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Abstract: This study develops a simple method for constructing confidence bands

centered at a principal component analysis (PCA)-based estimator of the slope

function in a functional linear regression model with a scalar response variable

and a functional predictor variable. A PCA-based estimator is a series estimator

with estimated basis functions; thus, constructing these valid confidence bands is a

nontrivial challenge. We propose a confidence band that covers most of the slope

function with a prespecified probability (level), and prove its asymptotic validity

under suitable regularity conditions. To the best of our knowledge, this is the

first study to derive that derives confidence bands with theoretical justifications for

the PCA-based estimator. We also propose a practical method for choosing the

cutoff level used in the PCA-based estimation, and conduct numerical studies to

verify the finite-sample performance of the proposed bands. Finally, we apply our

methodology to spectrometric data, and discuss extensions of our methodology to

cases where additional vector-valued regressors are present.

Key words and phrases: Confidence band, functional linear regression, functional

principal component analysis.

1. Introduction

Data collected on dense grids can be viewed as realizations of a random

function. These data are called functional data, and the statistical methodology

used to analyze the data is called a functional data analysis. Such analyses

are widely used in areas such as chemometrics, econometrics, and biomedical

studies; see, for example, Ramsey and Silverman (2005); Ferraty and Vieu (2006);

Hsing and Eubank (2015). One of the most basic models used in these analysis

is the functional linear regression model, where researchers typically focus on

estimations of, and inferences on the slope function. Such estimations are often

based on functional principal component analysis (PCA) (cf. Cardot, Ferraty and

Sarda (1999); Ramsey and Silverman (2005); Yao, Müller and Wang (2005a); Cai

and Hall (2006); Hall and Horowitz (2007)).

Here, we develop a simple method for constructing confidence bands for
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the slope function in a functional linear regression model tha can be applied

to a PCA-based estimator. Specifically, we work with the following setting.

Let Y be a scalar response variable and let X be a predictor variable, which

we assume to be an L2(I)-valued random variable (random function) such that∫
I E{X2(t)}dt <∞, where I is a compact interval. Consider a functional linear

model with a scalar response variable

Y = a+

∫
I
b(t)[X(t)− E{X(t)}]dt+ ε, E(ε) = 0, E(ε2) = σ2 ∈ (0,∞), (1.1)

where a is an unknown constant (a = E(Y )), b ∈ L2(I) is an unknown slope

function, and X and ε are independent. The error variance σ2 is also unknown.

We are interested in constructing confidence bands for the slope function b cen-

tered at a PCA-based estimator. In spite of extensive studies on functional linear

regression models, to the best of our knowledge, none provide a formal result on

confidence bands for the slope function b that can be applied to a PCA-based

estimator (see the literature review). The purpose of this paper is to fill this

important void.

Quantifying the uncertainty of an estimator is a pivotal part or a statistical

analysis. Confidence bands provide a simple-to-interpret graphical description

of the accuracy of nonparametric estimators. Several techniques are available

for constructing confidence bands for kernel estimations of density and regres-

sion functions (Smirnov (1950); Bickel and Rosenblatt (1973); Claeskens and Van

Keilegom (2003); Chernozhukov, Chetverikov and Kato (2014a,b)), as well as se-

ries estimation using nonstochastic basis functions (Chernozhukov, Chetverikov

and Kato (2014a); Belloni et al. (2015); Chen and Christensen (2015)). See also

Wasserman (2006) and Giné and Nickl (2016) for more information on nonpara-

metric inferences. However, PCA estimations of functional linear models use the

eigenfunctions of the empirical covariance function. Because the latter function

is stochastic, the eigenfunctions are stochastic as well. Thus, the randomness

of these eigenfunctions must be considered, which presents a new and nontriv-

ial challenge. Of course, in principle, it is possible to show that the effects of

estimation errors in the empirical eigenfunctions is negligible and, thus, to ap-

ply existing tools (e.g., those developed by Belloni et al. (2015)) to construct

confidence bands for the population eigenfunction. However, translating the re-

quired regularity conditions into primitive conditions is highly nontrivial because

a functional PCA is essentially an L2-theory, where the confidence bands require

controlling the sup-norm error of the estimator. Furthermore, the required regu-

larity conditions are technically involved. For instance, the regularity conditions
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given in Belloni et al. (2015, Thm. 5.6) for the confidence bands for series esti-

mators (with known basis functions) involve L∞-approximation properties and

smoothness of the basis functions. Thus, translating these conditions on the

basis functions to the covariance function to the eigenfunctions are used as the

basis functions in nontrivial. In addition, in reality, we use the empirical eigen-

functions, which are stochastic. Hence, the bias is stochastic as well and the

sup-norm control of the bias is nontrivial. Note that the eigenfunctions of the

covariance function depend intrinsically on the distribution of X. Thus, placing

restrictions on the eigenfunctions narrows the admissible class of distributions of

X, which, in turn, restricts the applicability of the resulting method.

The aim of this study is to propose a simple method for constructing confi-

dence bands centered at a PCA-based estimator that works under the regularity

conditions standard in the literature on functional linear regressions. To this

end, we slightly relax the coverage requirements of the confidence bands, as in

Cai, Low and Ma (2014), and require that our confidence band cover the slope

function b at “most” of the points t ∈ I with a prespecified probability, say 90%

or 95%. We then propose a confidence band centered at the PCA-based estima-

tor and show that under suitable regularity conditions, the proposed confidence

band satisfies this new requirement asymptotically. For the proposed confidence

band to work in practice, the choice of the cutoff level is crucial. In theory, we

should choose the cutoff level in such a way that it “undersmoothes” the PCA-

based estimator. To this end, we propose choosing a level slightly larger than

the optimal level that minimizes the estimate of the L2-risk of the PCA-based

estimator. The proposed confidence band, asymptotic validity of the band, and

selection rule of the cutoff level are new. We investigate the finite-sample per-

formance of the proposed confidence band using numerical simulations, showing

that the proposed band and the selection rule for the cutoff level work well in

practice. Finally, we apply our methodology to spectrometric data, and discuss

extensions of our methodology to cases where additional vector-valued regressors

are present (see Appendix A).

There are many studies on estimations and predictions in functional linear

regression models; see Cardot, Ferraty and Sarda (1999, 2003), Yao, Müller and

Wang (2005a), Cai and Hall (2006), Hall and Horowitz (2007), Li and Hsing

(2007), Crambes, Kneip and Sarda (2009), James, Wang and Zhu (2009), Car-

dot and Johannes (2010), Yuan and Cai (2010), Meister (2011), Delaigle and

Hall (2012), and Cai and Yuan (2012). Statistical inferences, such as hypothe-

sis testing and the construction of (pointwise) confidence intervals, for functional
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linear models is studied in Müller and Stadmüller (2005), Cardot, Mas and Sarda

(2007), González-Manteiga and Mart́ınez-Calvo (2011), Hilgert, Mas and Verze-

len (2013), Lei (2014), Shang and Cheng (2015), and Khademnoe and Hosseini-

Nasab (2016). Except for Müller and Stadmüller (2005), these works do not

address confidence bands for the slope function. Cardot, Mas and Sarda (2007),

González-Manteiga and Mart́ınez-Calvo (2011), and Khademnoe and Hosseini-

Nasab (2016) examine confidence intervals for a scalar parameter
∫
I b(t)x(t)dt

for a fixed x ∈ L2(I), and Hilgert, Mas and Verzelen (2013) and Lei (2014)

examine testing the hypothesis that b = 0 against suitable alternatives. These

topics are related to, but substantially different to that examined in our study.

Shang and Cheng (2015) develop a number of important inference results for

a generalized functional linear model, which includes our model (1.1) as a spe-

cial case. In particular, they prove a pointwise asymptotic normality result for

an estimator based on a reproducing kernel Hilbert space approach (see their

Corollary 3.7), which leads to valid pointwise confidence intervals for the slope

function. However, they do not consider confidence bands for the slope function,

and work with a different estimator to our PCA-based estimator. Müller and

Stadmüller (2005) is an important and pioneering work on confidence bands for

the slope function in a generalized functional linear model. However, they work

with nonstochastic basis functions and, strictly speaking, prove only that their

band is a valid confidence band for the surrogate function, but not for the slope

function itself. Hence, they do not formally show whether their band is valid

when the estimated eigenfunctions are used. See Section 2.3 for a detailed com-

parison between our bands and the confidence band of Müller and Stadmüller

(2005). Our numerical studies in Section 5 show that the confidence band of

Müller and Stadmüller (2005), when applied to the PCA-based estimator, tends

to have a coverage probability far below the nominal level. Babii (2016) studies

a generic (but conservative) method for constructing honest confidence bands for

ill-posed inverse problems, which include functional linear regressions as a special

case. However, Babii (2016) focuses on the Tikhonov regularization estimation

(and, thus, does not cover PCA-based estimations), and makes substantially dif-

ferent assumptions to ours (see his Assumption 5). Other works on confidence

bands for functional data include Bunea, Ivanescu and Wegkamp (2011), Degras

(2011), Cao, Yanga and Todemc (2012), Ma, Yang and Carroll (2012), Chang,

Lin and Ogden (2017). However, these studies do not examine with their func-

tional linear regression model (1.1), and the methodologies and techniques differ

substantially from ours. For example, Chang, Lin and Ogden (2017) consider
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a functional regression model where the response variable is a function and the

predictor variable is a vector, which is the opposite setting to that in our study.

The rest of the paper is organized as follows. In Section 2, we informally

present our methodology for constructing confidence bands for b using a PCA-

based estimator. In Section 3, we present theoretical guarantees of the proposed

confidence band. In Section 4, we propose a practical method for choosing the

cutoff level used in the PCA-based estimation. In Section 5, we present numerical

results to verify the finite-sample performance of the proposed confidence band.

Section 6 concludes the paper. The Appendix, available in the Supplementary

Material, contains an extension of the methodology to cases with additional

regressors, as well as additional numerical experiments and all proofs.

1.1. Notation

We use the following notation. For any measurable functions f : I → R and

R : I2 → R, let ‖f‖ =
{∫

I f
2(t)dt

}1/2
and |||R||| =

{∫∫
I2 R

2(s, t)dsdt
}1/2

. Let

L2(I) = {f : I → R : f is measurable, ‖f‖ < ∞}, and define the equivalence

relation ∼ for real-valued functions f, g defined on I by f ∼ g ⇔ f = g almost

everywhere. Define L2(I) by the quotient space L2(I) = L2(I)/ ∼ equipped with

the inner product 〈f∼, g∼〉 =
∫
I f(t)g(t)dt for f, g ∈ L2(I), where f∼ = {h ∈

L2(I) : h ∼ f}. The space L2(I) is a separable Hilbert space, and as usual, we

identify any element in L2(I) as an element of L2(I). Define L2(I2) analogously.

2. Methodology

2.1. Functional PCA

We begin by reviewing an approach for estimating b based on a functional

PCA. Let K(s, t) denote the covariance function of X, namely, K(s, t) =

Cov{X(s), X(t)} for s, t ∈ I. We assume that the integral operator from L2(I)

onto itself with kernel K, namely, the covariance operator of X, is injective. The

covariance operator is self-adjoint and positive-definite. The Hilbert–Schmidt

theorem (see, e.g., Reed and Simon (1980, Thm. VI.16)) then ensures that K

admits the spectral expansion

K(s, t) =

∞∑
k=1

κjφj(s)φj(t)

in L2(I2), where κ1 ≥ κ2 ≥ · · · > 0 is a nonincreasing sequence of eigenvalues

tending to zero and {φj}∞j=1 is an orthonormal basis of L2(I) consisting of the
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eigenfunctions of the integral operator, that is,∫
I
K(s, t)φj(t)dt = κjφj(s), j = 1, 2, . . . .

Because {φj}∞j=1 is an orthonormal basis of L2(I), we have the following expan-

sions in L2(I): b(t) =
∑∞

j=1 bjφj(t) and X(t) = E{X(t)} +
∑∞

j=1 ξjφj(t), where

bj and ξj are defined by bj =
∫
I b(t)φj(t)dt and ξj =

∫
I [X(t)− E{X(t)}]φj(t)dt,

respectively. Then, we obtain the following alternative expression of the regres-

sion model (1.1): Y = a +
∑∞

j=1 bjξj + ε. Now, observe that E(ξj) = 0 for all

j = 1, 2, . . . and

E(ξjξk) =

∫∫
I2
K(s, t)φj(s)φk(t)dsdt =

{
κj if j = k,

0 if j 6= k,

which yields that E(ξjY ) = κjbj for each j = 1, 2, . . . , that is,

bj =
E(ξjY )

κj
. (2.1)

This characterization leads to a method for estimating b.

Let (Y1, X1), . . . , (Yn, Xn) be independent copies of (Y,X). First, we estimate

K using the empirical covariance function K̂, defined as K̂(s, t) = n−1
∑n

i=1{Xi(s)

−X(s)}{Xi(t) − X(t)} for s, t ∈ I, where X = n−1
∑n

i=1Xi. Let K̂(s, t) =∑∞
j=1 κ̂jφ̂j(s)φ̂j(t) be the spectral expansion of K̂ in L2(I2), where κ̂1 ≥ κ̂2 ≥

· · · ≥ 0 are a non-increasing sequence of eigenvalues tending to zero and {φ̂j}∞j=1

is an orthonormal basis of L2(I) consisting eigenfunctions of the integral operator

with kernel K̂, that is,∫
I
K̂(s, t)φ̂j(t)dt = κ̂jφ̂j(s), j = 1, 2, . . . .

The spectral expansion of K̂ is possible since the integral operator with kernel

K̂ is of finite rank (at most (n − 1)). Thus, in addition to an orthonormal

system of L2(I) consisting of the eigenfunctions corresponding to the positive

eigenvalues, we can add functions such that the augmented system of functions

{φ̂j}∞j=1 becomes an orthonormal basis of L2(I). Now, let

ξ̂i,j =

∫
I
{Xi(t)−X(t)}φ̂j(t)dt.

Using the characterization in (2.1), we estimate each bj by b̂j = n−1
∑n

i=1 ξ̂i,jYi/κ̂j ,

and consider an estimator for b of the form

b̂(t) =

mn∑
j=1

b̂jφ̂j(t),
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where mn is the cutoff level such that mn → ∞ as n → ∞. Hall and Horowitz

(2007) study the properties of the PCA-based estimator b̂ in detail and provide

conditions under which the estimator is rate-optimal.

2.2. Construction of confidence bands

For a given τ ∈ (0, 1), a confidence band for b with level 1− τ is a collection

of random intervals C = {C(t) = [`(t), u(t)] : t ∈ I} such that

P{b(t) ∈ [`(t), u(t)] for all t ∈ I} ≥ 1− τ. (2.2)

Here, we focus on confidence bands centered at the PCA-based estimator b̂,

thereby quantifying the uncertainty of the PCA-based estimator b̂. However,

as discussed in the Introduction, the requirement given in (2.2) is too stringent

for our problem. Thus, and we consider a less demanding requirement. That is,

instead of requiring (2.2), we construct a confidence band C = {C(t) = [`(t), u(t)] :

t ∈ I} such that for given τ1, τ2 ∈ (0, 1), with probability at least 1 − τ1, the

proportion of the set of t at which b is not covered by C is at most τ2; that is,

P {λ ({t ∈ I : b(t) /∈ [`(t), u(t)]}) ≤ τ2λ(I)} ≥ 1− τ1, (2.3)

where λ denotes the Lebesgue measure. If the band C satisfies the new require-

ment (2.3), then it covers b over more than 100(1 − τ2)% of points in I with

probability at least 1 − τ1. Thus, as long as τ2 is close to 0, the band C cov-

ers b over “most” points in I, with probability at least 1 − τ1. Hence, the new

requirement (2.3) is a reasonable relaxation of the former requirement (2.2).

A relaxed coverage requirement similar to (2.3) appears in Cai, Low and Ma

(2014) for the purpose of constructing adaptive confidence bands in a nonpara-

metric regression. We employ the relaxed coverage requirement (2.3) to resolve

a different challenge, namely, that of constructing confidence bands for a series

estimator with estimated basis functions.

In what follows, we informally present our methodology for constructing a

confidence band for the PCA-based estimator b̂ that satisfies (2.3) asymptotically.

Under some regularity conditions, we show that

n‖b̂− b‖2

=

mn∑
j=1

(
n−1/2

n∑
i=1

εiξ̂i,j
κ̂j

)2

+OP(mα/2+1
n +

√
nm−β+α/2+1

n + nm−2β+1
n ), (2.4)

where εi = Yi − a −
∫
I b(t)[Xi(t) − E{X(t)}]dt for i = 1, . . . , n, where the last

term on the right-hand side of (2.4) is (suitably) negligible relative to the first
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term (the parameters α and β are given in the next section). Observe that, by

definition,

n−1
n∑
i=1

ξ̂i,j ξ̂i,k =

∫∫
I2
K̂(s, t)φ̂j(s)φ̂k(t)dsdt =

{
κ̂j if j = k,

0 if j 6= k.

Hence, conditional on Xn
1 = {X1, . . . , Xn},(

n−1/2
n∑
i=1

εiξ̂i,j
κ̂j

)mn

j=1

(2.5)

is the sum of independent random vectors with mean zero, and the covariance

matrix of the random vector (2.5) conditional on Xn
1 is σ2Λn, where Λn =

diag(1/κ̂1, . . . , 1/κ̂mn
). We show that, under some regularity conditions, the dis-

tribution of the random vector (2.5) can be approximated by that of N(0, σ2Λn).

Therefore the distribution of the first term on the right-hand side of (2.4) can be

approximated by σ2
∑mn

j=1 ηj/κ̂j , where η1, . . . , ηmn
are independent χ2(1) ran-

dom variables independent of Xn
1 . Note that when ε is Gaussian, the random

vector (2.5) has the same distribution as that of N(0, σ2Λn). Thus, for a given

τ ∈ (0, 1), let

ĉn(1− τ) = conditional (1− τ)-quantile of

√√√√mn∑
j=1

ηj
κ̂j

given Xn
1 ,

which can be computed using simulations, and consider an L2-confidence ball for

b of the form

Bn(1− τ) =

{
b : ‖b̂− b‖ ≤ σ̂ĉn(1− τ)√

n

}
, (2.6)

where σ̂2 = n−1
∑n

i=1(Yi−Y −
∑mn

j=1 b̂j ξ̂i,j)
2 with Y = n−1

∑n
i=1 Yi, and σ̂ =

√
σ̂2.

We show that, under some regularity conditions, this confidence ball contains the

slope function b with probability 1−τ+o(1) as n→∞. However, it is well known

that an L2-confidence ball is difficult to visualize/interpret. Thus, instead, we

construct a confidence band for b by modifying the confidence ball, borrowing

from Juditsky and Lambert-Lacroix (2003); see also Section 5.8 in Wasserman

(2006). Specifically, we propose the following confidence band for b:

Ĉ =

{
Ĉ(t) =

[
b̂(t)− σ̂ĉn(1− τ1)√

n

√
1

τ2λ(I)
, b̂(t)+

σ̂ĉn(1− τ1)√
n

√
1

τ2λ(I)

]
: t ∈ I

}
,

(2.7)

where τ1 and τ2 are constants such that τ1, τ2 ∈ (0, 1).

It follows from an argument similar to that in Wasserman (2006, p.95) that,
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with probability at least 1 − τ1 + o(1), the proportion of the set of t at which b

is not covered by Ĉ is at most τ2, that is,

P
{
λ
({
t ∈ I : b(t) /∈ Ĉ(t)

})
≤ τ2λ(I)

}
≥ 1− τ1 + o(1), (2.8)

so that the proposed confidence band (2.7) satisfies requirement (2.3) asymptot-

ically. In fact, let U be a uniform random variable on I independent of the data,

and let PU denote the probability with respect to U only. Then ,

λ
({
t ∈ I : b(t) /∈ Ĉ(t)

})
= λ(I)PU

{√
nτ2λ(I)|̂b(U)− b(U)| > σ̂ĉn(1− τ1)

}
,

and Markov’s inequality yields that the right-hand side is bounded by nτ2λ(I)‖b̂−
b‖2/{σ̂2ĉ2n(1− τ1)}. Therefore,

P
{
λ
(
{t ∈ I : b(t) /∈ Ĉ(t)}

)
≤ τ2λ(I)

}
≥ P

{
n‖b̂− b‖2 ≤ σ̂2ĉ2n(1− τ1)

}
= 1− τ1 + o(1),

which yields the desired result.

The values of τ1 and τ2 are chosen by users, where 1−τ1 is the nominal level.

Thus, a popular choice of τ1 is 0.1 or 0.05. The value of τ2 is the proportion of the

set of points not covered by the confidence band. In practice, we should choose

τ2 to be small (but not too small since this would make the width of the band

too large). In the numerical studies in Section 5, we take τ2 = 0.1. In theory, it is

relatively straightforward to see that we may choose τ2 in such a way that τ2 ↓ 0,

so that the proportion of the excluded domain is asymptotically vanishing. See

also Remark 5.

To compute the quantile ĉn(1− τ1), we propose using simulations. An alter-

native way to approximate the quantile ĉn(1 − τ1) is to apply the central limit

theorem to
∑mn

j=1 ηj/κ̂j . In fact, under some regularity conditions, it holds that

1/(
√

2
∑mn

k=1 κ̂
−2
k )

∑mn

j=1 κ̂
−1
j (ηj − 1)

d→ N(0, 1). Therefore, ĉ2n(1− τ1) can be ap-

proximated as
∑n

j=1 κ̂
−1
j + Φ−1(1− τ1)

√
2
∑mn

k=1 κ̂
−2
k , where Φ is the distribution

function of the standard normal distribution. However, in applications, mn is

often small compared with n, and the above normal approximation can be im-

precise. Therefore, we recommend simulating the quantile ĉn(1 − τ1) directly

instead of relying on the central limit theorem.

Note that our confidence band (2.7) is, in general, conservative; namely,

lim infn→∞ P{λ({t ∈ I : b(t) /∈ Ĉ(t)}) ≤ τ2λ(I)} is, in general, larger than 1− τ1,
which is clear from the discussion above. However, the numerical studies in

Section 5 suggest that the width of our band, with the cutoff level chosen by the
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rule suggested in Section 4, is reasonably narrow in practice.

The proposed confidence bands allow a small portion of the domain to be

excluded from the confidence bands. Despite the proposed confidence bands not

covering all points in the domain with a given level, they are able to capture

the global shape of the slope function, which helps practitioners to make infer-

ences on the slope function. Furthermore, partly because of the conservative

nature of our bands, in our numerical studies, we find that our bands tend to

have reasonably good uniform coverage probabilities. Hence, we believe that the

proposed methodology adds a valuable option for inferences on functional linear

regressions.

Remark 1 (Inference on sub-regions). Note that our confidence band over

the full domain can be applied to construct an estimate of a sub-domain on

which the slope function b satisfies a certain property, for instance, a subset of I

on which ν` ≤ b(t) ≤ νu, for some thresholds ν` < νu. More formally, let Ib,ν with

ν = (ν`, νu) be a subset of I defined by Ib,ν := {t ∈ I : ν` ≤ b(t) ≤ νu}. Based

on our confidence band Ĉ = {C(t) = [̂̀(t), û(t)] : t ∈ I}, we can construct an

estimate for the set Ib,ν by Îb,ν =
{
t ∈ I : ν` ≤ û(t), ̂̀(t) ≤ νu}. From equation

(2.8), we have

λ(Ib,ν ∩ Îb,ν) ≥ λ(Ib,ν)− λ({t ∈ I : b(t) /∈ Ĉ(t)}) ≥ λ(Ib,ν)− τ2λ(I),

with probability at least 1− τ1 + o(1). Therefore, we have

P

λ
(
Ib,ν ∩ Îb,ν

)
λ(Ib,ν)

≥ 1− τ2
λ(I)

λ(Ib,ν)

 ≥ 1− τ1 + o(1).

As τ1 ↓ 0 and τ2 ↓ 0 as n → ∞, we have (λ(Ib,ν ∩ Îb,ν))/(λ(Ib,ν))
P→ 1, which

shows a version of consistency of the estimate Îb,ν .

Next, our confidence band is a global band, and hence, is not suitable for

constructing “local” confidence bands, that is, confidence bands on a chosen sub-

set of I, say a neighborhood of an interior point t0 ∈ I. However, we believe

that our methodology is a useful addition to functional data analyses. To con-

struct “local” confidence bands, one approach would be to take a convolution of

b̂ with a kernel. That is, let L : R → R be a sufficiently regular kernel function

that integrates to one and is supported in [−1, 1], and let h > 0 be a sufficiently

small bandwidth such that [t0 ± h] ⊂ I. In addition, let b̂h(t0) = 〈Lh(· − t0), b̂〉,
and bh(t0) = 〈Lh(· − t0), b〉 where Lh(·) = h−1L(·/h). Then, under (possibly

restrictive) regularity conditions, it is expected that an(̂bh(t0)−bh(t0)) converges
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in distribution to a normal distribution for a suitable norming constant an; see

Cardot, Mas and Sarda (2007). This leads to a method for constructing a con-

fidence interval for bh(t0). However, in theory, we need to take h = hn → 0

sufficiently fast to ensure that the bias bh(t0)− b(t0) is negligible, which requires

an additional smoothness assumption on b. Because this approach is tangential

to the methodology developed here, an analysis of such “local” confidence bands

is left for future research.

Remark 2 (Equivariance of the band). Note that our confidence band

(2.7) is equivariant under location-scale changes to the index t. Suppose that

I = [c, c], and consider a change of variable t = c + u(c − c) for u ∈ [0, 1]. Let

X†i (u) = Xi(c + u(c − c)) and b†(u) = (c − c)b(c + u(c − c)) for u ∈ [0, 1], and

observe that
∫
I b(t)Xi(t)dt =

∫ 1
0 b
†(u)X†i (u)du. Furthermore, let κ̂†j = κ̂j/(c− c)

and φ̂†j(u) =
√
c− cφ̂j(c+ u(c− c)) for u ∈ [0, 1]. Then, {(κ̂†j , φ̂

†
j)}∞j=1 are eigen-

value/eigenfunction pairs for the empirical covariance function K̂† of {X†i }ni=1,

that is,
∫ 1
0 K̂

†(v, u)φ̂†j(u)du = κ̂†jφ̂
†
j(v). It is not difficult to see that the PCA-

based estimator with cutoff level mn for b† based on the data {(Yi, X†i )}ni=1 is

b̂†(u) = (c− c)̂b(c+u(c− c)) for u ∈ [0, 1]. Next, the conditional (1− τ1)-quantile

of
√∑mn

j=1 ηj/κ̂
†
j =
√
c− c

√∑mn

j=1 ηj/κ̂j , denoted by ĉ†n(1 − τ1), is identical to
√
c− cĉn(1− τ1). Thus, our confidence band applied to the data {(Yi, X†i )}ni=1 is

Ĉ†(u) =

[
b̂†(u)± σ̂ĉ†n(1− τ1)√

n

√
1

τ2

]

= (c− c)

[
b̂(c+ u(c− c))± σ̂ĉn(1− τ1)√

n

√
1

τ2(c− c)

]
,

for u ∈ [0, 1]. Therefore, we conclude that b†(u) ∈ Ĉ†(u) ⇔ b(c + u(c − c)) ∈
Ĉ(c+ u(c− c)) for u ∈ [0, 1], and thus λ({u ∈ [0, 1] : b†(u) /∈ Ĉ†(u)} = λ({t ∈ I :

b(t) /∈ Ĉ(t)})/(c− c).
Remark 3 (Additional smoothing steps). To simplify the theoretical anal-

ysis, we assume that entire trajectories of Xi are observed without measurement

errors. In applications, functional predictor variables are often discrete and con-

tain measurement errors. In such cases, a standard approach is to first estimate

Xi using a smoothing technique (Yao, Müller and Wang (2005b); Hall, Müller

and Wang (2006)). Our methodology includes over to cases where such additional

smoothing steps are involved, since the proofs of Theorems 1 and 2 rely essen-

tially on the fact that 1) the distribution of the vector (n−1/2
∑n

i=1 εiξ̂i,j/κ̂j)
mn

j=1
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conditional on Xn
1 is N(0, σ2Λn) or can be approximated by N(0, σ2Λn), and 2)

the empirical eigenfunctions φ̂j are sufficiently accurate estimates of the popula-

tion eigenfunctions of φj , without relying on how we estimate the eigenfunctions

φj .

Remark 4 (Extension to a multidimensional domain). The extension to

a compact multi-dimensional domain (i.e., to the case where I is a compact

subset of Rd with d ≥ 2) is possible without making any significant changes. The

spectral expansion of the covariance function holds for the multi-dimensional case

and, hence, it is not difficult to see that the other analysis carries over to the

multi-dimensional case as well. However, since it is more difficult to visualize

confidence bands in the multi-dimensional case, we focus on one-dimensional

intervals here.

2.3. Comparison with the confidence band of Müller and Stadmüller

(2005)

Müller and Stadmüller (2005) provided a pioneering work on confidence

bands for the slope function in a generalized functional linear model. In the

context of our model (1.1), their proposal reads as follows. Suppose for the

sake of simplicity that E(Y ) = 0 and E{X(t)} = 0 for all t ∈ I. For a

given, nonstochastic orthonormal basis {ρj}∞j=1 of L2(I), expand Xi and b as

Xi =
∑

j ζi,jρj and b =
∑

j θjρj , respectively, with ζi,j =
∫
I Xi(t)ρj(t)dt and

θj =
∫
I b(t)ρj(t)dt. Now, observe that Yi =

∑
j ζi,jθj + εi and obtain an estima-

tor θ̂ = (θ̂1, . . . , θ̂mn
)T of θ = (θ1, . . . , θmn

)T by regressing Yi on (ζi,1, . . . , ζi,mn
)T ,

where mn →∞ as n→∞. Müller and Stadmüller (2005) show that, under some

regularity conditions, (n(θ̂ − θ)T (Γ/σ2)(θ̂ − θ)−mn)/
√

2mn
d→ N(0, 1), where

Γ = {E(ζ1,jζ1,k)}1≤j,k≤mn
. Based on this result, they propose the following con-

fidence band: denote by (e1, λ1), . . . , (emn
, λmn

) the eigenvectors/eigenvalues of

the matrix Γ, and consider

b̃(t)± σ

√√√√ c̃n(1− τ)

n

mn∑
j=1

ω2
j (t)

λj
, t ∈ I, (2.9)

where ωj(t) =
∑mn

k=1 ρk(t)ej,k with ej = (ej,1, . . . , ej,mn
)T , and c̃n(1 − τ) =

mn +
√

2mnΦ−1(1 − τ). To compare our band (2.7) with (2.9), assume that

the covariance function K is known for (2.9) and use the eigenfunctions {φj}∞j=1

for {ρj}∞j=1. In that case, the band (2.9) is of the form
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b̃(t)± σ

√√√√ c̃n(1− τ)

n

mn∑
j=1

φ2j (t)

κj
, t ∈ I. (2.10)

In their theoretical analysis, Müller and Stadmüller (2005) work with non-

stochastic basis functions and, strictly speaking, prove only that the band (2.9)

is a valid confidence band for the surrogate function
∑mn

j=1 θjρj (i.e., they prove

that the band (2.9) contains
∑mn

j=1 θjρj(t) for all t ∈ I with probability at least

1 − τ + o(1)), but not for the slope function b itself. Hence, they do not for-

mally show whether the band (2.10) is valid for b when the estimated eigenfunc-

tions {φ̂j}∞j=1 are used. It is possible to show that, under suitable regularity

conditions, the band (2.10), with (κj , φj) replaced by (κ̂j , φ̂j), contains the (ran-

dom) surrogate function
∑mn

j=1 b̆jφ̂j with probability at least 1− τ + o(1), where

b̆j =
∫
I b(t)φ̂j(t)dt. However, to show that the band is valid for b (i.e., to show

that the band contains b(t) for all t ∈ I with probability at least 1−τ +o(1)), we

would have to show that the supremum bias supt∈I |b(t)−
∑mn

j=1 b̆jφ̂j(t)| (which

is random) is negligible relative to the infimum width of the band, which is

nontrivial.

3. Theoretical Guarantees

In this section, we investigate the validity of our confidence band. We sep-

arately consider the cases where the error distribution is Gaussian and non-

Gaussian.

3.1. Case with Gaussian errors

We first consider the case where the error distribution is Gaussian. In this

case, we make the following assumptions.

Assumption 1. There exist constants α > 1, β > α/2 + 3/2, and C1 > 1 such

that (i) E(‖X‖2) <∞ and E(ξ4j ) ≤ C1κ
2
j for all j = 1, 2, . . . ; (ii) κj ≤ C1j

−α and

κj −κj+1 ≥ C−11 j−α−1 for all j = 1, 2, . . . ; (iii) |bj | ≤ C1j
−β for all j = 1, 2, . . . ;

and (iv) m2α+2
n /n→ 0 and mα+2β−1

n /n→∞.

Conditions (i)–(iii) are adapted from Hall and Horowitz (2007) and are

(more or less) standard in theoretical analyses of PCA-based estimators (Cai

and Hall (2006); Meister (2011); Lei (2014); Kong et al. (2016)). The estimation

of the slope function b is an ill-posed inverse problem (as discussed in Hall and

Horowitz (2007)), and the value of α that appears in Condition (ii) measures

the “ill-posedness” of the estimation problem (the larger α is, the more diffi-
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cult the estimation of b is). The second part of Condition (ii), which ensures

the sufficient estimation accuracy of the empirical eigenfunctions, also implies

that κj ≥ j−α/(C1α) for all j = 1, 2, . . . Condition (iii) is concerned with the

smoothness of b. The requirement that m2α+2
n /n → 0 is a technical condition

used to control for estimation errors of the empirical eigenfunctions. The last

condition, mα+2β−1
n /n → 0, can be interpreted as an “undersmoothing” condi-

tion. From Hall and Horowitz (2007), the optimal rate of mn for an estimation

is mn ∼ n1/(α+2β). However, the last condition requires that mn has to be of a

larger order than the optimal value in order for the bias to be negligible relative

to the “variance” term. This undersmoothing condition is commonly used to

construct confidence bands. See Section 5.7 in Wasserman (2006) for a related

discussion. We discuss a practical choice of the cutoff level in the next section.

Note that to ensure that Condition (iv) is nonvoid, we need that β > α/2 + 3/2.

Theorem 1. For given τ1, τ2 ∈ (0, 1), consider the confidence band Ĉ defined in

(2.7). Let ε ∼ N(0, σ2). Then, under Assumption 1, the result (2.8) holds as

n→∞. Furthermore, the width of the band Ĉ is OP(
√
mα+1
n /n).

The proof of Theorem 1 consists of approximating the distribution of n‖b̂−
b‖2 by that of σ2

∑mn

j=1 ηj/κ̂j , where η1, . . . , ηmn
are independent χ2(1) random

variables independent of Xn
1 . However, since the approximating distribution also

depends on n (and random), the proof of the theorem is nontrivial. To formally

show that the error of the stochastic approximation in (2.4) is negligible for the

distributional approximation, we rely on concentration and anti-concentration in-

equalities for a weighted sum of independent χ2(1) random variables; see Lemma

1 in the Supplementary Material.

Remark 5. An inspection of the proof shows that the result (2.8) holds even

if we choose τ2 ↓ 0 (the rate at which τ2 ↓ 0 as n → ∞ can be arbitrary). The

width of the band is then OP{
√
mα+1
n /(nτ2)}.

Remark 6 (Uniformity in distribution). The coverage result (2.8) holds

uniformly over a certain class of distributions of (Y,X). For given α > 1, β >

α/2 + 3/2, and C1 > 1, let FNormal(α, β, C1) be the class of distributions of

(Y,X) that verify (1.1) and Conditions (i)–(iii) in Assumption 1; furthermore

ε ∼ N(0, σ2) is independent of X with C−11 ≤ σ2 ≤ C1. Then, provided that

m2α+2
n /n→ 0 and mα+2β−1

n /n→∞, we have

lim inf
n→∞

inf
F∈FNormal(α,β,C1)

PF

{
λ
({
t ∈ I : b(t) /∈ Ĉ(t)

})
≤ τ2λ(I)

}
≥ 1− τ1, (3.1)
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where PF denotes the probability under F . In fact, to show (3.1), it is enough

to verify that for any sequence Fn ∈ FNormal(α, β, C1), the result in (2.8) holds

for (Y1, X1), . . . , (Yn, Xn) ∼ Fn i.i.d. for n ≥ 1, which is not difficult to verify in

view of the proof of Theorem 1. Furthermore, the result in (3.1) holds even if

τ2 ↓ 0. A similar comment applies to Theorem 2.

3.2. Case with non-Gaussian errors

Next, we consider the case where the error distribution is possibly non-

Gaussian. Instead of Assumption 1, we make the following assumptions. For

q > 1 and α > 0, let c(q, α) = max{2α+ 2, 7/(2− 2/q)}.

Assumption 2. There exist an integer q ≥ 2 and constants α > 1, β > {c(q, α)−
α+ 1}/2, and C1 > 0 such that

E(ξ2qj ) ≤ C1κ
q
j for all j = 1, 2, . . . , (3.2)

and Conditions (ii) and (iii) in Assumption 1 are satisfied. Furthermore, assume

that

m
c(q,α)
n

n
→ 0 and

mα+2β−1
n

n
→∞. (3.3)

These conditions guarantee that all of the conclusions of Theorem 1 remain

valid, even when the error is non-Gaussian.

Theorem 2. Suppose that ε has mean zero and variance σ2 > 0, and that

E[ε4] < ∞. Then, under Assumption 2, all of the conclusions of Theorem 1

remain true.

In comparison with the Gaussian error case, we require conditions that rae

more restrictive (note that if E(ξ2qj ) ≤ C1κ
q
j for some q ≥ 2, then E(ξ4j ) ≤

{E(ξ2qj )}2/q ≤ C
2/q
1 κ2j ). These additional conditions are used to apply the high-

dimensional central limit theorem of Bentkus (2005). Condition (3.2) is satisfied

for all q ≥ 2 if X is Gaussian. Conditions similar to (3.2) are also employed, for

example, Cai and Hall (2006) and Hilgert, Mas and Verzelen (2013). If we choose

q to be sufficiently large, that is, q > (4α + 4)/(4α − 3), then the conditions on

mn reduce to those in the Gaussian error case.

4. Choice of Cutoff Level

For the proposed confidence band to work in practice, the choice of the

cutoff level mn is crucial. In theory, we should choose mn so that it is of larger
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order than the optimal rate n1/(α+2β) for an estimation under the L2-risk. The

idea is to construct an estimate of the L2-risk of b̂ with the given cutoff level

m, and to choose a cutoff level slightly larger than the optimal cutoff level that

minimizes the estimate of the L2-risk. The construction of the estimate of the

L2-risk of b̂ is inspired by Cavalier et al. (2002). Recall that b is expressed as

b(t) =
∑∞

j=1 bjφj(t) =
∑∞

j=1(cj/κj)φj(t), where cj = E(ξjY ). Suppose first that

the covariance function K is known, and consider, for a given cutoff level m, the

estimator

b̂∗(t;m) =

m∑
j=1

b̂∗jφj(t) =

m∑
j=1

ĉ∗j
κj
φj(t),

where ĉ∗j = n−1
∑n

i=1 ξi,jYi and b̂∗j = ĉ∗j/κj . Let R∗(m) denote the L2-risk of the

estimator b̂∗(·;m), that is,

R∗(m) = E[‖b̂∗(·;m)− b‖2]

=
∑
j>m

b2j +

m∑
j=1

Var(ĉ∗j )

κ2j
= ‖b‖2 −

m∑
j=1

b2j +
1

n

m∑
j=1

Var(ξjY )

κ2j
.

Minimizing R∗(m) is equivalent to minimizing

Ř∗(m) = −
m∑
j=1

b2j +
1

n

m∑
j=1

Var(ξjY )

κ2j
.

Recall that Ř∗(m) is still unknown. However, we may estimate Ř∗(m) using

R̂∗(m) = −
m∑
j=1

(̂b∗j )
2 +

2

n(n− 1)

m∑
j=1

∑n
i=1(ξi,jYi − ĉ∗j )2

κ2j
.

In fact, since E[(̂b∗j )
2] = b2j + Var(ĉ∗j )/κ

2
j , R̂

∗(m) is an unbiased estimator of

Ř∗(m).

In practice, K is unknown, and so we replaceK with K̂, and for our estimator

b̂, we use

R̂(m) = −
m∑
j=1

b̂2j +
2

n(n− 1)

m∑
j=1

∑n
i=1(ξ̂i,jYi − ĉj)2

κ̂2j

as an estimate of the L2-risk of b̂ with cutoff level m, where ĉj = n−1
∑n

i=1 ξ̂i,jYi.

Now, let m̂n be a minimizer of R̂(m) over a candidate set chosen by users; our

recommendation is to choose either max{m̂n, 2} or m̂n + 1 for the construction

of the proposed confidence band.
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5. Numerical Results

5.1. Simulations

We consider the following data-generating process. Let I = [0, 1], φ1 ≡ 1,

and φj+1(t) = 21/2 cos(jπt), for j = 1, 2, . . . , and generate (X,Y ) as follows:

Y =

∫
I
b(t)X(t)dt+ ε, X =

50∑
j=1

j−α/2Ujφj ,

b =

50∑
j=1

bjφj , b1 = 1, bj = 4(−1)jj−β for j 6= 1,

where Uj ∼ Unif.[−31/2, 31/2] are independent. The distribution of the error term

ε is either N(0, 1) or normalized χ2(5). We consider the following configurations

for (α, β): α ∈ {1.1, 2} and β ∈ {2.6, 3.2}. We construct confidence bands of the

form given in (2.7), with τ1 = τ2 = 0.1, and examine the following sample sizes:

n ∈ {100, 200, . . . , 1,000}. We evaluate the confidence bands using

UCP = P{b(t) ∈ Ĉ(t) for all t ∈ I},

and

MCP = P
{
λ
({
t ∈ I : b(t) /∈ Ĉ(t)

})
≤ τ2

}
,

where UCP signifies the “uniform coverage probability” and MCP signifies the

“modified coverage probability.” We compare the performance of our confidence

band (2.7) with that of the Müller–Stadmüller (MS) band (2.10), where we re-

place (κj , φj) and σ by (κ̂j , φ̂j) and σ̂, respectively. Note that we have also

examined a version of the MS band where we replaced c̃n(1−τ1) with the (1−τ1)-
quantile of the χ2(mn)-distribution, trying to improve upon the performance of

the MS band; however, the results where similar to those presented here. Recall

that our band aims to control the MCP at level 1− τ1, where the MS band aims

to control the UCP at level 1 − τ1. The number of Monte Carlo repetitions in

each of the following experiments is 2,000. The computations of the integrals

and evaluations of the MCPs and UCPs are carried out by discretizing the unit

interval [0, 1] into 50 equally spaced grids. For the computation of m̂n, discussed

in the previous section, we have to choose a set of candidate cutoff levels. In this

simulation study, we select {1, . . . , 10} as the set of candidate cutoff levels.

Before investigating at the performance of the confidence bands, we examine

how our selection rules for the cutoff level work in practice. For comparison, we

also report the oracle cutoff level m∗n that minimizes the L2-risk of the PCA-
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Figure 1. Values of the cutoff levels and of the RMSE for each level with Gaussian
noise (upper 2 rows) and χ2 noise (lower two rows). Stars correspond to cases with
the oracle cutoff level m∗

n, and triangles and circles correspond to those with m̂n + 1
and max{m̂n, 2}, respectively. THe Monte Carlo averages of cutoff levels m̂n + 1 and
max{m̂n, 2} are also reported.
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based estimator. That is, denoting as b̂(·;m) the PCA-based estimator with the

given cutoff level, m∗n is defined as

m∗n = arg min{E[‖b̂(·;m)− b‖2] : m = 1, 2, . . . , 10}.

Figure 1 presents the values of the cutoff levels and the RMSE for each level.

The RMSE is the square root of the L2-risk, and the Monte Carlo averages of the

cutoff levels m̂n+1 and max{m̂n, 2} are also reported. For each of the parameter

configurations, as expected, all of m̂n + 1,max{m̂n, 2}, and m∗n increase with n

(with the exception for m∗n when (n, α, β) = (300, 1.1, 2.6)). Furthermore, m̂n+1

tends to be larger (on average) than the oracle level m∗n, but max{m̂n, 2} tends to

be smaller (on average) than m∗n. However, their differences are not significant.

Figure 1 also shows that the optimal RMSE decreases monotonically in n, which

is consistent with our intuitive expectation. However, the RMSE for the PCA-

based estimator with a cutoff level of max{m̂n, 2} or m̂n + 1 need not decrease

monotonically. We interpret that this is because max{m̂n, 2} and m̂n + 1 need

not select the optimal cutoff level. Furthermore, because of the discreteness of

the cutoff levels, the RMSE curve tends to be wiggly compared with, for example,

the kernel estimation; that is, the bandwidth used in the kernel estimation can

take a continuum of values while the cutoff level used in series estimation can

take only positive integers. Therefore, the RMSE of the series estimation tends

to be variable for different cutoff levels, resulting in the non-monotonicity of the

RMSE with max{m̂n, 2} or m̂n + 1. However, overall, the RMSE tends to be

smaller as n increases. In terms of the RMSE, both m̂n + 1 and max{m̂n, 2}
work reasonably well compared with the optimal RMSE (i.e., the RMSE with

m∗n). Interestingly, m̂n + 1 tends to yield better RMSEs than max{m̂n, 2} does.

Next, we examine the performance of the confidence bands. The simulated

coverage probabilities are plotted in Figure 2. The following observations can be

drawn from the figure. First, the coverage probabilities of the MS band, either in

the UCP or in the MCP, tend to be far below the nominal coverage probability

of 90%. Secont, the MCPs of our band with the cutoff level m̂n + 1 satisfy

the nominal level in all cases, and those with the cutoff level max{m̂n, 2} are

reasonably close to the nominal level, except for a few cases. Note that our band

with the cutoff level m̂n+1 appears to be conservative, but this is not inconsistent

with the theory. Third, although our band is not designed to control the UCP,

our band with the cutoff level m̂n + 1 has reasonably good UCPs.

The simulation results for the expected maximum width and expected mean

width of our confidence band (2.7) and the MS band (2.10) are plotted in Figures
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Figure 2. Coverage probabilities with Gaussian noise (upper two rows) and χ2 noise
(lower two rows). The black markers show the coverage probabilities of our band (2.7),
and the white markers show those of the MS band (2.10). Circles correspond to cases
with the cutoff level max{m̂n, 2}, and triangles to those with m̂n + 1. The dashed line
shows the value 1− τ1 = 0.90.

3 and 4, respectively. For a confidence band C = {[`(t), u(t)] : t ∈ I}, the expected

maximum width and expected mean width are defined by

E

[
max
t∈I
{u(t)− `(t)}

]
and E

[
1

λ(I)

∫
I
{u(t)− `(t)}dt

]
,

respectively. Note that our confidence band has constant width; thus,the max-

imum and mean widths are identical for our band. The figures show that our
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Figure 3. Expected maximum width of confidence bands with Gaussian noise (upper
row) and χ2 noise (lower row). The black markers correspond to our band (2.7), while
and the markers to the MS band (2.10). Circles correspond to cases with the cutoff level
max{m̂n, 2}, and triangles to those with m̂n + 1.
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Figure 4. Expected mean width of confidence bands with Gaussian noise (upper row)
and χ2 noise (lower row). The black markers correspond to our band (2.7), while and
the white markers to the MS band (2.10). Circles correspond to cases with the cutoff
level max{m̂n, 2}, and triangles to those with m̂n + 1.
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Figure 5. Coverage probabilities with Gaussian noise. The black markers show the
coverage probabilities of our band, and the white markers show those of the MS band.
Circles correspond to cases with the cutoff level max{m̂n, 2}, and triangles to those with
m̂n + 1. The dashed line shows the value 1− τ1 = 0.90.

confidence band (2.7) tends to have a larger width than that of the MS band

(2.10), which is not surprising in view of the comparison of the coverage prob-

abilities of the bands. In other words, the MS band has narrower widths, but

at the cost of (severe) under-coverage. However, the width of our band is not

excessively large compared with that of the MS band.

Note that in some cases, the UCPs and MCPs of our band with the cutoff

level max{m̂n, 2} decrease as n increases. This is partly because the bias has non-

negligible effects relative to the width of the band, since the choice of max{m̂n, 2}
is not actually undersmoothing the function estimate.

In conclusion, the simulation results suggest that, in terms of the coverage

probability, our confidence band with the cutoff level m̂n + 1 is recommended,

but that using the cutoff level max{m̂n, 2} is a viable alternative if narrower

confidence bands are preferred.

We also present additional experiments with parameter configurations of

α ∈ {1.1, 2} and β ∈ {1.2, 2}, which violate the condition β > α/2 + 3/2 in

Assumption 1. The simulated coverage probabilities are plotted in Figure 5.

Although the performance of our confidence band is worse than that shown in

Figure 2, our confidence band has MCPs close to the nominal level, except for
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the case (α, β) = (1.1, 1.2).

5.2. Spectrometric data for predicting fat content

To demonstrate how our methodology works using real data, we apply our

confidence band to a regression of fat content in meat on spectra of the light

absorption of these substances. In chemometrics, we often observes a spectrum of

light absorption for a substance, measured at different wavelengths. Such spectral

curves can be regarded as functional data; see Borggaard and Thodberg (1992)

and Chapter 5 of Ferraty and Vieu (2006). The analysis using spectrometric data

is quick and non-destructive and thus, is often used to investigate the properties,

of example, a food sample.

We use the spectrometric data from http://lib.stat.cmu.edu/datasets/

tecator, which we use to predict the fat content in pure meat. In the dataset,

we observe spectral curves from 215 pieces of finely chopped meat (recorded on

a Tecator Infratec Food and Feed Analyzer) measured from wavelengths of 850

nm to 1,050 nm. Let {Xi(t) : t ∈ [850, 1,050]}215i=1 denote these spectral curves,

the graphs of which are plotted in Figure 6. The dataset also contains the fat

content Yi in each piece of meat, measured by an analytical chemical processing.

The estimates b̂ and confidence bands Ĉ with cutoff levels 5 and 6 are plotted

in the upper, right two panels in Figure 6, where we set τ1 = τ2 = 0.1 (note that

we work with the original index set [850, 1,050]; if we normalize the index set to

[0, 1], as in Remark 2, then the vertical axes in the right two panels in Figure

6 would have to be multiplied by 1,050 − 850 = 200). Note that the value of

m̂n is 5 for this dataset. The variance estimates are σ̂2 = 11.14 for mn = 5 and

σ̂2 = 8.59 for mn = 6. For comparison, we also plot the 90% MS bands with

cutoff levels of 5 and 6. The figure shows that both of our bands are reasonably

narrow.

Confidence bands are useful to identify ranges of wavelengths that play a

minor (or major) role in predicting the fat content. Figure 6 leads to the following

two observations. First, there are some peaks in the estimates (negative at around

900 nm and 950 nm, and positive at around 930 nm) and our confidence bands at

those peaks do not contain aero. Thus, the spectra at around those wavelengths

certainly contribute to the fat content prediction. Second, for higher wavelengths

(i.e., wavelengths higher than 970 nm), our confidence band with a cutoff level

of 6 almost always contains zero, and our confidence band with a cutoff level of

5 also contains zero except at around 1,050 nm. This suggests that the spectra

at higher wavelengths do not contribute much to the fat content prediction.

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator
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Figure 6. Spectrometric data (upper, far-left panel) and the estimates b̂ (dashed lines)
and confidence bands (gray areas). The upper, right two panels depict our confidence
bands with cutoff levels of 5 (left) and 6 (right), and lower two panels depict the MS
bands with cutoff levels of 5 (left) and 6 (right).

6. Conclusion

We have proposed a simple method for constructing confidence bands, cen-

tered at a PCA-based estimator, for the slope function in a functional linear

regression model. The proposed confidence band aims to cover the slope func-

tion at “most” of the points with a prespecified probability. Furthermore, we

have proved its asymptotic validity under suitable regularity conditions. Impor-

tantly, to the best of our knowledge, this is the first study to derive confidence

bands with theoretical justifications for the PCA-based estimator. We have also

proposed a practical method for choosing the cutoff level. Our numeral simula-

tions show that the proposed confidence band and selection rule for the cutoff

level work well in practice.
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Giné, E. and Nickl, R. (2016). Mathematical Foundations of Infinite-Dimensional Statistical

Models. Cambridge University Press.
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