0 z) (1.2)

with right-truncated and left-censored survival data, where λr(t|z) = f(t|z)/(1−
S(t|z)). Here, f(t|z) and S(t|z) are the conditional density and survival functions,

respectively, of T ∗ = t on Z∗ = z, and λr(t, u) is an unknown nonnegative

bivariate function and is strictly decreasing in u for each t.

The remainder of the paper is organized as follows. In Section 2, a partial-

rank correlation function is proposed as the basis for estimating model (1.1)

with left-truncated and right-censored survival data. The index coefficients β0

are further shown to be the unique maximizer of the constructed partial-rank

correlation function. Moreover, an extension to model (1.2) with right-truncated

and left-censored survival data is given in this section. Section 3 outlines the

maximum partial-rank correlation estimation and the corresponding computa-

tional algorithm. Then, we establish the consistency and asymptotic normality

of the estimator and the bootstrap approximation of the sampling distribution of

the estimator. In Section 4, Monte Carlo simulations are used to investigate the

finite-sample performance of the proposed estimator and its competitors. The

HRS data are analyzed in Section 5 to show the usefulness of our methodology.

Section 6 summarizes our findings and remarks on possible future research. The
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proofs of the main results are relegated to the appendix.

2. Partial-Rank Correlation Function and its Extension

For survival data with left-truncation and right-censoring, we develop an ap-

proach to estimate β0 based on a new partial-rank correlation function. Under

model (1.1) and some suitable conditions, β0 is further shown to be the unique

maximizer of this target function. In fact, the proposed estimation criterion in-

cludes several specific cases and can be reasonably extended to right-truncation

and left-censoring. To simplify the presentation, let C represent the residual

censoring time after the recruitment, Y = min{T,A + C} be the last observed

time, and δ = I(T ≤ A + C) be a noncensoring indicator with I(·) as the in-

dicator function. The notations ∧ and ∨ denote the minimum and maximum,

respectively.

2.1. Partial-rank correlation function

Given any two independent units (T ∗1 , Z
∗
1 ) and (T ∗2 , Z

∗
2 ), an essential element

of our partial-rank correlation function is given by

Q(z1, z2, a, c) = P(T ∗1 > T ∗2 > a, T ∗2 < c|Z∗1 = z1, Z
∗
2 = z2), (2.1)

which is easily shown to be∫ c

a
S(u|z1)S(u|z2)λ(u|z2)du ∀ c > a ≥ 0. (2.2)

The reason for adopting a truncation value a and a censoring value c in Q(z1, z2;

a, c) is to adjust for the sampling bias caused by the left-truncation and to

make each pair of units comparable in the presence of right-censoring. By the

symmetric feature of S(t|z1)S(t|z2) with respect to (z1, z2) and assumption A1

(inf{z∈Z} S(τ |z) > 0 and sup{z∈Z} SA∗(τ |z) < 1), where SA∗(a|z) is a survival

function of A∗, given Z∗ = z, model (1.1) further implies that λ(t|z2) > λ(t|z1)

whenever β>0 z1 > β>0 z2. Thus, the following lemma is a direct consequence.

Lemma 1. Suppose that model (1.1) is valid and assumption A1 is satisfied.

Then, for any z1, z2 ∈ Z and τ > c > a ≥ 0

Q(z1, z2; a, c)−Q(z2, z1; a, c) > 0 whenever β>0 z1 > β>0 z2.

From the proof of the maximizer of the rank correlation function in Han (1987),

it follows from (2.1), Lemma 1, and the equality

E[Q(Z∗1 , Z
∗
2 ; a, c)I(β>0 Z

∗
1 > β>0 Z

∗
2 )−Q(Z∗1 , Z

∗
2 ; a, c)I(β>Z∗1 > β>Z∗2 )]
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=
1

2
E[(Q(Z∗1 , Z

∗
2 ; a, c)−Q(Z∗2 , Z

∗
1 ; a, c))(I(β>0 Z

∗
1 > β>0 Z

∗
2 )− I(β>Z∗1 > β>Z∗2 ))]

that β0 is a maximizer of

E[Q(Z∗1 , Z
∗
2 ; a, c)I(β>Z∗1 > β>Z∗2 )] = P(T ∗1 > T ∗2 > a, T ∗2 < c, β>Z∗1 > β>Z∗2 )

∀ τ > c > a ≥ 0. (2.3)

For general forms of censoring, Khan and Tamer (2007) proposed a partial-

rank correlation estimation for β0. Moreover, the authors showed that β0 is the

unique maximizer of their partial-rank correlation function and that the rank

correlation estimation criterion by Han (1987) is infeasible for censored survival

data. For right-censored survival data, their partial-rank correlation function is

constructed using P(Y1 > Y2, δ2 = 1, β>Z1 > β>Z2). In terms of Q(z1, z2; a, c)

in (2.1), this can be expressed as

E[Q(Z∗1 , Z
∗
2 , 0, C1 ∧ C2)I(β>Z∗1 > β>Z∗2 )]. (2.4)

Instead of imposing the assumption of independent censoring, this approach re-

lies on subjects whose failure times are comparable. More precisely, T ∗1 and T ∗2
are said to be comparable if the indicator status I(T ∗1 > T ∗2 ) can be fully de-

termined based on (Y`, δ`), for ` = 1, 2. In conjunction with the presence of

left-truncation, we provide a more general covariate-dependent truncation and

censoring assumption A2 (A∗ ⊥ T ∗|Z∗ and C ⊥ (T,A)|Z). By adjusting for the

truncation bias, the following partial-rank correlation function is proposed as the

basis for the estimation of β0:

C(β) = E

[
Q(Z1, Z2;A1 ∨A2, (C1 +A1) ∧ (C2 +A2))I(β>Z1 > β>Z2)

]
. (2.5)

Coupled with the expression of Q(z1, z2; a, c) in (2.1) and the equality P (Y1 >

Y2 > (A1 ∨A2), δ2 = 1|Z1 = z1, Z2 = z2) = P (T1 > T2 > (A1 ∨A2), (A1 + C1) >

(A2 + C2)|Z1 = z1, Z2 = z2), an alternative probability representation can be

derived as

C(β) = P(Y1 > Y2 > (A1 ∨A2), δ2 = 1, β>Z1 > β>Z2). (2.6)

With the observable random quantities (Y, δ,A, Z) in left-truncated and right-

censored survival data, our approach requires that each pair of units is compara-

ble and comes from the same truncated population. Figure 1 displays the relative

positions of the calendar times of the initiating events, recruitment, failure events,

and censoring events of the two independent units. The resulting truncation, fail-

ure, and censoring times satisfy the constraints Y1 > Y2 > (A1 ∨A2) and δ2 = 1

in (2.6).
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Figure 1. Relative positions of the calendar times of the initiating event (N), recruitment
(�), the failure event (•), and the censoring event (◦).

To derive the main results, we require an additional assumption:

A3.Z is not contained in any proper linear subset of Rp and Z∗ has a positive

Lebesgue density everywhere.

As in the context of rank correlation estimation, assumption A3 ensures the

uniqueness of β0. Under some suitable conditions, β0 is shown to be the unique

maximum of C(β) as follows.

Theorem 1. Under model (1.1) and assumptions A1–A3,

β0 = argmax
{β(θ):θ∈Θ}

C(β).

Proof. See the Appendix.

Note that the device Q(z1, z2; a, c) in (2.1) can also accommodate the following

particular cases:

Case 1. (complete failure time data) For such data, the conditions A1 =

A2 = 0 and C1 = C2 = ∞ are naturally set in (2.5) and assumption A2 is

automatically satisfied. The rank correlation function P(T1 > T2, β
>Z1 > β>Z2)

of Han (1987) is easily derived as

E[Q(Z1, Z2; 0,∞)I(β>Z1 > β>Z2)]. (2.7)

Case 2. (right-censored survival data) In the presence of right-censoring,

A1 and A2 are set to zero in (2.5) and assumption A2 can be simplified to C ⊥
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(T,A)|Z. The partial-rank correlation function P(Y1 > Y2, δ2 = 1, β>Z1 > β>Z2)

of Khan and Tamer (2007) is the same, with the following form:

E[Q(Z1, Z2; 0, C1 ∧ C2)I(β>Z1 > β>Z2)]. (2.8)

Case 3. (left-truncated survival data) For data subject to left-truncation

only, it is natural to specify C1 = C2 =∞ and then to modify assumption A2 as

A∗ ⊥ T ∗|Z∗. In this setup, our partial-rank correlation function can be rewritten

as

E

[
Q(Z1, Z2;A1 ∨A2,∞)I(β>Z1 > β>Z2)

]
= P(T1 > T2 > (A1 ∨A2), β>Z1 > β>Z2). (2.9)

2.2. An extension to right-truncated and left-censored data

In insurance applications and AIDS cohort studies (e.g., Kaminsky (1987)

and Kalbfleisch and Lawless (1991)), the chronological times of initiating and

consequent events, say X∗0 and (X∗0 + T ∗), of individuals are available only if

(X∗0 + T ∗) falls within some chronological period [0, τ ], that is, X∗0 + T ∗ ≤ τ . As

shown in the Australian AIDS data (Cui (1999)), (X∗0 +T ∗) may not be recorded

before the chronological time X1, which can be a determined or random time,

with X1 ≤ τ . Thus, the lag T ∗ between events is right-truncated by D∗ = τ−X∗0
and left-censored by Cτ = X1 − X∗0 , and the triplets (T ∗, D∗, Z∗) are observed

only if {D∗ ≥ T ∗}. Lagakos, Barraj and Gruttola (1998) and Cui (1999) show

that the reverse survival time S∗ = τ − T ∗, X∗0 , and τ − X1 can be regarded

as the failure time, truncation time, and residual censoring time, respectively,

in left-truncated and right-censored survival data. As a result, the reverse-time

hazard function λr(t|z) is conveniently approached and explained. Thus, model

(1.1) is adopted in the reverse-time hazard regression model (1.2).

Let (T,D = τ − X0, Z) represent the observed lag, right-truncated time,

and covariates, with the joint distribution of (T,D,Z) being the same as the

conditional distribution of (T ∗, D∗, Z∗) on {D∗ ≥ T ∗}. This can be transferred

to the setup of the triplets (S,X0, Z), which have the same joint distribution of

(S∗, X∗0 , Z
∗), given {S∗ ≥ X∗0}. By substituting (S∗` , τ−X1`, X0`) for (T ∗` , C`, A`)

in (2.5) and (Yc`, δc`, X0,`) for (Y`, δ`, A`) in (2.6), where Yc` = min{S`, τ −X1` +

X0`} = min{S`, τ −Cτ`} and δc` = I(S` ≤ τ −X1` +X0`) = I(S` ≤ τ −Cτ`), for

` = 1, 2, we have the following partial-rank correlation function:

Cτ (β) = E

[
Q(Z1, Z2;X01 ∨X02, (τ −X11 +X01)
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∧ (τ −X12 +X02))I(β>Z1 > β>Z2)

]
= P(Yc1 > Yc2 > (X01 ∨X02), δc2 = 1, β>Z1 > β>Z2). (2.10)

In terms of the definition of (S,X0, X1), an alternative probability representation

of Cτ (β) can be derived as

P (Yτ1 < Yτ2 < (D1 ∧D2), δτ2 = 1, β>Z1 > β>Z2), (2.11)

where Yτ` = max{T`, Cτ`} and δτ` = I(T` ≥ Cτ`), for ` = 1, 2. Under model (1.2)

and assumptions A1, A2∗ (T ∗ ⊥ D∗|Z∗ and (D − Cτ ) ⊥ (T,D)|Z), and A3, β0

is immediately shown to be the unique maximizer of Cτ (β). For data subject to

right-truncation only, assumption A2∗ can be modified as T ∗ ⊥ D∗|Z∗ and the

partial-rank correlation function in (2.11) can be rewritten as

P (T1 < T2 < (D1 ∧D2), β>Z1 > β>Z2). (2.12)

3. Statistical Inferences

The maximum partial-rank correlation estimator of β0 is proposed as a max-

imizer of a sample analogue of C(β). An effective computational algorithm is

provided to implement such an optimization problem. In addition, we estab-

lish the consistency and asymptotic normality of the estimator and a weighted

bootstrap approximation of the sampling distribution of the estimator.

3.1. Estimation and computational algorithm

Based on the constructed partial-rank correlation function in (2.6) and left-

truncated and right-censored survival data of the form {(Yi, δi, Ai, Zi)}ni=1, a

sample analogue of C(β) is naturally given by a U -statistic of the form:

Cn(β) =
1

n(n− 1)

∑
i 6=j

I(Yi > Yj > (Ai ∨Aj), δj = 1, β>Zi > β>Zj). (3.1)

Given that β0 is a maximizer of C(β), we estimate β using the maximizer

β̂ ∈ argmax
{β(θ):θ∈Θ}

Cn(β). (3.2)

In application, an easily implemented numerical algorithm is necessary to com-

pute the maximum partial-rank correlation estimator β̂. For the constrained

optimization of Cn(β), a direct maximization is usually impractical and difficult

because the target function is not differentiable with respect to β.

Using complete failure time data, Wang and Chiang (2017) provided an ef-

fective procedure to compute the maximization of the rank correlation function
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with respect to the coefficients of a generalized single-index. Indeed, their algo-

rithm can also be adopted to compute a maximizer β̂ of Cn(β). Let a smoothed

counterpart of Cn(β) be defined as

Cnσ(β) =
1

n(n− 1)

n∑
i 6=j

I(Yi > Yj > (Ai ∨Aj), δj = 1)s

(
β>Zi − β>Zj

σ

)
,(3.3)

where s(υ) = 1/(1 +exp(−υ)) is a sigmoid function and σ is a tuning parameter.

In addition, let gnσ(β) denote the gradient function of Cnσ(β), (ε1, ε2, r) be pre-

chosen positive values with 0 < r < 1, and ‖ · ‖ be the Euclidean norm of

a vector. Provided that σ = o(1/
√
n), Ma and Huang (2005) showed that the

maximizer of Cnσ(β) and β̂ have the same asymptotic distribution. The following

computational algorithm is shown by Wang and Chiang (2017) to be theoretically

valid and practically feasible for computing β̂:

Step 1. Set the initial values of (β, σ) as (β̂(0), σ(0)) and the step length as α.

Step 2. Refine σ(k) as σ(k+1) = rσ(k) if |ρ(k) − 1| > ε1, and set σ(k+1) as σ(k)

otherwise, where ρ(k) = C0n(β̂(k))/Cnσ(k)(β̂(k)) for k ≥ 0.

Step 3. Set β̂(k+1) as β̂(k) if gnσ(k+1)(β̂(k)) = 0 or gnσ(k+1)(β̂(k)) ∝ β̂(k), and set

β̂(k+1) as β̂(k)+αp(k)/‖p(k)‖ otherwise, where p(k) =
(
Ip−β̂(k)β̂(k)>/‖β̂(k)‖2

)
gnσ(k+1)(β̂(k)).

Step 4. Repeat Steps 2–3 until |ρ(K)−1| < ε1 and ‖β̂(K+1)− β̂(K)‖/‖β̂(K)‖ < ε2
for some integer K, and compute β̂ as β̂(K)/β̂

(K)
1 , where β̂

(K)
1 is a coefficient

estimator of Z1.

With an appropriate choice of ε1, the rate of σ(k) can be adjusted to o(1/
√
n)

after some iterations. The R code of the above algorithm can also be found in

Chen and Chiang (2018) at the Biometrics website on Wiley Online Library.

Remark 1. In the spirit of our estimation, an estimator can also be proposed for

the index coefficients in model (1.2). Based on right-truncated and left-censored

survival data of the form {(Yτi, δτi, Di, Zi)}ni=1, β0 is estimated by a maximizer

of the following sample analogue of Cτ (β) in (2.11):

Cτn(β) =
1

n(n− 1)

∑
i 6=j

I(Yτi < Yτj < (Di ∧Dj), δτj = 1, β>Zi > β>Zj). (3.4)

3.2. Consistency, asymptotic normality, and bootstrap approximation

Let Nθ be a neighborhood of θ in Θ, X denote the vector (T,C,A,Z>)>, X
be the support of X, V0 = E[∂2

θτ(X, θ0)]/2, ∆0 = E[∂θτ(X, θ0)∂>θ τ(X, θ0)], and
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Σ0 = V −1
0 40V

−1
0 , with

τ(x, θ) = P(T > t > (A ∨ a), (C +A) ∧ (c+ a) > t, Z>(1, θ) > z>(1, θ))

+P(t > T > (A ∨ a), (C +A) ∧ (c+ a) > T, z>(1, θ) > Z>(1, θ)),

for all (x, θ) ∈ X ×Θ. We assume the following conditions.

A4. E‖∂θτ(X, θ0)‖ <∞.

A5. ‖∂2
θτ(x, θ) − ∂2

θτ(x, θ0)‖ ≤ M‖θ − θ0‖ for some positive constant M inde-

pendent of (x, θ) ∈ X ×Nθ0 .

A6. sup{(x,θ)∈X×Nθ0} ‖∂
2
xτ(x, θ)‖ <∞ and

∑
i1,i2

E
[
|(∂2

θτ(X, θ0))i1,i2 |
]
<∞.

A7. V0 is positive-definite.

Following the proofs in Han (1987) and Sherman (1993), we establish the

consistency and asymptotic normality of θ̂ as follows:

Theorem 2. Under model (1.1) and assumptions A1-A7, θ̂
p→ θ0 and

√
n(θ̂ −

θ0)
d−→ N(0,Σ0).

Using a consistent estimator of Σ0, the asymptotic normality of θ̂ can be

applied to develop the related inference procedures. Instead of directly estimating

Σ0 using a smoothing estimation technique (cf., Sherman (1993)), a weighted

bootstrap approximation of the sampling distribution of θ̂ is preferred in practical

implementations.

Let Dn = {(Yi, δi, Ai, Zi)}ni=1 be the collected left-truncated and right-

censored survival data. Independent of Dn, the random quantities ξ1, . . . , ξn
are independently generated from a common population with P(ξ = 0) < 1. A

weighted bootstrap analogue of Cn(β) is given by

Cω
n(β) =

n∑
i=1

n∑
j=1

wiwjI(Yi > Yj > (Ai ∨Aj), δj = 1, β>Zi > β>Zj), (3.5)

where wi = ξi/
∑n

j=1 ξj , for i = 1, . . . , n, and the counterpart, say β̂ω, of β̂ is

defined as a maximizer of Cω
n(β). In the following theorem, we establish the

asymptotic equivalence of ρ(θ̂ω − θ̂) and (θ̂ − θ0), where ρ = E[ξ]/
√

var(ξ) is a

scale-factor modification for the variability in the weights.

Theorem 3. Under model (1.1) and assumptions A1-A7,

sup
u∈R
|P(
√
nρ(θ̂ω − θ̂) ≤ u|Dn)− P(

√
n(θ̂ − θ0) ≤ u)| p−→ 0.
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Proof. See the Appendix.

Let σω(θ̂k) and qως (θ̂k) be the standard deviation and 100ςth quantile (0 <

ς < 1) of ρ(θ̂ω − θ̂), k = 1, . . . , (p − 1), respectively, and zς be the 100ςth

quantile of the standard normal distribution. It follows from Theorems 2–3 that

approximate 100(1 − α)% quantile-type and normal-type bootstrap confidence

intervals of θ0k, for 0 < α < 1, can be constructed by

(θ̂k − qω1−α/2(θ̂k), θ̂k − qωα/2(θ̂k)) and (θ̂k − z1−α/2σ
ω(θ̂k), θ̂k + z1−α/2σ

ω(θ̂k)),

(3.6)

respectively. According to our empirical results, the quantile-type bootstrap

interval estimator outperforms the normal-type interval estimator, in general, in

terms of the length and coverage probability.

4. Simulations

In this section, we describe the simulation experiments that we used to inves-

tigate the finite-sample performance of the proposed estimator and its competi-

tors. To ensure numerical stability, the simulation results are based on 1,000 repli-

cations with sample sizes (n) of 200 and 400. The bootstrap inferences are drawn

from 500 bootstrap samples with ξ1, . . . , ξn
i.i.d.∼ Gamma(4, 2). Three hazard

models with Z∗ = (Z∗1 , Z
∗
2 , Z

∗
3 )> and the same index coefficients β0 = (1, 1, 1)>

are studied under different setups of left-truncation and right-censoring. More-

over, conditional on Z∗ = z, the residual censoring time C = r0(U(0, z2) + 0.1) is

generated independently, where r0 is specified to produce censoring rates (c.r.)

of 20% and 40%.

Example 1. A mixture of discrete and continuous covariates are specified, with

Z∗1 ∼ N(0, 1), Z∗2 ∼ U(0, 1), and Z∗3 ∼ U({1, 2, . . . , 10}). We designed the

following proportional hazard regression model to generate T ∗:

M1. λ(t, z) = λ0(t) exp(β>0 z) with λ0(t) = 4t.

Conditional on Z∗ = z, A∗ = r1(U(0, 0.5) + |z1|I(|z1| < 0.5)) is generated inde-

pendently with the proportions of untruncated data (p.u.), that is P(A∗ > T ∗),

being 0.1, 0.5, and 0.9 for different values of r1.

Under the setup of covariate-dependent truncation time, we compared the

proposed maximum partial-rank correlation estimator β̂ with the maximum par-

tial likelihood estimator β̃ of Wang, Brookmeyer and Jewell (1993) for the pro-

portional hazard regression model and with the estimator β̄ of Huang and Qin

(2013) for the additive hazard regression model. Table 1 displays the means
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Table 1. The means (standard deviations) of 1,000 estimates under model M1 for sample
sizes (n) of 200 and 400, proportions of untruncated data (p.u.) of 0.1, 0.5, and 0.9, and
censoring rates (c.r.) of 20% and 40%.

n = 200 n = 400
p.u. 0.1 0.5 0.9 0.1 0.5 0.9
c.r. θ01 θ02 θ01 θ02 θ01 θ02 θ01 θ02 θ01 θ02 θ01 θ02

20%

θ̂
1.02 1.00 1.03 1.01 1.03 0.98 1.01 1.00 1.00 1.00 1.00 1.00

(0.144) (0.141) (0.125) (0.122) (0.143) (0.144) (0.086) (0.080) (0.091) (0.085) (0.105) (0.102)

θ̃
1.00 1.01 1.01 1.01 1.01 1.01 1.00 1.01 1.00 1.00 1.00 1.01

(0.087) (0.087) (0.083) (0.083) (0.091) (0.090) (0.054) (0.055) (0.058) (0.055) (0.063) (0.064)

θ̄
1.09 1.08 1.10 1.11 1.14 1.13 1.06 1.06 1.09 1.09 1.13 1.14

(0.186) (0.187) (0.177) (0.181) (0.164) (0.161) (0.117) (0.115) (0.123) (0.124) (0.121) (0.117)

40%

θ̂
1.02 1.00 1.04 1.01 1.03 1.01 1.02 1.00 1.00 1.01 1.00 1.01

(0.150) (0.151) (0.136) (0.137) (0.143) (0.149) (0.098) (0.093) (0.096) (0.091) (0.107) (0.106)

θ̃
1.00 1.00 1.02 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.01

(0.100) (0.101) (0.091) (0.090) (0.092) (0.091) (0.065) (0.065) (0.060) (0.061) (0.067) (0.070)

θ̄
1.08 1.09 1.12 1.11 1.14 1.15 1.07 1.06 1.10 1.10 1.13 1.14

(0.257) (0.268) (0.208) (0.214) (0.185) (0.194) (0.152) (0.147) (0.136) (0.137) (0.128) (0.127)

Table 2. The means (standard deviations) of 1,000 estimates under model M2 for sample
sizes (n) of 200 and 400 and censoring rates (c.r.) of 20% and 40%.

n = 200 n = 400
c.r. 20% 40% 20% 40%

θ01 θ02 θ01 θ02 θ01 θ02 θ01 θ02

θ̂
1.01 1.00 1.02 1.03 1.00 1.00 1.01 1.01

(0.130) (0.111) (0.191) (0.212) (0.091) (0.093) (0.102) (0.096)

θ̃
0.78 0.81 0.83 0.84 0.75 0.74 0.74 0.73

(0.240) (0.261) (0.282) (0.251) (0.170) (0.174) (0.273) (0.268)

θ̄
1.01 1.00 1.02 1.02 1.00 1.00 1.00 1.01

(0.182) (0.175) (0.195) (0.204) (0.121) (0.117) (0.130) (0.136)

and standard deviations of 1,000 estimates for different combinations of sample

sizes, censoring rates, and proportions of untruncated data. As a result of a

model misspecification, β̄ has a relatively large bias and standard deviation in

the model formulation of M1. In addition, the bias magnitudes of both β̂ and β̃

are generally small. However, the standard deviation of β̃ is slightly smaller than

that of β̂. In addition, the variations of both β̂ and β̃ decrease as n increases,

c.r. decreases, and p.u. falls around 0.5. As shown in the next two examples,

the maximum partial likelihood estimator has very poor performance under a

model misspecification. To simplify the presentation, a weighted bootstrap esti-

mator of the standard deviation and a weighted bootstrap confidence interval of

β0 are assessed in the setting with p.u. = 0.5. In Table 4, the averages of 1,000

bootstrap standard errors and 95% quantile-type bootstrap confidence intervals
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Table 3. The means (standard deviations) of 1,000 estimates under model M3 for sample
sizes (n) of 200 and 400 and censoring rates (c.r.) of 20% and 40%.

n = 200 n = 400
c.r. 20% 40% 20% 40%

θ01 θ02 θ01 θ02 θ01 θ02 θ01 θ02

θ̂
1.00 1.01 1.02 1.05 1.00 1.00 1.02 1.01

(0.148) (0.146) (0.345) (0.340) (0.099) (0.094) (0.157) (0.154)

θ̃
0.22 0.08 0.21 0.07 0.18 0.06 0.17 0.16

(0.282) (0.116) (0.400) (0.166) (0.251) (0.105) (0.267) (0.101)

θ̄
0.61 0.22 0.38 0.10 0.41 0.06 0.26 0.02

(0.508) (0.426) (0.530) (0.426) (0.820) (0.761) (0.462) (0.382)

are found to tend toward the standard deviations and 95% quantile intervals of

1,000 estimates as n increases or c.r. decreases. The empirical coverage proba-

bilities of β0, shown in Table 4, are slightly higher than the nominal level of 0.95

for (n, c.r.) = (200, 40%), and stay close to this nominal level for the remaining

cases.

Example 2. In this simulation scenario, a random vector (Z∗01, 1/Z
∗
02, 1/Z

∗
03)> is

specified to follow a multivariate normal distribution with mean zero, standard

deviation one, and pairwise correlation 0.5. Furthermore, the joint distribution

of Z∗ was designed to be the same as that of (10Z∗01, 10Z∗02, 10Z∗03)> on {Z∗01 +

Z∗02 + Z∗03 > 0}. Moreover, T ∗ is generated from the following additive hazard

regression model:

M2. λ(t, z) = λ0(t) + β>0 z with λ0(t) = 1.

For the truncation time, conditional on Z∗ = z, A∗ = 0.4(U(0, 1) + |z1|I(|z1| <
0.5)) is set with p.u. = 0.9.

Compared with β̂ and β̄, β̃ has a substantially bias and standard deviation

in Table 2. Furthermore, the biases of β̂ and β̄ are comparable. Even in the

case of the conditional estimating equation approach used for the additive haz-

ard regression model, the standard deviation of β̂ is, surprisingly, found to be

smaller than that of β̄. Once again, the bootstrap standard error and confidence

interval slightly overestimate the asymptotic standard deviation and the quantile

interval, respectively, but their accuracies improve significantly as n increases or

c.r. decreases. Moreover, the constructed weighted bootstrap confidence intervals

have fairly accurate coverage probabilities.

Example 3. With the triplets (Z∗01, Z
∗
02, Z

∗
03)> in Example 2, the joint distribu-

tion of Z∗ is specified to be the same as that of (Z∗01, Z
∗
02, Z

∗
03)> on {Z∗01 +Z∗02 +



2154 WANG AND CHIANG

Table 4. The standard deviations (s.d.), bootstrap standard errors (b.s.e), 95% quan-
tile interval (q.i.), quantile-type bootstrap confidence intervals (q.b.c.i.), and empirical
coverage probabilities (c.p.) of 1,000 estimates.

c.r. n = 200 n = 400
s.d. b.s.e. q.i. q.b.c.i. c.p. s.d. q.i. q.b.c.i. b.s.e. c.p.

M1
20%

θ̂01 0.125 0.162 (0.802, 1.307) (0.776, 1.347) 0.956 0.091 0.093 (0.849, 1.212) (0.845, 1.216) 0.950

θ̂02 0.122 0.149 (0.791, 1.303) (0.761, 1.343) 0.956 0.085 0.090 (0.843, 1.197) (0.840, 1.217) 0.955

40%
θ̂01 0.136 0.203 (0.822, 1.383) (0.769, 1.426) 0.961 0.096 0.098 (0.846, 1.248) (0.843, 1.250) 0.952

θ̂02 0.137 0.216 (0.785, 1.303) (0.739, 1.403) 0.960 0.091 0.094 (0.827, 1.210) (0.818, 1.221) 0.953

M2
20%

θ̂01 0.130 0.153 (0.816, 1.367) (0.792, 1.387) 0.954 0.091 0.094 (0.849, 1.205) (0.843, 1.209) 0.951
θ02 0.111 0.141 (0.799, 1.253) (0.761, 1.303) 0.953 0.093 0.094 (0.883, 1.257) (0.880, 1.260) 0.952

40%
θ̂01 0.191 0.261 (0.702, 1.486) (0.669, 1.503) 0.951 0.102 0.106 (0.835, 1.248) (0.850, 1.258) 0.952

θ̂02 0.212 0.267 (0.639, 1.453) (0.605, 1.430) 0.951 0.096 0.101 (0.807, 1.210) (0.803, 1.231) 0.952

M3
20%

θ̂01 0.148 0.201 (0.696, 1.277) (0.622, 1.287) 0.958 0.099 0.101 (0.823, 1.225) (0.820, 1.243) 0.953
θ02 0.146 0.198 (0.709, 1.273) (0.631, 1.283) 0.958 0.094 0.102 (0.863, 1.277) (0.860, 1.280) 0.951

40%
θ̂01 0.345 0.407 (0.372, 1.733) (0.309, 1.766) 0.962 0.157 0.159 (0.746, 1.348) (0.740, 1.378) 0.952

θ̂02 0.340 0.414 (0.345, 1.693) (0.289, 1.763) 0.961 0.154 0.157 (0.710, 1.310) (0.701, 1.331) 0.952

Z∗03 > 0}. The hazard regression model of T ∗ on Z∗ = z is further designed to

be

M3. λ(t, z) =
β>0 z

(β>0 z + t)
.

Conditional on Z∗ = z, a covariate-dependent truncation time A∗ = U(0, 10) +

|z3|I(|z3| < 10) is set, with p.u. = 0.9. Note that the above model is neither the

proportional hazard regression model nor the additive hazard regression model.

Our simulation results show that the invalid partial likelihood and condi-

tional estimating equation approaches lead to serious biases and unacceptable

variations in β̃ and β̄. In contrast, the means of the 1,000 maximum partial-rank

correlation estimates are very close to β0. The standard deviation of β̂ decreases

as n increases and c.r. decreases. The weighted bootstrap standard error and

confidence interval perform similarly to those in Example 1.

5. An Analysis of the HRS Data

Here, we apply our partial-rank correlation estimation to the RAND version

N of the US HRS data, which are available at the website: http://hrsonline.

isr.umich.edu. A sample of individuals, born between 1931 and 1934, was re-

cruited by a cross-sectional sampling scheme between 1992 and 1993 and followed

until 2012. After excluding those with missing covariates of interest, a total of

4,323 white nonHispanic men and 4,724 white nonHispanic women were inter-

viewed. For each individual, the birth date, gender, self-reported body mass

http://hrsonline.isr.umich.edu.
http://hrsonline.isr.umich.edu.
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index (BMI), level of education, and smoking status were investigated in the data

analysis. In the first interview, smoking status was defined as “never smoked”

(nsmok), “stopped smoking” (ssmok), and “currently smoking” (csmok), and

educational attaintment was classified as “less-than-high-school or general edu-

cational development” (ledu), “high school graduate and some college” (medu),

and “college graduate and above” (hedu). The vital status and last observed

date for the individuals were determined by the National Death Index (NDI)

and an exit interview. Because some individuals died before recruitment and

were lost to follow-up during the study period, their survival times were subject

to left-truncation and right-censoring.

Let Z∗1 and Z∗2 be the dummy variables, with nsmok as the reference cat-

egory and the value one assigned to csmok and ssmok. For level of education,

hedu is treated as the reference category, and the value one is assigned to ledu and

medu in the dummy variables Z∗3 and Z∗4 , respectively. Because being overweight

or underweight, evaluated in terms of BMI, might decrease life expectancy, the

designed variables Z∗5 =BMI a and Z∗6 =BMI 2
a are used in the model fitting, where

BMI a = log(BMI /BMI ), with BMI being the sample mean. In this data analysis,

the gender (gender) of each person is further considered as a stratification vari-

able. Based on the left-truncated and right-censored survival data, our research

aims to identify the effects of these attributes on the death time of males and

females using a more general hazard regression model (1.1). Using the partial-

rank correlation estimation, Table 5 shows that the estimated effects of smoking

status, level of education, and BMI on the hazard function of transition to death

are very similar for men and women. The mortality risks of a current smoker

and a stopped smoker are significantly higher than those of a stopped smoker

and a nonsmoker, respectively. Compared with those with a higher level of edu-

cation, people with a low level of education have a significantly higher mortality

risk, whereas a median-education is not significantly different in terms of life ex-

pectancy. Furthermore, a higher or lower BMI tends to increase the hazard rate

of transition to death. In addition, the mortality risk of an overweight individual

is, in general, higher than that of an underweight person.

When the truncation time is covariate-independent, that is, fA∗(a|z) =

fA∗(a), where fA∗(a|z) and fA∗(a) are the conditional density function of A∗

given Z∗ = z and the marginal density function of A∗, respectively, Chen and

Chiang (2018) developed another approach to estimate β0 based on a prevalent

cohort sample without survival times. The proposed estimator, say β̆ = (1, θ̆>)>,

is defined as the maximizer of the following sample analogue of CA(β) = P (A1 >
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Table 5. The estimates (standard errors) of index coefficients for HRS data.

gender variables
csmok ssmok ledu medu BMI a BMI 2a

male

β̂ 1.001.001.00 0.390.390.39 0.350.350.35 0.09 0.570.570.57 0.660.660.66
(0.000) (0.059) (0.062) (0.083) (0.163) (0.147)

β̃ 1.001.001.00 0.390.390.39 0.290.290.29 0.06 0.310.310.31 3.423.423.42
(0.000) (0.050) (0.064) (0.051) (0.123) (0.595)

β̄ 1.001.001.00 0.270.270.27 0.290.290.29 0.02 0.15 6.116.116.11
(0.000) (0.068) (0.116) (0.069) (0.297) (1.550)

female

β̂ 1.001.001.00 0.250.250.25 0.620.620.62 0.07 0.620.620.62 1.011.011.01
(0.000) (0.080) (0.107) (0.132) (0.153) (0.281)

β̃ 1.001.001.00 0.290.290.29 0.580.580.58 0.220.220.22 0.520.520.52 2.732.732.73
(0.000) (0.073) (0.110) (0.096) (0.160) (0.474)

β̄ 1.001.001.00 0.180.180.18 0.710.710.71 0.14 0.880.880.88 4.824.824.82
(0.000) (0.083) (0.191) (0.099) (0.331) (1.335)

A2, β
>Z1 > β>Z2):

CnA(β) =
1

n(n− 1)

∑
i 6=j

I(Ai > Aj , β
>Zi > β>Zj). (5.1)

The maximizer βA of CA(β) is further shown to be β0 whenever model (1.1) is

correct. For the hypotheses{
H00 : {fA∗(a|z) = fA∗(a)} or {fA∗(a|z) 6= fA∗(a), βA = β0},
H0A : fA∗(a|z) 6= fA∗(a),

(5.2)

a Hausman-type statistic T0 = (θ̂−θ̆)>(ρ2V ar(θ̂ω−θ̆ω|Dn))−1(θ̂−θ̆) is introduced

to test whether the truncation time is covariate-dependent. Note that βA can

be β0, even if the truncation time is covariate-dependent. Based on data of the

form {(Ai, Zi)}ni=1, β̆ is computed to be (1.00,−0.46,−1.25,−0.50, 1.90, 0.26) for

men and (1.00,−0.24,−2.21,−1.42, −0.07, 1.98) for women, with corresponding

bootstrap standard errors of (0.000, 0.223, 0.217, 0.119, 0.503, 0.320) and (0.000,

0.310, 0.773, 0.389, 0.648, 0.760). Both β̂ in Table 5 and β̆ have different expla-

nations for life expectancy. In addition, the values of T0 4.45 for men and 3.46

for women. From their bootstrap p-values, 0.000 and 0.000, we conclude that

the truncation time should be covariate-dependent.

Although the explanations of β̃ and β̄ in Table 5 are similar to that of β̂,

the magnitudes of their coefficient estimates of BMI 2
a are very different. The

appropriateness of multiplicative and additive hazard regression models is inves-

tigated further. Under model (1.1), let λ∗0(t) exp(β∗>0 z) and λ∗∗0 (t)+β∗∗>0 z be the
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corresponding maximizer and solution of the asymptotic equivalent functions of

the partial likelihood function and the conditional estimating equation, respec-

tively. It follows that (λ∗0(t), β∗0) = (λ0(t), β0) when λ(t, β>0 z) = λ0(t) exp(β>0 z),

and (λ∗∗0 (t), β∗∗0 ) = (λ0(t), β0) when λ(t, β>0 z) = λ0(t) + β>0 z. We consider the

hypotheses{
H10 : {λ(t, β>0 z) = λ0(t) exp(β>0 z)} or {λ(t, β>0 z) 6= λ∗0(t) exp(β∗>0 z), β∗0 = β0},
H1A : {λ(t, β>0 z) 6= λ∗0(t) exp(β∗>0 z), β∗0 6= β0},

(5.3)

and{
H20 : {λ(t, β>0 z) = λ0(t) + β>0 z} or {λ(t, β>0 z) 6= λ∗∗0 (t) + β∗∗>0 z, β∗∗0 = β0},
H2A : {λ(t, β>0 z) 6= λ∗∗0 (t) + β∗∗>0 z, β∗∗0 6= β0}.

(5.4)

It follows that β̂ is a consistent estimator of β0 under the hypotheses in (5.3)–

(5.4), whereas β̃ and β̄ are not consistent estimators of β0 under H1A and H2A, re-

spectively. Hausman-type test statistics T1 = (θ̂− θ̃)>(ρ2V ar(θ̂ω− θ̃ω|Dn))−1(θ̂−
θ̃) and T2 = (θ̂−θ̄)>(ρ2V ar(θ̂ω−θ̄ω|Dn))−1(θ̂−θ̄) are naturally proposed, and the

hypotheses H01 and H02 are rejected if the corresponding values of T1 and T2 are

greater than the critical values at the specified significance levels. The values of

(T1, T2) and their bootstrap p-values are computed to be (6.76, 6.05) and (0.000,

0.005), respectively, for men and (6.50, 2.38) and (0.000, 0.003), respectively, for

women. These numerical results show that the proportional and additive hazard

regression models are not appropriate for characterizing the effects of covariates

on the hazard rates of transition to death. Based on this conclusion, a challenging

task remains of examining the correctness of model (1.1) or exploring a potential

formulation of λ(t, u) in model (1.1).

6. Conclusion and Discussion

A partial-rank correlation estimator is proposed to estimate the index coef-

ficients of a general single-index hazard regression model with left-truncated and

right-censored survival data. An efficient computational algorithm is employed to

perform this constraint nondifferentiable optimization problem. The developed

approach can be extended to a reversed-time hazard regression model (1.2) with

right-truncation and left-censoring. Moreover, we establish the consistency and

asymptotic normality of the proposed maximum partial-rank correlation estima-

tor and introduce weighted bootstrap approximations of the sampling quantities
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of interest related to the proposed estimator. The numerical studies also show

that our estimator performs satisfactorily.

In terms of the constructed partial-rank correlation function, the single-index

β>0 Z
∗ is shown to exhibit existence, optimality, and uniqueness up to a scale and

location. Unfortunately, the proposed estimation criterion cannot be directly

applied to a more general single-index survival model of the form:

S(t|z) = S(t, β>0 z), (6.1)

where S(t, u) is an unknown nonnegative bivariate function, strictly increasing

in u for each t. This is because the monotonicity of S(t, u) in u for each t

does not imply the monotonicity of λ(t, u) in u for each t. Currently, there

are no estimation and inference procedures for such a model formulation with

left-truncated and right-censored survival data. The methodological challenge of

estimating the index coefficients remains for future research. In our data analysis,

testing procedures based on Hausman-type test statistics are built to examine

the distribution of the truncation time and the related model structures. When

there is no strong evidence to reject the null hypotheses (H00, H10, and H20)

in (5.2)–(5.4), we cannot conclude the adequacy of the covariate-independent

truncation, proportional hazard model, and additive hazard model. A thorough

study would be worthwhile for the null hypotheses H∗00 : fA∗(a|z) = fA∗(a),

H∗10 : λ(t, β>0 z) = λ0(t) exp(β>0 z), and H∗20 : λ(t, β>0 z) = λ0(t) + β>0 z.
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Appendix

Proof of Theorem 1. Let fC(c|z) denote the density of C, given Z = z, and

Γ(z01, z02) = E[Q(Z1, Z2;A1∨A2, (C1+A1)∧(C2+A2))/(S(A1|Z1)S(A2|Z2))|Z1 =

z01, Z2 = z02]. By specifying (z01, z02) = (z1, z2) and (z01, z02) = (z2, z1), assump-

tion A2 ensures that

Γ(z1, z2) =

∫
· · ·
∫
Q(z1, z2; a1 ∨ a2, (c1 + a1) ∧ (c2 + a2))

2∏
`=1

fA∗(a`|z`)fC(c`|z`)
P (T ∗ > a`|z`)

da`dc` and
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Γ(z2, z1) =

∫
· · ·
∫
Q(z2, z1; a1 ∨ a2, (c1 + a1) ∧ (c2 + a2))

2∏
`=1

fA∗(a`|z`)fC(c`|z`)
P (T ∗ > a`|z`)

da`dc`. (A.1)

An application of Lemma 1 further leads to

Γ(z1, z2) > Γ(z2, z1) whenever β>0 z1 > β>0 z2. (A.2)

Moreover, the following property is an implication of assumption A3:

E[I(β>0 Z1 > β>0 Z2, β
>Z1 < β>Z2)] > 0 ∀β 6= β0. (A.3)

By the law of iterated expectation, we have C(β) = E[Γ(Z1, Z2) I(β>Z1 >

β>Z2)]. Coupled with (A.2)–(A.3) and the equality

C(β0)− C(β) = E[(Γ(Z1, Z2)− Γ(Z2, Z1))I(β>0 Z1 > β>0 Z2, β
>Z1 < β>Z2)],

(A.4)

β0 can be shown to be the unique maximizer of C(β).

Proof of Theorem 3. From equation (7) in Sherman (1993) and assumptions

A1–A7, it follows that

Cn(β)− Cn(β0) = (θ − θ0)>
(

Ψn −
V0

2
(θ − θ0)

)
(1 + op(1)) + op

(
1

n

)
(A.5)

uniformly over op(1) neighborhoods of θ0, where Ψn =
∑n

j=1 uj/n with u1, . . . , un
being independent and identically distributed random variables from a popu-

lation with mean zero and variance-covariance matrix ∆0. An application of

Theorem 2 in Sherman (1993) further leads to

√
n(θ̂ − θ0) =

1√
n

n∑
j=1

V −1
0 uj + op(1). (A.6)

For the weighted bootstrap analogue Cω
n(β) of Cn(β), the argument of Sher-

man (1993) enables us to derive that

Cω
n(β)− Cω

n(β0) = (θ − θ0)>
(

E[ξ]

n

n∑
j=1

ξjuj −
(E[ξ])2V0

2
(θ − θ0)

)
(1 + op̃(1))

+ op̃

(
1

n

)
(A.7)

uniformly over op̃(1) neighborhoods of θ0, where P̃ is the probability measure

generated by Dn × {ξ1, . . . , ξn}. Let Wn =
∑n

j=1 V
−1

0 ξjuj/(
√
nE[ξ]). Because
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β̂ω = (1, θ̂ω)> is a maximizer of Cω
n(β), we have

Cω
n(β̂ω)− Cω

n

((
1, θ0 +

Wn√
n

)>)
≥ 0. (A.8)

Coupled with (A.7), we further have

−
(√
n(θ̂ω − θ0)−Wn

)>
V0

(√
n(θ̂ω − θ0)−Wn

)
(1 + op̃(1)) ≥ 0, (A.9)

which implies that
√
n(θ̂ω − θ0) = Wn + op̃(1). (A.10)

From (A.6) and (A.10), the following property can be obtained:

√
n(θ̂ω − θ̂) =

1√
n

n∑
j=1

V −1
0

(
1− ξj

E[ξ]

)
uj + op̃(1). (A.11)

In the spirit of the proof in Janssen (1994), the Lindeberg-Feller central limit

theorem can be applied to show that

sup
u∈R
|P(
√
nρ(θ̂ω − θ̂) ≤ u|Dn)− ΦΣ0

(u)| p−→ 0, (A.12)

where ΦΣ0
(u) is a multivariate normal distribution with mean vector zero and

variance-covariance matrix Σ0. By Theorem 2, (A.12), and the probability in-

equality, Theorem 3 is established.
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