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For readibility, below we recap all the assumptions which have been listed in the main text.

(A.1) The predictors Uj , j = 1, . . . , p, are bounded, and |Corr(Uj , Uk)| < 1 for all j ̸= k.

(A.2) The error term ε in (7) has zero mean, finite variance, and is uncorrelated with U .

(A.3) The censoring time C is independent of (T,U) and bounded above by τ (the time to the end
of the follow-up).

(A.4) The marginal survival function of the censoring, G0, is continuous on T , and there exists a
positive constant cg such that G0(τ) > cg > 0. Also, the marginal survival function of T , F0,
is continuous on T , and there exists a positive constant cf such that F0(τ) > cf > 0.

S1 First and second moments of ε̃

Given conditions (A.1)–(A.4), ε̃ = Ỹ − α0 − UTβ0 has zero mean and finite variance (the square
integrability of ε̃), and is uncorrelated with U . The relevant proof goes as follows.

Proof. Because we have the equality E[Ỹ |U ] = E[T |U ], it ensures that

E[ε̃|U ] = E[Ỹ |U ]− α0 −UTβ0 = E[T |U ]− α0 −UTβ0 = 0, (S1.1)

which indicates the zero mean of ε̃ through taking expectation on both sides of (S1.1). Recall that
(A.4) implies that G0(t) is bounded away from zero for all t ∈ T = (−∞, τ ], where τ denotes the end
of the follow-up. We show the boundedness of E[ε̃2|U ] as follows, which implies the finite variance
of ε̃. It is straightforward to have that

E[ε̃2|U ] = E[(Ỹ − α0 −UTβ0)
2|U ] = E[Ỹ 2|U ]− (α0 +UTβ0)

2

= E[T 2G0(T )
−1|U ]− (α0 +UTβ0)

2

≤ G0(τ−)−1E[ε2|U ] + (G0(τ−)−1 − 1)(α0 +UTβ0)
2.

(S1.2)

Taking expectation on both sides of (S1.2) yields that

E[ε̃2] ≤ G0(τ−)−1E[ε2] + (G0(τ−)−1 − 1)E[(α0 +UTβ0)
2].
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Because (A.1) and (A.2) give the finite second moment of ε and predictors Uj , j = 1, . . . , p, and (A.4)
yields non-zero G0(τ), it is easy to see that E[ε̃2] is bounded above by a finite constant. Hence, we
show that ε̃ has a finite variance. Note that (A.2) gives Cov(Uj , ε) = 0 for all j. Since we have that
Cov(Uj , Ỹ ) = Cov(Uj , T ), it is easy to see that Cov(Uj , ε̃) = Cov(Uj , Ỹ ) − Cov(Uj , α0 +UTβ0) =

Cov(Uj , T )− Cov(Uj , α0 +UTβ0) = Cov(Uj , ε) = 0, for all j.

S2 Pollard’s Functional Central Limit Theorem
We state Pollard’s functional central limit theorem below for readers’ convenience. Consider random
processes developed from a triangular array {f̃ni(t), i = 1, . . . ,mn, t ∈ T , n ∈ N}, with the {f̃ni}
independent within each row and T being the index set. In addition, we can define

Wn(t) =
∑
i≤mn

(f̃ni(t)− Ef̃ni(t)) ; ρn(s, t) = (
∑
i≤mn

E|f̃ni(s)− f̃ni(t)|2)1/2.

Let UC(T , ρ) denote the space of all bounded functions f̃ : T → R which are uniformly ρ-continuous,
that is, with any appropriately selected semimetric ρ,

lim
δ̃↓0

sup
ρ(s,t)<δ̃

|f̃(s)− f̃(t)| = 0.

Moreover, T is totally bounded by ρ (equivalently, (T , ρ) is totally bounded) if for every ϵ > 0,
there exists a finite collection Tm = {t1, . . . , tm} ⊂ T such that for all t ∈ T , we have ρ(s, t) ≤ ϵ for
some s ∈ Tm. We would like to indicate that if the weak limit is a Gaussian process W , then the
semimetric ρ can be selected as ρ(s, t) = (E|W (s)−W (t)|2)1/2.

Theorem (Pollard, (1990)). Suppose the processes from the triangular array {f̃ni(t)} are independent
within rows, and satisfies

(A) the {f̃ni} are manageable, with envelopes {F̃ni} which are also independent within rows;

(B) V (s, t) = limn→∞EWn(s)Wn(t) exists for every s, t ∈ T ;

(C) lim supn→∞
∑mn

i=1EF̃ 2
ni is finite;

(D) For each η > 0, limn→∞
∑mn

i=1EF̃ 2
ni1(F̃ni > η) = 0 (an analogy to the Lindeberg condition);

(E) For every s, t ∈ T , ρ(s, t) = limn→∞ ρn(s, t) exists. And for all deterministic sequences
{sn} and {tn} in T , ρn(sn, tn) → 0 if ρ(sn, tn) → 0.

Then, we have (i) T is totally bounded under the pseudometric (semimetric) ρ; (ii) the finite
dimensional distributions of Wn have Gaussian limits, with zero means and covariances given by
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V, which uniquely determine a Gaussian distribution concentrated on UC(T , ρ); (iii) Wn converge
weakly on ℓ∞τ to a tight mean zero Gaussian process W concentrated on UC(T , ρ) with V (s, t) as
covariance.

S3 Proof for Theorem 1

Theorem 1 follows from a series of lemmas below. To keep notational simplicity, we suppress the
superscript “(n)” under the local model in this proof unless otherwise stated. Define the sample space
by X = T × {0, 1} × Rp (with σ-algebra A), where we observe a random sample {Xi, δi,U i}ni=1. In
addition, (X, δ,U) follows a distribution P belonging to the set of probability measure P on (X ,A),

and its empirical distribution is denoted by Pn. In the following, we outline how all the lemmas
play their roles to prove Theorem 1 and thereafter list these lemmas along with their corresponding
proofs.

In Lemma 3.1, we take advantage of Stute’s Theorem 1.1 (Stute (1995)), and express
√
n[Ĝn(t)−

G0(t)] as an i.i.d. sum, for any fixed t. Let Gn =
√
n(Pn − P ), and {

√
n[Ĝn(t)−G0(t)], t ∈ T } can

be approximated by an empirical process (with probability approaching to one) Ln : X 7→ ℓ∞τ , which
is

{Gn[ϕt(X)γ0(X)(1− δ) + γ1(X, t)δ − γ2(X, t)−G0(t)], t ∈ T }

with ϕt, γ0, γ1 as well as γ2 stated in Lemma 3.1. Moreover, we define a function Ψj : R×ℓ∞τ ×P → R,
where

Ψj(m,h,Q) = m+Q

[
(Uj − EUj)Ỹ h(X)

G0(X)

]
, (S3.1)

and M̃n = {M̃n,j , j = 1, . . . , p} with

M̃n,j = Gn

(
ε̃n + (U − PnU)Tβ0 − (Uj − PnUj)C

T
j β0/Vj

)
(Uj − PnUj), j = 1, . . . , p. (S3.2)

We further introduce Lemma 3.2 to indicate

√
n(θ̂n − θn)S

2
ĵn

= Ψj0(M̃n,j0 ,Ln,Pn).

To attain the limiting distribution of
√
nθ̂n when β0 ̸= 0, we need to derive the joint weak limit

of (M̃n,Ln). It suffices to show that the empirical process Wn = {Wn(t) = Ln(t)+
∑p

j=1 ajM̃n,j , t ∈
T } converges weakly to a mean-zero Gaussian process W with covariance function σW , where for



S4 TZU-JUNG HUANG, IAN W. MCKEAGUE, AND MIN QIAN

(a1, . . . , ap) ∈ Rp,

Wn(t) = Ln(t) +

p∑
j=1

ajM̃n,j

= Gn{ϕt(X)γ0(X)(1− δ) + γ1(X, t)δ − γ2(X, t)−G0(t)

+

p∑
j=1

aj(ε̃n + (U − PnU)Tβ0 − (Uj − PnUj)C
T
j β0/Vj)(Uj − PnUj)}

(S3.3)

and

σW (s, t) =

p∑
j=1

p∑
k=1

ajakσM (j, k) +

p∑
j=1

ajσML(j, s) +

p∑
j=1

ajσML(j, t) + σL(s, t).

In Lemma 3.3, we obtain this desired result by checking some regularity conditions for Pollard’s
functional central limit theorem stated in Section S2. This result equivalently ensures the joint
weak convergence of (M̃n,Ln) to (M ,L), where (M ,L) is a mean-zero joint Gaussian process.
Furthermore, multivariate central limit theorem implies that M̃n converges in distribution to a normal
random vector M , and the weak convergence of Ln to L can be developed by applying Pollard’s
functional central limit theorem again in a similar fashion as in Lemma 3.3.

In ensuing Lemma 3.4, we prove the continuity of Ψj on R× ℓ∞τ × P almost surely (a.s.) for all
given j, and validate the application of continuous mapping theorem for empirical processes (Kosorok
(2008), Chap. 7, Sec. 7.2.1). Based on Lemma 3.3 and 3.4, we develop the limiting distribution of
√
nθ̂n when β0 ̸= 0 in Lemma 3.5. Moreover, we show the oracle property of ĵn when β0 ̸= 0 in

Lemma 3.6. When β0 = 0, the joint limiting distribution of
√
nθ̂ and n[S2

Y 1p− R̂] is constructed in
Lemma 3.7. To establish the limiting distribution when β0 = 0, we use similar arguments to those
in MQ’s work (McKeague and Qian (2015)) and state one of their crucial lemmas as Lemma 3.8.

Let Z = (Z1, . . . , Zp)
T in which the j-th component Zj = Mj + φj(L), and Z can be regarded

as a function from R2p to Rp. Let f(z, b)j = (zj + CT
j b)

2/Vj , for all j. Since Z is a random vector
and |Corr(Uj , Uk)| < 1 for j ̸= k, it is indicated that f(Z, b0)j ̸= f(Z, b0)k for any j ̸= k, a.s. Using
Lemma 3.8, it further ensures that J = argmaxj=1,...,p f(Z, b0)j is uniquely determined a.s. For a
p-variate real vector t = (t1, . . . , tp)

T , define

h(t) = (1(argmax
j

tj = 1), . . . , 1(argmax
j

tj = p)).

We then show that
√
n(θ̂n − θn) is a continuous function of

√
nθ̂h(n[S2

Y 1p − R̂]). Note that ĵn is a
unique maximizer to n[S2

Y 1p−R̂]. Since both ĵn and J are uniquely determined and h is continuous
at t when argmaxj tj is unique, then in Lemma 3.9 we develop the desired limiting distribution of
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√
nθ̂n, applying continuous mapping theorem on the joint distribution of

√
nθ̂ and n[S2

Y 1p − R̂]

obtained from Lemma 3.7. According to all the lemmas and results thereof (stated below in order),
we finally complete this proof and show the desired theorem.

Lemma 3.1. Suppose that (A.4) holds. Uniformly over t ≤ τ,

√
n[Ĝn(t)−G0(t)] = −Ln(t) + op(1).

Proof. For all x ∈ R and t ≤ τ , let

H̃0(x) = P (X ≤ x, δ = 0) = −
∫ x

−∞
F0(y)G0(dy);

H̃1(x) = P (X ≤ x, δ = 1) = −
∫ x

−∞
G0(y)F0(dy);

γ0(x) = exp{
∫ x

−∞

H̃1(dy)

H0(y)
};

γ1(x, t) =
1

H0(x)

∫
1(x,∞)(w)ϕt(w)γ0(w)H̃

0(dw);

γ2(x, t) =

∫ ∫
1(−∞,x)(v)1(−∞,w)(v)ϕt(w)γ0(w)

H0(v)2
H̃1(dv)H̃0(dw),

where ϕt(·) ≡ 1(−∞,t](·). We will apply Theorem 1.1 of Stute (1995), for which we need to check two
conditions below:∫

ϕ2
t (x)γ

2
0(x)H̃

0(dx) =

∫
[ϕt(X)γ0(X)(1− δ)]2dPn < ∞;

−
∫

|ϕt(x)|Γ1/2(x)G0(dx) < ∞, where Γ(x) =

∫ x

−∞

−F0(dy)

H0(y)F0(y)
.

Note that γ0(x) = F0(x)
−1 and the value of 1 − δ is either zero or one. The first condition then

follows since ∫
[ϕt(X)γ0(X)(1− δ)]2dPn ≤

∫ t

−∞
F0(X)−2dPn <

1

F0(τ)2
< ∞,

where we have F0(τ)
−2 finite in the above display because (A.4) indicates that F0(τ) > 0. Moreover

for all u ≤ τ, we have that

Γ(u) ≤ −1

H0(τ)

[∫ u

−∞

F0(dy)

F0(y)

]
=

1

H0(τ)F0(τ)
(1− F0(u)) ,
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which further implies that for all t ≤ τ < τH ,

−
∫

|ϕt(x)|Γ1/2(x)G0(dx) = −
∫ t

−∞
Γ1/2(x)G0(dx) ≤ −

∫ t

−∞
Γ1/2(τ)G0(dx)

≤
(1−G0(t))

√
(1− F0(τ))√

F0(τ)H0(τ)
< ∞.

The second condition is satisfied, and the result then follows from Stute’s theorem.

Lemma 3.2. Suppose that (A.1)–(A.4) hold; that β0 ̸= 0, and that j0 is unique when β0 ̸= 0.

√
n(θ̂n − θn)S

2
ĵn

= Ψj0(M̃n,j0 ,Ln,Pn) + op(1),

where M̃n,j , Ln, and Ψj are as previously defined.

Proof. Because (A.3) implies the property that Cov(Uj , T ) = Cov(Uj , Ỹ ) for all j, we can have
that

√
n(θ̂n − θn)S

2
ĵn

=
√
n

(
1

S2
ĵn

Pn(Uĵn
− PnUĵn

)Y − Cov(Ujn , T )

Vjn

)
S2
ĵn

=
√
n

(
Pn(Uĵn

− PnUĵn
)Y − Cov(Ujn , Ỹ )

Vjn

S2
ĵn

)
.

(S3.4)

Meanwhile, we can further observe that

√
nPn(Uĵn

− PnUĵn
)Y =

√
nPn(Uĵn

− PnUĵn
)Ỹ +

√
nPn(Uĵn

− PnUĵn
)(Y − Ỹ )

=
√
nPn(Uĵn

− PnUĵn
)Ỹ +

√
nPn(Uĵn

− PnUĵn
)δX

[
1

Ĝn(X)
− 1

G0(X)

]
=

√
nPn(Uj0 − PnUj0)Ỹ + Pn

(Uj0 − PnUj0)δXLn(X)

G0(X)2
+ op(1),

(S3.5)

where the second term is contributed by the effect of estimating G0 by the Kaplan–Meier estimator
Ĝn. The last equality in (S3.5) can be ensured by ĵn

a.s.→ j0 (shown in Lemma 3.6 implied by (A.1));
the first order Taylor expansion around G0, and Lemma 3.1 (where (A.4) is required).

Recall that Ỹ = α0 +UTβn + ε̃n, and then (S3.4)–(S3.5) further imply that

√
n(θ̂n − θn)S

2
ĵn

=
√
nPn

(
ε̃n + (U − PnU)Tβn − (Uj0 − PnUj0)C

T
j0βn/Vj0

)
(Uj0 − PnUj0)

+ Pn
(Uj0 − PnUj0)δXLn(X)

G0(X)2
+ op(1).

(S3.6)
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Because (A.2) implies that ε̃n and U are uncorrelated, it ensures that for any j,

P
(
ε̃n + (U − PnU)Tβn − (Uj − PnUj)C

T
j βn/Vj

)
(Uj − PnUj) = 0.

Since Ỹ = δX/G0(X), PnUj0
a.s.→ PUj0 along with (S3.6), we further have that

√
n(θ̂n − θn)S

2
ĵn

= Gn

(
ε̃n + (U − PnU)Tβn − (Uj0 − PnUj0)C

T
j0βn/Vj0

)
(Uj0 − PnUj0)

+ Pn
(Uj0 − PUj0)Ỹ Ln(X)

G0(X)
+ op(1).

(S3.7)

By βn → β0 along with the definitions of M̃n,j and Ψj for any fixed j, (S3.7) further gives the
desired result.

Lemma 3.3. Suppose that (A.1)–(A.4) hold. The empirical process Wn converges to a mean-zero
Gaussian process W with covariance function σW , where for (a1, . . . , ap) ∈ Rp,

σW (s, t) =

p∑
j=1

p∑
k=1

ajakσM (j, k) +

p∑
j=1

ajσML(j, s) +

p∑
j=1

ajσML(j, t) + σL(s, t)

with σM (j, k), σML(j, t) and σL(s, t) provided in the proof, for any j, k, s, t.

Proof. Recall that Wn = {Wn(t), t ∈ T }, where

Wn(t) = Ln(t) +

p∑
j=1

ajM̃n,j

= Gn[ϕt(X)γ0(X)(1− δ) + γ1(X, t)δ − γ2(X, t)−G0(t)

+

p∑
j=1

aj(ε̃n + (U − EU)Tβ0 − (Uj − EUj)C
T
j β0/Vj)(Uj − EUj)] + op(1).

Let U ij denote the i-th subject’s observation of Uj . The empirical process Wn can be approximated
by triangular array:

{hni(t) =
p∑

j=1

ajfni,j + gni(t), i = 1, . . . , n, t ∈ T },

where

fni,j =
1√
n

(
ε̃ni + (U i − EU)Tβ0 − (U ij − EUj)

CT
j β0

Vj

)
(U ij − EUj)
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and

gni(t) =
1√
n
[ϕt(Xi)γ0(Xi)(1− δi) + γ1(Xi, t)δi − γ2(Xi, t)−G0(t)].

It is easy to see that Efni,j = 0 for all i, j, and Egni(t) = 0 for any t ∈ T (Stute (1995)). It implies
that we can directly formulate Wn(t) =

∑n
i=1 hni(t) + op(1), and Ln(t) =

∑n
i=1 gni(t), respectively.

Below, we check required conditions and apply Pollard’s functional central limit theorem to establish
the weak convergence of Wn.

Condition (A)
We start with verifying the manageability of triangular array. Let

H̃n = {(hn1(t), hn2(t), . . . , hnn(t)) ∈ Rn, t ∈ T }

whose envelope function is H̃n = (Hn1,Hn2, . . . , Hnn) ∈ Rn. For each i,

Hni =

p∑
j=1

ajFni,j +Gni with Fni,j = |fni,j | and Gni = sup
t∈T

|gni(t)|. (S3.8)

Let ⊙ denote the operation of point-wise vector product. For any non-negative vector ξ = (ξ1, . . . , ξn)
T ∈

Rn, we can create a class

ξ ⊙ H̃n = {(ξ1hn1(t), ξ2hn2(t), . . . , ξnhnn(t)) ∈ Rn, t ∈ T }.

Let ∥ · ∥ denote L2 norm, and ∥ · ∥Q,2 denote L2(Q)-norm, which is the norm of the class of square-
integrable functions under a finitely discrete probability measure Q. Let D(q,K) denote the packing
number of class K (the maximal number of points that can fit in K while maintaining a distance
greater than q (measured by a pre-specified norm) between all points). Our triangular array of
processes {hni(t), i = 1, . . . , n, t ∈ T } is manageable (with respect to the envelopes H̃n) if we can
find a deterministic function λ (capacity bound) such that

(1)
∫ 1
0

√
log λ(x)dx < ∞.

(2) D(ζ∥ξ ⊙ H̃n∥, ξ ⊙ H̃n) ≤ λ(ζ) for 0 < ζ ≤ 1, ξ ∈ Rn of non-negative weights, all n ≥ 1.

Let uj be the j-th element of u ∈ Rp. We define functions fn,j : X → R and gn,t : T × {0, 1} → R,
where

fn,j(x, d,u) =
1√
n

[((
dx

G0(x)
− α0 − uTβ0

)
+ (u− EU)Tβ0 − (uj − EUj)

CT
j β0

Vj

)
(uj − EUj)

]
,
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and

gn,t(x, d) =
1√
n
[ϕt(x)γ0(x)(1− d) + γ1(x, t)d− γ2(x, t)−G0(t)].

We create another function class (changing with sample size n) Hn = {hn,t, t ∈ T }, where the
t-indexed function hn,t : X → R is defined by

hn,t(x, d,u) =

p∑
j=1

ajfn,j(x, d,u) + gn,t(x, d) such that hn,t(Xi, δi,U i) = hni(t).

Moreover, its envelope function Hn : X → R, where Hn(Xi, δi,U i) =
√
nHni. For any ξ ∈ Rn, it is

easy to see that Hn ⊇ ξ ⊙ H̃n.

Let N(q,K) denote the covering number of class K (the minimal number of closed balls of radius
q (measured by a pre-specified norm) required to cover any class K). Condition (1) for manageability
could be fulfilled if we let

λ(x) = lim sup
n→∞

sup
Q

N(x∥Hn∥Q,2/2,Hn),

and if the class Hn satisfies the bounded uniform entropy integral (BUEI) condition

lim sup
n→∞

sup
Q

∫ 1

0

√
logN(x∥Hn∥Q,2/2,Hn)dx < ∞, (S3.9)

where supQ means that the supremum is taken over all finitely discrete probability measures. To
verify the BUEI condition in (S3.9), it suffices to show Hn is a BUEI class, for all n ≥ 1. Let
h⋆n,t : X → R and h>

n,t : T × {0, 1} → R, where

h⋆n,t(x, d,u) =

p∑
j=1

ajfn,j(x, d,u) +
1√
n
[ϕt(x)γ0(x)(1− d) + γ1(x, t)d]

and

h>
n,t(x, d) =

−1√
n
[γ2(x, t) +G0(t)],

such that we can further decompose hn,t = h⋆n,t + h>
n,t. Let H⋆

n = {h⋆n,t, t ∈ T } and H>
n = {h>

n,t, t ∈
T }. We can easily see for all n ≥ 1, H⋆

n and H>
n are both VC classes because (1) the collection

{(−∞, t], t ∈ T } is a VC class (VC index=2), and (2) both h⋆n,t and h>
n,t are monotone in t. Since

VC class belongs to BUEI class, then H⋆
n and H>

n are both BUEI classes. The preservation property
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of BUEI class implies Hn is a BUEI class (Kosorok (2008)), such that for all n ≥ 1,

sup
Q

∫ 1

0

√
logN(x∥Hn∥Q,2/2,Hn)dx < ∞.

Hence, the BUEI condition in (S3.9) holds for Hn. Subsequently, we verify Condition (2) for man-
ageability as follows. For any ξ ∈ Rn, let ∥·∥Qξ,2 denote L2(Qξ)-norm, where Qξ is a finitely discrete
probability measure:

Qξ = (n∥ξ∥)−1
n∑

i=1

ξ2i 1(Xi, δi,U i).

Thus for 0 < ζ ≤ 1, ξ ∈ Rn of non-negative weights and n ≥ 1, we have

ζ∥ξ ⊙ H̃n∥ = ζ[

n∑
i=1

ξ2iH
2
ni]

1/2 = ζ[

n∑
i=1

n−1ξ2iH
2
n(Xi, δi,U i)]

1/2

≥ ζ[

n∑
i=1

(n∥ξ∥)−1ξ2iH
2
n(Xi, δi,U i)1(Xi, δi,U i)]

1/2 = ζ∥Hn∥Qξ,2.

Arguments used in Section 8.1.2 (Kosorok (2008), Chap. 8) indicate the relationship between
packing number D(q,K) and covering number N(q,K) for each q > 0 and any class K with respect
to the same norm :

N(q,K) ≤ D(q,K) ≤ N(q/2,K).

If we let q = ζ∥ξ ⊙ H̃n∥, then this relationship implies for the class ξ ⊙ H̃n,

D(ζ∥ξ ⊙ H̃n∥, ξ ⊙ H̃n) ≤ N(ζ∥ξ ⊙ H̃n∥/2, ξ ⊙ H̃n).

Since we have perceived Hn ⊇ ξ ⊙ H̃n and ζ∥ξ ⊙ H̃n∥ ≥ ζ∥Hn∥Qξ,2, it leads to

N(ζ∥ξ ⊙ H̃n∥/2, ξ ⊙ H̃n) ≤ N(ζ∥Hn∥Qξ,2/2,Hn).

The above two equations further reveal that

D(ζ∥ξ ⊙ H̃n∥, ξ ⊙ H̃n) ≤ sup
Q

N(ζ∥Hn∥Q,2/2,Hn). (S3.10)

Let λ(ζ) = lim sup
n→∞

sup
Q

N(ζ∥Hn∥Q,2/2,Hn). By (S3.10), we can conclude

D(ζ∥ξ ⊙ H̃n∥, ξ ⊙ H̃n) ≤ λ(ζ),

for 0 < ζ ≤ 1, ξ ∈ Rn of non-negative weights, and all n ≥ 1. Note that λ does not depend on n.
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Condition (B)

Since EWn(t) = 0 for any t, we can obtain that for s, t ∈ T ,

σW (s, t) = lim
n→∞

EWn(t)Wn(s) = lim
n→∞

n∑
i=1

Ehni(t)hni(s)

=

p∑
j=1

p∑
k=1

ãj ãkσM (j, k) +

p∑
j=1

ãjσML(j, s) +

p∑
j=1

ãjσML(j, t) + σL(s, t).

where (σM (j, k))j,k=1,...,p is the covariance matrix of the mean-zero normal random vector M , σL(s, t)
is the covariance function of the Gaussian process L at any s as well as t, and σML(j, t) is the
covariance function of the joint Gaussian process (M ,L) for any j, t.

Recall that Ỹ = δX/G0(X) and ε̃ = Ỹ − α0 − UTβ0. Specifically, (σM (j, k))j,k=1,...,p can be
given by the covariance matrix of the random vector with components

(ε̃+ (U − EU)Tβ0 − (Uj − EUj)C
T
j β0/Vj)(Uj − EUj), (S3.11)

for j = 1, . . . , p. The dominated convergence theorem ensures that σL(s, t) can be provided by the
covariance function of a stochastic process at locations s and t, where the stochastic process is

{ϕt(X)γ0(X)(1− δ) + γ1(X, t)δ − γ2(X, t)−G0(t), t ∈ T }. (S3.12)

Moreover, we can obtain σML(j, t) by the cross covariance between the component (ε̃ + (U −
EU)Tβ0 − (Uj − EUj)C

T
j β0/Vj)(Uj − EUj) and the process in (S3.12) at location t. The finite

fourth moment of U (implied by (A.1)) and the square-integrability of ε̃ (implied by (A.2)), along
with the results in Stute (1995) (based on (A.4)), ensure the existence of σW (s, t) for any s, t ∈ T .

Condition (C)

According to the definition of H̃n, we first express
∑n

i=1EH2
ni as

n∑
i=1

E(

p∑
j=1

aj |fni,j |+ sup
t∈T

|gni(t)|)2

=

n∑
i=1

 p∑
j,k=1

ajakE|fni,jfni,k|+ E(sup
t∈T

|g2ni(t)|) + 2

p∑
j=1

ajE(|fni,j | sup
t∈T

|gni(t)|)

 ,
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which is bounded by

max
i

{ [
p∑

j,k=1

ajakE(ε̃ni + (U i − EU)Tβ0 − (U ij − EUj)
CT
j β0

Vj
)(ε̃ni + (U i

− EU)Tβ0 − (U ik − EUk)
CT
k β0

Vk
)(U ij − EUj)(U ik − EUk) ]

+ E( sup
t∈T

[ϕt(Xi)γ0(Xi)(1− δi) + γ1(Xi, t)δi − γ2(Xi, t)−G0(t)]
2 )

+ 2

p∑
j=1

ajE( |(ε̃ni + (U i − EU)Tβ0 − (U ij − EUj)
CT
j β0

Vj
)(U ij − EUj)|

sup
t∈T

|ϕt(Xi)γ0(Xi)(1− δi) + γ1(Xi, t)δi − γ2(Xi, t)−G0(t)| ) }.

(S3.13)

We can further show that the first term in (S3.13) is finite because (A.1)–(A.2) imply the square
integrability ε̃ and UjUk for all j, k. By (A.3)–(A.4), the restriction Xi ≤ τ < τH leads to the uniform
boundedness of the second term in (S3.13) over T , for all i. By (A.1)–(A.4), it is easy to see the
third term is finite as well. Hence, we verify lim supn→∞

∑n
i=1EH2

ni < ∞.

Condition (D)

Recall that Hn(Xi, δi,U i) =
√
nHni and the definition of Hni in (S3.8). For each η > 0,

n∑
i=1

EH2
ni1(Hni > η) = n−1

n∑
i=1

EH2
n(Xi, δi,U i)1(Hn(Xi, δi,U i) > η

√
n), (S3.14)

where

Hn(Xi, δi,U i) =
√
n[

p∑
j=1

ajFni,j +Gni]

=

p∑
j=1

aj |(ε̃ni + (U i − EU)Tβ0 − (U ij − EUj)
CT
j β0

Vj
)(U ij − EUj)|

+ sup
t∈T

|ϕt(Xi)γ0(Xi)(1− δi) + γ1(Xi, t)δi − γ2(Xi, t)−G0(t)|.

Note that (A.1)–(A.2) imply ε̃ and UjUk are square-integrable for all j, k, and (A.4) gives that
ϕt(Xi)γ0(Xi)(1−δi)+γ1(Xi, t)δi−γ2(Xi, t)−G0(t) is uniformly bounded over T for all i. Therefore,
we have Hn(Xi, δi,U i) is bounded for all but finite many i for all n ≥ 1. As n → ∞, (S3.14) tends
to zero since the numerator is a finite sum but the denominator diverges. Hence, we show Condition
(D) (the analogy of the Lindeberg condition) satisfied.
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Condition (E)

For every s, t ∈ T , ρn(s, t) = (
∑n

i=1E|hni(t)− hni(s)|2)1/2, such that

ρ2n(s, t) =

n∑
i=1

E|hni(t)− hni(s)|2 =
n∑

i=1

E|gni(t)− gni(s)|2.

Since gni(t) = gi(t)/
√
n+ o(1), where gi(t) = [ϕt(Xi)γ0(Xi)(1− δi)+ γ1(Xi, t)δi − γ2(Xi, t)−G0(t)]

and {gi} are i.i.d., then Condition (E) is trivially satisfied, according to Pollard (1990).

Lemma 3.4. Suppose that (A.1)–(A.4) hold and β0 ̸= 0. The function Ψj is continuous on R ×
ℓ∞τ × P, for all j.

Proof. For α > 0 and A ∈ A, denote the Euclidean norm by ∥ · ∥ and we define the distance

d(x, A) = inf{∥x− a∥ : a ∈ A}

and Aα = {x : d(x, A) ≤ α} if A ̸= ∅; otherwise, Aα = ∅. For any probability measure Q ∈ P , we
can further define the Prokhorov metric between P and Q as

dp(P,Q) = inf{α > 0 : P (A) ≤ Q(Aα) + α and Q(A) ≤ P (Aα) + α, ∀A ∈ A}.

For any given ϵ̃ > 0, suppose that there exists a probability measure Q ∈ P that satisfies dp(P,Q) < ϵ̃.

Since ϵ̃ can be arbitrarily small, it implies that there is a positive sequence αn ↓ 0, such that
P (A) ≤ Q(Aαn

) + αn and Q(A) ≤ P (Aαn
) + αn, for all n. We can easily see Aα is closed, and

therefore so is Aαn
. Let Ā = ∩nAαn

, where Ā is closed and Ā is exactly the closure of A. It follows
that P (A) ≤ Q(Ā) and Q(A) ≤ P (Ā), which leads to P (A) = Q(A) for all closed sets A. Hence, we
can conclude that P = Q by inner regularity.

Recall that

Ψj(m,h,Q) = m+Q

[
(Uj − EUj)Ỹ h(X)

G0(X)

]
,

where we should point out that Q[·] is the expected value of a random variable with respect to the
probability measure Q and EUj denotes the expectation of Uj with respect to P ∈ P . To show the
continuity of Ψj on R × ℓ∞τ × P , it suffices to prove that the second term of Ψj is continuous on
ℓ∞τ ×P. For any ϵ > 0, there exists ϵ̃ > 0 such that supt∈T |L̃(t)−L(t)| < ϵ̃ and dp(P̃ , P ) < ϵ̃, where
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L̃,L ∈ ℓ∞τ and P̃ , P ∈ P. It follows that∣∣∣∣∣P̃ (Uj − EUj)Ỹ L̃(X)

G0(X)
− P

(Uj − EUj)Ỹ L(X)

G0(X)

∣∣∣∣∣
≤

∣∣∣∣∣(P̃ − P )
(Uj − EUj)Ỹ L̃(X)

G0(X)

∣∣∣∣∣+
∣∣∣∣∣P (Uj − EUj)Ỹ (L̃(X)− L(X))

G0(X)

∣∣∣∣∣
≤

∣∣∣∣∣(P̃ − P )
(Uj − EUj)Ỹ L̃(X)

G0(X)

∣∣∣∣∣+ P

∣∣∣∣∣(Uj − EUj)Ỹ (L̃(X)− L(X))

G0(X)

∣∣∣∣∣
≤

∣∣∣∣∣(P̃ − P )
(Uj − EUj)Ỹ L̃(X)

G0(X)

∣∣∣∣∣+ sup
t∈T

|L̃(t)− L(t)|P

∣∣∣∣∣(Uj − EUj)Ỹ

G0(X)

∣∣∣∣∣ .

(S3.15)

Recall that (A.1) and (A.4) imply that Uj is bounded, and G0 is bounded away from zero, respectively.
Also recall that X ∈ T = (−∞, τ ], and let L̃ ∈ ℓ∞τ (the space of stochastically bounded functions
on T ). Then, we can show the first term in the last inequality from (S3.15) disappearing because
of P̃ = P by inner regularity. Accompanying the square-integrability of UjUk for any j, k, the
finite second moment of ε̃, and non-zero G0(t) for all t ∈ T (indicated by (A.1), (A.2) and (A.4),
respectively), it leads to

P

∣∣∣∣∣(Uj − PUj)Ỹ

G0(X)

∣∣∣∣∣ ≤ M,

where M is a constant. Hence, it implies that∣∣∣∣∣P̃ (Uj − EUj)Ỹ L̃(X)

G0(X)
− P

(Uj − EUj)Ỹ L(X)

G0(X)

∣∣∣∣∣ ≤ ϵ̃ ·M.

Let ϵ ≥ ϵ̃ ·M, and the proof of continuity is completed.

Lemma 3.5. Suppose that (A.1)–(A.4) hold; that β0 ̸= 0, and that j0 is unique when β0 ̸= 0. We
have that

√
n(θ̂n − θn)

d→ Ψj0(Mj0 ,L, P )

Vj0

.

Following notations in Theorem 1, it leads to

√
n(θ̂n − θn)

d→ Mj0 + φj0(L)
Vj0

, where φj0(L) = E

[
(Uj0 − EUj0)TL(T )

G0(T )

]
.

Proof. Since Lemma 3.3 gives that (M̃n,Ln) converges weakly to (M ,L) on Rp × ℓ∞τ a.s., and Pn

converges a.s. to P, then we could have (M̃n,Ln,Pn)
d→ (M ,L, P ) on Rp×ℓ∞τ ×P a.s. It can further
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indicate that (Mn,j0 ,Ln,Pn)
d→ (Mj0 ,L, P ) on R× ℓ∞τ × P a.s. Recall that Lemma 3.2 gives

√
n(θ̂n − θn)S

2
ĵn

= Ψj0(Mn,j0 ,Ln,Pn) + op(1).

Accompanying the continuity of Ψj0 shown in Lemma 3.4, therefore we can use continuous mapping
theorem to develop that

Ψj0(Mn,j0 ,Ln,Pn)
d→ Ψj0(Mj0 ,L, P ).

Along with the fact that S2
ĵn

converges to Vj0 a.s. by ĵn
a.s.→ j0 (shown in Lemma 3.6) and SLLN,

Slutsky’s lemma implies that,

√
n(θ̂n − θn)

d→ Ψj0(Mj0 ,L, P )

Vj0

= Mj0 + E

[
(Uj0 − EUj0)TL(T )

G0(T )

]
,

where the last equality follows from techniques of conditional expectation and the dominated con-
vergence theorem when (A.1)–(A.4) hold.

Lemma 3.6 (The oracle property). Suppose that (A.1)–(A.4) hold; that β0 ̸= 0, and that j0 is
unique when β0 ̸= 0. We have ĵn converges to j0 a.s.

Proof. Recall that U ij denotes the i-th subject’s Uj . Based on a marginal AFT model with respect
to Uj , we can have mean squared errors R̂j = Pn(Y − α̂j − β̂jUj)

2, where (α̂j , β̂j) denotes the KSV
estimator of parameters in this marginal AFT model and can be written as (PnY − β̂jPnUj , Pn(Uj−
PnUj)Y/S

2
j ). Therefore for all j, we have

R̂j = S2
Y − Pn(Uj − PnUj)Y/S

2
j ,

and the above display indicates that the following two arguments are equivalent:

argmax
j

∣∣∣∣Pn(Uj − PnUj)Y

SY Sj

∣∣∣∣ and argmin
j

R̂j . (S3.16)

Equation (S3.16) reveals that

ĵn = argmax
j

∣∣∣∣Pn(Uj − PnUj)Y

SY Sj

∣∣∣∣ = argmin
j

R̂j .
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We first need to prove: for all j,

PnUjY = PnUj Ỹ a.s., and PnY = PnỸ a.s. (S3.17)

To construct the first equality in (S3.17), we re-express PnUjY as

Pn

[
UjδX

G0(X)

]
− Pn

[
UjδX

G0(X)

(
Ĝn(X)−G0(X)

Ĝn(X)

)]
,

which can be defined as PnUj Ỹ − r1, and gives us that |PnUjY −PnUj Ỹ | = |r1|. It is easy to see the
remainder term |r1| bounded by

supt≤τ |Ĝn(t)−G0(t)|
Ĝn(τ)

Pn

∣∣∣∣ UjδX

G0(X)

∣∣∣∣ ,
where this upper bound doesn’t diverge since in (A.4) we assume non-zero G0(t), for all t ≤ τ. Along
with (A.3)–(A.4), SLLN and the square-integrability of ε̃ as well as UjUk for all j, k (implied by
(A.1)–(A.2)) give that

Pn

∣∣∣∣ UjδX

G0(X)

∣∣∣∣ = Pn|Uj Ỹ | a.s.→ E|UjT |,

where E|UjT | can be shown as a finite constant by (A.1)–(A.2). Accompanying the strong uniform
consistency of Kaplan–Meier estimator (Stute and Wang (1993)), it implies that the upper bound
of |r1| converges to zero a.s., and so does |r1|, leading to the first equality in (S3.17). We can also
ensure the second equality in (S3.17) by similar arguments. Along with the square-integrability of ε̃
and UjUk for all j, k in (A.1)–(A.2), SLLN implies that

PnUj Ỹ
a.s.→ EUj Ỹ = EUjT and PnỸ

a.s.→ EỸ = ET,

where the equalities EUj Ỹ = EUjT and EỸ = ET follow from the arguments of conditional
expectation and (A.3). Combined with PnUj

a.s.→ EUj , the above display further indicates that

Pn(Uj − PnUj)Ỹ
a.s.→ EUjT − EUjET = Cov(Uj , T ). (S3.18)

Because SLLN implies PnU
2
j

a.s.→ EU2
j and PnUj

a.s.→ EUj , it is also easy to see that

S2
j

a.s.→ Vj . (S3.19)
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Applying continuous mapping theorem on (S3.18) and (S3.19), we obtain that

β̂j =
Pn(Uj − PnUj)Ỹ

S2
j

a.s.→ Cov(Uj , T )

Vj
for each j,

so that

β̂ = (β̂1, . . . , β̂p)
T a.s.→

(
Cov(U1, T )

V1
, . . . ,

Cov(Up, T )

Vp

)T

. (S3.20)

Let R̂ = (R̂1, . . . , R̂p)
T and 1p denote a p-variate vector (1, . . . , 1)T . When β0 ̸= 0 such that

Var(UTβ0) > 0, using continuous mapping theorem on (S3.19) and (S3.20) leads to

S2
Y 1p − R̂

Var(UTβ0)
=

(
β̂2
1S

2
1

Var(UTβ0)
, . . . ,

β̂2
pS

2
p

Var(UTβ0)

)
a.s.→
(

Cov2(U1, T )

V1Var(U
Tβ0)

, . . . ,
Cov2(Up, T )

VpVar(U
Tβ0)

)T

= (Corr2(U1, T ), . . . ,Corr
2(Up, T ))

T .

Note that j0 = arg maxj |Corr(Uj , T )|, which is equivalent to j0 = arg maxj Corr
2(Uj , T ). Since we

have shown that ĵn can also be the argument to maximize (S2
Y − R̂j)/Var(U

Tβ0) among all j’s, then
ĵn

a.s.→ j0, given that j0 is unique.

Lemma 3.7. Suppose that (A.1)–(A.4) hold and β0 = 0. The joint limiting distribution of
√
nθ̂ and

n(S2
Y 1p − R̂) can be derived as(

(M1 + φ1(L) + CT
1 b0)/V1, . . . , (Mp + φp(L) + CT

p b0)/Vp

(M1 + φ1(L) + CT
1 b0)

2/V1, . . . , (Mp + φp(L) + CT
p b0)

2/Vp

)T

,

where Cj as well as Vj are as previously defined, for any fixed j.

Proof. To prove this lemma, the first step is to derive the limiting distribution of
√
nθ̂ = (

√
nθ̂1, . . . ,

√
nθ̂p)

T ,

where θ̂j is the KSV estimator of the regression coefficient in a marginal AFT model with the pre-
dictor Uj and the outcome Y. The second step provides the joint limiting distribution of

√
nθ̂ and

n(S2
Y 1p − R̂) = (n(S2

Y − R̂1), . . . , n(S
2
Y − R̂p))

T , where R̂j is defined as before, for all j. We begin
with re-expressing

√
nθ̂j as

√
nPn(Uj − PnUj)Y/S

2
j , which can be further written as, for all j,

√
n

S2
j

Pn(Uj − PnUj)Ỹ +
1

S2
j

Pn

[
(Uj0 − EUj0)Ỹ Ln(X)

G0(X)

]
+ op(1). (S3.21)

Since ε̃n = Ỹ − α0 −UTβn, the linear property of sample covariance implies that
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Pn(Uj − PnUj)Ỹ = Pn(Uj − PnUj)U
Tβn + Pn(Uj − PnUj)ε̃n, (S3.22)

where we can further have

Pn(Uj − PnUj)U
Tβn =(Pn − P )UjU

Tβn + PUjU
Tβn − (Pn − P )UjPnU

Tβn

− PUj(Pn − P )UTβn − PUjPUTβn,

and

Pn(Uj − PnUj)ε̃n = (Pn − P )(ε̃n(Uj − PUj)− Pnε̃n(Pn − P )Uj . (S3.23)

Let Gn =
√
n(Pn − P ). Along with CT

j βn = PUjU
Tβn − PUjPUTβn, (S3.21)–(S3.23) lead to

√
nθ̂j =

(GnUjU
T − PUjGnU

T −GnUjPnU
T )βn

S2
j

− Pnε̃nGnUj

S2
j

+
Gnε̃n(Uj − PUj)

S2
j

+
1

S2
j

Pn

[
(Uj0 − EUj0)Ỹ Ln(X)

G0(X)

]
+

√
nCT

j βn

S2
j

+ op(1).

When β0 = 0, then
√
nβn = b0 such that

√
nθ̂j =

(GnUjU
T − PUjGnU

T −GnUjPnU
T )b0√

n S2
j

− Pnε̃nGnUj

S2
j

+
Gnε̃n(Uj − PUj)

S2
j

+
1

S2
j

Pn

[
(Uj − EUj)Ỹ Ln(X)

G0(X)

]
+

CT
j b0

S2
j

+ op(1).

(S3.24)

Since the first two terms in (S3.24) are op(1) by SLLN, along with the definition of Mn,j , we can
have

√
nθ̂j =

1

S2
j

{
Gnε̃n(Uj − PUj) + Pn

(Uj − EUj)Ỹ Ln(X)

G0(X)

}
+

CT
j b0

S2
j

+ op(1)

=
1

S2
j

{
Mn,j + Pn

(Uj − EUj)Ỹ Ln(X)

G0(X)

}
+

CT
j b0

S2
j

+ op(1).

Using previous arguments along with (A.1)–(A.4), it further leads to

√
nθ̂

d→

(
M1 + φ1(L) + CT

1 b0
V1

, . . . ,
Mp + φp(L) + CT

p b0

Vp

)T

.

To complete the second step, we re-express n(S2
j 1p−R̂) as (

√
nθ̂)⊙ (

√
nθ̂)⊙ (S2

1 , . . . , S
2
p)

T , where ⊙
denotes the Hadamard product. Hence when β0 = 0, the joint distribution of

√
nθ̂ and n(S2

Y 1p−R̂)
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can be obtained as( √
nθ̂

n(S2
Y 1p − R̂)

)
d→

(
((M1 + φ1(L) + CT

1 b0)/V1, . . . , (Mp + φp(L) + CT
p b0)/Vp)

T

((M1 + φ1(L) + CT
1 b0)

2/V1, . . . , (Mp + φp(L) + CT
p b0)

2/Vp)
T

)
.

Lemma 3.8 (McKeague and Qian, (2015)). Let z be a p-dimensional random vector and f : R2p →
Rp a function such that f(z, ·) is continuous for every z ∈ Rp, and f(z, b)j ̸= f(z, b)k a.s. for
all j ̸= k and b ∈ Rp. Then, J(b) ≡ argmaxj=1,...,p f(z, b)j is unique a.s. Also, if bl → b0, then
J(bl) = J(b0) for l sufficiently large a.s.

Lemma 3.9. Suppose that (A.1)–(A.4) hold and that β0 = 0.

√
n(θ̂n − θn)

d→ (MJ + φJ(L))/VJ + (CJ/VJ − Cj(b0)/Vj(b0))
Tb0,

where J, j(b0), Cj and Vj are as defined in Theorem 1, for each j.

Proof. It is easy to perceive f(z, ·) we defined is continuous with respect to z. Also, Z =

(Z1, . . . , Zp)
T is a random vector and |Corr(Uj , Uk)| < 1 for j ̸= k, so it indicates that f(Z, b0)j ̸=

f(Z, b0)k for any j ̸= k a.s., where f(Z, b0)j = (Zj + CT
j b0)

2/Vj . Thus, we can point out that J =

J(b0) = argmaxj=1,...,p f(Z, b0)j is unique a.s. Since ĵn = argminj R̂j (equivalent to argmaxj n(S
2
Y −

R̂j)) and it is uniquely determined, then we can say that h(n(S2
Y 1p − R̂)) is continuous. Moreover

in the case of β0 = 0, we also see that

√
nθ̂n =

√
nθ̂h(n(S2

Y 1p − R̂));
√
nθn =

√
nCT

j(b0)
βn

Vj(b0)
≡

CT
j(b0)

b0

Vj(b0)
.

Hence, the desired limiting distribution of
√
nθ̂n can be derived by applying continuous mapping

theorem on the joint distribution of
√
nθ̂ and n(S2

Y 1p − R̂) derived in Lemma 3.7.

S4 Proof for Theorem 2
Before entering the core of the proof for Theorem 2, we clarify the large sample behavior of the
maximally selected studentized statistic Tn in Lemma 4.1 below. Together with the conditions of the
threshold λn, the results in this lemma would play a crucial role in designing adaptive resampling.

Lemma 4.1. Suppose that the threshold λn satisfies λn = o(
√
n) and λn → ∞, and that (A.1)–(A.4)

hold. We have 1(|Tn| > λn)
p→ 1(β0 ̸= 0).
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Proof. Recall that S2
j is the sample variance of Uj for all j and Tn =

√
nθ̂n/σ̂n, where σ̂2

n =

Pn(Y − α̂n− θ̂nUĵn
)2/S2

ĵn
. We start the proof with verifying that σ̂n is asymptotically bounded above

and below. Let (α̂j , θ̂j) denote the estimated intercept and the estimated regression coefficient of
Uj in the marginal AFT model that only contains one active predictor Uj for the outcome Y . By
(A.1)–(A.4), SLLN and the uniform consistency of Kaplan–Meier estimator, we can show θ̂j

a.s.→ θj ≡
Cov(Uj ,U)Tβ0/Var(Uj) and α̂j

a.s.→ α0 + EUTβ0 − θjEUj , for all j. This further leads to

Pn(Y − α̂j − θ̂nUj)
2 a.s.→ E(Ỹ − α0 − EUTβ0 − (Uj − EUj)θj)

2 = E(ε̃− (Uj − EUj)θj)
2.

Along with S2
j

a.s.→ Var(Uj) > 0 for all j, the continuous mapping theorem implies that

Pn(Y − α̂j − θ̂jUj)
2

S2
j

a.s.→ E(ε̃− (Uj − EUj)θj)
2

Var(Uj)
.

For all j, we ensure that E(ε̃ − (Uj − EUj)θj)
2 < ∞ by Var(Uj) > 0 and the square-integrability

of ε̃ and Uj . Therefore, maxj=1,...,p{Pn(Y − α̂j − θ̂jUj)
2/S2

j } converges to a finite constant. Since
σ̂n ≤ [maxj=1,...,p{Pn(Y − α̂j − θ̂jUj)

2/S2
j }]1/2, it implies that σ̂n is asymptotically bounded above.

Since it is obvious that

E(ε̃− (Uj − EUj)θj)
2/Var(Uj) > 0 for all j,

then we see that [minj=1,...,p{Pn(Y − α̂j − θ̂jUj)
2/S2

j }]1/2 converges to a non-zero finite constant.
Because σ̂n ≥ [minj=1,...,p{Pn(Y − α̂j − θ̂jUj)

2/S2
j }]1/2, we therefore show that σ̂n is asymptotically

bounded below. Together with results in Theorem 1, we then prove that |Tn|
a.s.→ ∞ when β0 ̸= 0

and |Tn| = Op(1) when β0 = 0.

To prove this lemma, it suffices to show that the probabilities in the following equation converge
to zero:

E|1(|Tn| > λn)− 1(β0 ̸= 0)| = E|1(|Tn| ≤ λn)− 1(β0 = 0)|

= P (|Tn| > λn,β0 = 0) + P (|Tn| ≤ λn,β0 ̸= 0)

= P (|Tn| > λn|β0 = 0)1(β0 = 0) + P (|Tn| ≤ λn|β0 ̸= 0)1(β0 ̸= 0).

(S4.1)

We can see that the first probability in (S4.1) converges to zero because λn → ∞ along with
|Tn| = Op(1) when β0 = 0. Meanwhile, the second probability converges to zero because λn = o(

√
n)

and 0 < |Tn|/
√
n = Op(1) when β0 ̸= 0.

More notations for the bootstrap version of estimators are introduced below. Let P∗
n be the
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nonparametric bootstrap of Pn. Replacing P by Pn and Pn by P∗
n, G∗

n =
√
n(P∗

n − Pn) is the
bootstrapped empirical process, where P∗

n, Pn and P only operate on functions defined on the sample
space X . The notation θ̂∗n, ĵ∗n and θ̂∗j means that the bootstrap version of θ̂n, ĵn and θ̂j , respectively.
The bootstrapped Kaplan–Meier estimator is denote by Ĝ∗

n. Note that under the operation of P∗
n or

G∗
n, we use Ĝ∗

n to replace Ĝn and Ĝn to replace G0, respectively. All of the bootstrapped estimators
are based on n i.i.d. observations taken from Pn. Let E∗ denote the expectation conditional on the
data, and P ∗ be the corresponding probability measure.

To justify the claimed results, we first verify the following statements: (1) 1(|T∗
n| > λn or |Tn| >

λn)
P ∗

→ 1(β0 ̸= 0) and (2) 1(|T∗
n| ≤ λn and |Tn| ≤ λn)

P ∗

→ 1(β0 = 0) conditionally (on the data)
in probability. Afterward, we prove Lemma 4.2 and 4.3, and obtain the desired results along with
statements (1) and (2). To show statements (1) and (2), it suffices to give

E∗|1(|T∗
n| > λn)− 1(β0 ̸= 0)| = P ∗(|T∗

n| > λn,β0 = 0) + P ∗(|T∗
n| ≤ λn,β0 ̸= 0)

= P ∗(|T∗
n| > λn|β0 = 0)1(β0 = 0) + P ∗(|T∗

n| ≤ λn|β0 ̸= 0)1(β0 ̸= 0) → 0
(S4.2)

in probability, implying that 1(|T∗
n| > λn)

p∗

→ 1(β0 ̸= 0) and 1(|T∗
n| ≤ λn)

p∗

→ 1(β0 = 0) conditionally
(on the data) in probability. The convergence in (S4.2) follows from below arguments. Using Lemma
3.9 and the condition that λn → ∞ as n → ∞, we can have P ∗(|T∗

n| > λn|β0 = 0) → 0 in probability.
Besides, it is also easy to see |θn| → |CT

j0
β0|/Vj0 when β0 ̸= 0 and j0 is unique. Along with the

condition that λn = o(
√
n) and that σ̂∗

n converges to a finite constant conditionally (on the data) in
probability, we can use Lemma 3.5 and Lemma 4.2 (shown later) to prove

P ∗(|T∗
n| ≤ λn|β0 ̸= 0) = P ∗(

√
n|(θ̂∗n − θ̂n) + (θ̂n − θn) + θn| ≤ λnσ̂

∗
n|β0 ̸= 0)

≤ P ∗(|θn| ≤ n−1/2λnσ̂
∗
n + |θ̂∗n − θ̂n|+ |θ̂n − θn| |β0 ̸= 0) → 0

in probability. Since 1(|T∗
n| > λn)

p∗

→ 1(β0 ̸= 0) and 1(|T∗
n| ≤ λn)

p∗

→ 1(β0 = 0) conditionally (on the
data) in probability, along with 1(|Tn| > λn) → 1(β0 ̸= 0) in probability, we can justify statements
(1) and (2), using Slutsky’s lemma.

Before stating necessary lemmas, we express the bootstrapped marginal regression coefficient as
follows, which will appear in Lemma 4.2. For j = 1, . . . , p,

√
nθ̂∗j =

√
n[P∗

nUjY − (P∗
nUj)(P∗

nY )]

[P∗
nU

2
j − (P∗

nUj)2]
=

G∗
nUjY −G∗

nUjP∗
nY − PnUjG∗

nY +
√
n[PnUjY − PnUjPnY ]

[P∗
nU

2
j − (P∗

nUj)2]

=
G∗

nUjY −G∗
nUjP∗

nY − PnUjG∗
nY +

√
nθ̂j [PnU

2
j − (PnUj)

2]

[P∗
nU

2
j − (P∗

nUj)2]
.

Lemma 4.2. Suppose that (A.1)–(A.4) hold; that β0 ̸= 0 and that j0 = j(β0) is unique when
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β0 ̸= 0. We can have ĵ∗n
p∗

→ j0 conditionally (on the data) a.s., and
√
n(θ̂∗n−θ̂n)

d→ (Mj0+φj0(L))/Vj0

conditionally (on the data) in probability.

Proof. Let S∗2
Y = P∗

nY
2 − (P∗

nY )2 and S∗2
j = P∗

nU
2
j − (P∗

nUj)
2. When β0 ̸= 0, SLLN and Slutsky’s

lemma imply that,

S∗2
j θ̂∗j = n−1/2[G∗

nUjY −G∗
nUjP∗

nY − PnUjG∗
nY ] + θ̂jS

2
j

p∗

→ CT
j β0 a.s.,

implying that θ̂∗j
p∗

→ CT
j β0/Vj a.s., for j = 1, . . . , p. Using a similar fashion to expressing the mean

squared error, the corresponding bootstrap version can be written as R̂∗
j = S∗2

Y − θ̂∗2j S∗2
j , leading to

that

ĵ∗n = argmin
j

R̂∗
j = argmax

j

S∗2
Y − R̂∗

j

Var(UTβ0)
= argmax

j

θ̂∗2j S∗2
j

Var(UTβ0)
.

Moreover, Slutsky’s lemma and SLLN indicate

θ̂∗2j S∗2
j

Var(UTβ0)

p∗

→ Corr2(Uj ,U
Tβ0) a.s., for j = 1, . . . , p.

Along with the condition that j0 is unique when β0 ̸= 0, it implies that

P ∗(ĵ∗n ̸= j0) = P ∗

 ∪
j:j ̸=j0

{
θ̂∗2j0 S

∗2
j0

Var(UTβ0)
≤

θ̂∗2j S∗2
j

Var(UTβ0)

} ≤
∑

j:j ̸=j0

P ∗

(
θ̂∗2j0 S

∗2
j0

Var(UTβ0)
≤

θ̂∗2j S∗2
j

Var(UTβ0)

)

converging to zero a.s. Let ε̂n = Y − α̂n − θ̂nUĵn
. Recall that Pnε̂n = 0 and the definition of θ̂∗n, we

can have that

√
n(θ̂∗n − θ̂n)S

∗2
ĵ∗n

=
√
n[P∗

nUĵ∗n
Y − P∗

nUĵ∗n
P∗
nY − θ̂nS

∗2
ĵ∗n
]

=
√
n[P∗

nUĵ∗n
ε̂n − P∗

nUĵ∗n
P∗
nε̂n − θ̂n(P∗

nU
2
ĵ∗n

− (P∗
nUĵ∗n

)2 − P∗
nUĵ∗n

Uĵn
+ P∗

nUĵ∗n
P∗
nUĵn

)]

= G∗
nUĵ∗n

ε̂n −G∗
nε̂nPnUĵ∗n

−G∗
nUĵ∗n

P∗
nε̂n −

√
nθ̂n[P∗

nU
2
ĵ∗n

− (P∗
nUĵ∗n

)2 − P∗
nUĵ∗n

Uĵn

+ P∗
nUĵ∗n

P∗
nUĵn

] + op∗(1) a.s.

= G∗
nε̂n(Uĵ∗n

− PUĵ∗n
)−G∗

nε̂n(Pn − P )Uĵ∗n
−G∗

nUĵ∗n
(P∗

n − Pn)ε̂n

+
√
nθ̂n[(P∗

nUĵ∗n
)2 − P∗

nU
2
ĵ∗n

+ P∗
nUĵ∗n

Uĵn
− P∗

nUĵ∗n
P∗
nUĵn

] + op∗(1) a.s.,

(S4.3)

where the third equality follows from PnUĵn
ε̂n = 0; ĵ∗n

p∗

→ j0 a.s.; ĵn → j0 a.s., and the last equality
follows from Pnε̂n = 0. In the last equality in (S4.3), all the terms can be shown as op∗(1) a.s.
by similar arguments and SLLN, except for the first term. The next to show is the first term
in (S4.3) converges in distribution to some weak limit conditionally (on the data) in probability.
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According to Lemma 3.6 (under (A.1)–(A.4)), we can easily see that θ̂n
p→ θ0 ≡ CT

j0
β0/Vj0 and

α̂n
p→ α0 +PUTβ0 − θ0PUj0 . Let ε̄n = ε̃n +(U −PU)Tβ0 − θ0(Uj0 −PUj0). The first term on the

right-hand side (r.h.s.) of (S4.3) can be decomposed as

G∗
nε̂n[(Uĵ∗n

− PUĵ∗n
)− (Uj0 − PUj0)] +G∗

n(ε̂n − ε̄n)(Uj0 − PUj0) +G∗
nε̄n(Uj0 − PUj0). (S4.4)

In (S4.4), the first term is op∗(1) a.s. because for any ϵ > 0,

P ∗(G∗
nε̂n[(Uĵ∗n

− PUĵ∗n
)− (Uj0 − PUj0)] > ϵ) ≤ P ∗(ĵ∗n ̸= j0) → 0 a.s.

The second term in (S4.4) can be reformatted as

(P∗
n − Pn)[(Uj0 − PUj0)U

Tb0]− [α̂n − (α0 + PUTβ0 − θ0PUj0)]G∗
n(Uj0 − PUj0)

− (θ̂n − θ0)G∗
nUj0(Uj0 − PUj0) + θ̂nG∗

n[(Uj0 − Uĵn
)(Uj0 − PUj0)]

+G∗
n(Uj0 − PUj0)(Y − Ỹ ).

(S4.5)

Because E∗[Ĝ∗
n(t)] = Ĝn(t) for all t ∈ T (Lo (1993)), along with first order Taylor expanding with

respect to Ĝn, the last term in (S4.5) reduces to

P∗
n

[
(Uj0 − PUj0)Ỹ L∗

n(X)

Ĝn(X)

]
+ op∗(1) a.s.,

where L∗
n : X 7→ ℓ∞τ is a bootstrapped empirical process

{G∗
n[ϕt(X)γ0(X)(1− δ) + γ1(X, t)δ − γ2(X, t)−G0(t)], t ∈ T }.

We use L∗
n to approximate {

√
n[Ĝ∗

n(t)− Ĝn(t)], t ∈ T } with ϕt, γ0, γ1 and γ2 stated in Lemma 3.1.
By the consistency of (α̂n, θ̂n), bootstrap consistency of the sample mean and

P ∗(G∗
n[(Uĵn

− Uj0)(Uj0 − PUj0)] > ϵ) ≤ 1(ĵn ̸= j0) → 0 a.s.,

equation (S4.5) reduces to

P∗
n

[
(Uj0 − PUj0)Ỹ L∗

n(X)

Ĝn(X)

]
+ op∗(1) in probability. (S4.6)
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Parallel to Mn,j = Gnε̃n(Uj − PnUj) for j = 1, . . . , p, let

M∗
n,j = G∗

nε̃n(Uj − PUj). (S4.7)

Since θ0 = CT
j0
β0/Vj0 implying that ε̄n = ε̃n, then we can express the remaining term in (S4.4)

G∗
nε̄n(Uj0 − PUj0) as M∗

n,j0
. By the definition of Ψj in (S3.1) and EUj = PUj for all j along with

the uniform consistency of Ĝn, (S4.3)–(S4.6) lead to

√
n(θ̂∗n − θ̂n)S

∗2
ĵ∗n

= M∗
n,j0 + P∗

n

[
(Uj0 − EUj0)Ỹ L∗

n(X)

G0(X)

]
+ op∗(1)

= Ψj0(M∗
n,j0 ,L

∗
n,P∗

n) + op∗(1) in probability.

Note that S∗2
ĵ∗n

p∗

→ Vj0 in probability. Together with bootstrap consistency of Kaplan–Meier estimator
based on Efron’s resampling plan (Efron (1981), Akritas (1986)), we obtain the desired result, using
similar arguments for the proofs of Lemmas 3.3–3.5 and Theorem 3.6.1 of van der Vaart and Wellner
(van der Vaart and Wellner (1996), Chap. 3).

Lemma 4.3. Suppose that (A.1)–(A.4) hold; that β0 = 0, and that j(b0) is unique when β0 = 0.
Then, Q∗

n(b0) converges to the limiting distribution of
√
n(θ̂n − θn) conditionally (on the data) in

probability.

Proof. Following previous arguments, we can have

√
nθ̂j = (Mn,j + Dn,j + n−1

n∑
i=1

(U ij − Ū ·j)U
T
i b0)/S

2
j , (S4.8)

where

Mn,j = Gnε̃n(Uj − PnUj) ;

Dn,j =
√
nPn(Uj − PnUj)(Y − Ỹ ) = Pn[(Uj − PUj)Ỹ Ln(X)/G0(X)] + op(1).

According to the definition of Ψj , (S4.8) implies that

√
nθ̂j =

Ψj(Mn,j ,Ln,Pn) + Ĉov(Uj ,U
Tb0)

S2
j

.

Let Mn be a p-dimensional vector with the j-th components given by Mn,j . Let Jn(b) denote a
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p-dimensional vector with the j-th component defined by

Jn,j(b) = (Ψj(Mn,j ,Ln,Pn) + Ĉov(Uj ,U
Tb))2/S2

j ,

and J(b) is a p-dimensional vector whose j-th component is Jj(b) = |Corr(Uj ,U
Tb)|. Moreover, we

define a p× p matrix An(b) whose (j, k)-th component is provided by

(Ψj(Mn,j ,Ln,Pn) + Ĉov(Uj ,U
Tb))/S2

j − Ck/Vk.

In addition, let Hn(b) and H(b) be p-dimensional vectors of zeros, except with a 1 at the entry that
maximizes Jn(b) and J(b), respectively. We can have that

Qn(b) = (Mn,Jn(b) + Dn,Jn(b) + Pn(UJn(b) − PnUJn(b))U
Tb)/S2

Jn(b)
− CT

j(b)b/Vj(b)

= Hn(b)
TAn(b)H(b).

We define J(b), A(b) and H(b) as processes (not indexed by n) with the same form as Jn(b), An(b)

and Hn(b), except with Mn,j replaced by Mj ; Ln replaced by L; Pn replaced by P , and the sample
variance or covariances replaced by their population versions. According to Theorem 1 (under (A.1)–
(A.4)), it implies that when β0 = 0,

√
n(θ̂n − θn) = Qn(b0) = Hn(b0)

TAn(b0)H(b0)
d→ H(b0)

TA(b0)H(b0). (S4.9)

Recall the bootstrap version of Mn,j defined in (S4.7) Let A∗
n(b) and J∗n(b) denote the bootstrap

versions of An(b) and Jn(b), respectively, where the (j, k)-th component of A∗
n(b) is given by

Ψ∗
j (M∗

n,j ,L∗
n,P∗

n) + Ĉov
∗
(Uj ,U

Tb)

S∗2
j

− Ĉov(Uk,U
Tb)

S2
k

,

and the j-th component of J∗n(b) is provided by

J∗n,j(b) = [Ψ∗
j (M∗

n,j ,L∗
n,P∗

n) + Ĉov
∗
(Uj ,U

Tb)]2/S∗2
j .

The above display enables us to derive that, together with similar arguments used to close the proof
of Lemma 4.2,

(Ĥn(b0),A∗
n(b0), J∗n(b0))

d→ (H(b0),A(b0), J(b0))

conditionally (on the data) in probability, where Ĥn(b) denotes the sample version of H(b). Moreover,
we can observe that



S26 TZU-JUNG HUANG, IAN W. MCKEAGUE, AND MIN QIAN

√
nθ̂∗j =

Ψj(M∗
n,j ,L∗

n,P∗
n) + Ĉov

∗
(Uj ,U

Tb0)

S∗2
j

+ op∗(1) a.s., for all j,

Hence, parallel arguments to obtain (S4.9) imply that

√
n(θ̂∗n − θ̂n) = Q∗

n(b0) = H∗
n(b0)

TA∗
n(b0)Ĥn(b0)

d→ H(b0)
TA(b0)H(b0)

conditionally (on the data) in probability, where H∗
n(b) is a p-dimensional vector of zeros, except

with a 1 at the entry that maximizes J∗n(b).

S5 Screening performance of ARTS
In this section we report the results of a simulation study to assess the screening performance of
ARTS when applying the cut-off to all marginal regression estimates. That is, we conduct ARTS
and obtain a pair of cut-off points (κα/2, κ(1−α/2)), the α/2 and (1 − α/2) quantiles of the limiting
distribution of

√
nθ̂n, where α = 5%. We declare a predictor active if the point estimate of its slope

parameter falls outside the interval Iα ≡ [κα/2/
√
n, κ(1−α/2)/

√
n].

We will assess screening performance in terms of false discovery rate (FDR), false negative rate
(FNR) and false positive rate (FPR). Their empirical versions are given by

F̂DR =
#{j : β̂j /∈ Iα, βj = 0}

#{j : β̂j /∈ Iα}
, F̂NR =

#{j : β̂j ∈ Iα, βj ̸= 0}
#{j : βj ̸= 0}

and F̂PR =
#{j : β̂j /∈ Iα, βj = 0}

#{j : βj = 0}
,

respectively, where βj is the marginal slope parameter based on Uj and has the point estimate β̂j

as defined in Lemma 3.6.
We generate 1000 samples of size n = 100 from Model (S1) given by T =

∑p
j=1 βjUj + ε, where

β1 = β2 = β3 = 1.2, β4 = β5 = 0.8, β6 = β7 = β8 = −0.8, β9 = β10 = −0.5 and βj = 0, j ≥ 11. The
components of U and ε are independent standard normal. We also applied the Benjamini–Hochberg
procedure (BH, Benjamini and Hochberg (1995)) and the Holm–Bonferroni procedure (HB, Holm
(1979)) to the p-values based on marginal Z-tests of βj = 0, j = 1, . . . , p, using a nominal FDR
or significance level of 5%. The results of the BONF-AFT procedure (Bonf) are also provided for
comparison. The average values of F̂DR, F̂NR and F̂PR are provided in Table 1, along with their
counterparts obtained from BH, HB and Bonf. See Section 6.2 of the main paper for discussion of
the results.
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