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Abstract: Imputation offers an effective solution to the problem of missing values.

We propose a nonparametric multiple imputation procedure that uses multiple

outcome regression models and/or multiple propensity score models. Our procedure

leads to a multiply robust point estimator in the sense that it remains consistent if

all models but one are misspecified. We obtain a variance estimator and establish

the asymptotic properties of the proposed method. The results of a simulation

study, that assesses the proposed method in terms of bias, efficiency, and coverage

probability, support our findings.
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1. Introduction

The problem of missing data is common in clinical trials, social research, and

surveys, among others. One solution is to exclude cases with missing values, a

technique often referred to as a complete case analysis. However, this typically

leads to biased estimators, unless the data are missing completely at random

(Rubin (1976)). Another common approach to resolve the problem of missing

values is imputation, whereby a missing value is replaced by one or more sub-

stitute values. For example, item nonresponse in surveys conducted by national

statistical offices is usually addressed using some form of single imputation in

order to produce public-use data. This allows secondary analysts to obtain point

estimates using estimation procedures designed for complete data.

In this study, we consider multiple imputation, where we replace a missing

value by M > 1 imputed values, leading to M completed data files. An estimate

is obtained from each data file using a complete-data estimation procedure, and

then the M estimates are pooled to obtain a final point estimate and a variance

estimate; see, for example, Rubin (1987), Little and Rubin (2002), and van Bu-

uren (2012) for a comprehensive discussion of multiple imputation. An attractive

feature of multiple imputation is that variance estimates can be readily obtained
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using what is known as Rubin’s rule; see Wang and Robins (1998) for a discus-

sion of proper (type A) and improper (type B) multiple imputation procedures.

Despite the possibility of Rubin’s variance estimator being biased in the case of

improper procedures, it is often used in practice owing to its simplicity. Rubin’s

variance formula has been shown to work reasonably well in a number of settings

with M = 5, although Wang and Robins (1998) have shown that it leads to an

underestimation of the true variance in the case of finite M .

Whether or not we can successfully reduce the nonresponse bias depends

on the availability of powerful auxiliary variables for the sample units (respon-

dents and nonrespondents) and the validity of the postulated outcome regression

model, which is a set of assumptions about the distribution of the variable being

imputed. Traditionally, multiple imputation procedures have been based on a

single outcome regression model, making the resulting point estimators vulner-

able to model misspecification. To overcome this problem, Long, Hsu and Li

(2012) proposed a doubly robust nonparametric multiple imputation procedure

for ignorable missing data. Their method uses two working models: an out-

come regression model and a propensity score model, where the latter is a set of

assumptions about the unknown nonresponse mechanism. An estimator is dou-

bly robust if it remains consistent for the true parameter when either model is

correctly specified; see, for example, Robins, Rotnitzky and Zhao (1994), Scharf-

stein, Rotnitzky and Robins (1999), Bang and Robins (2005), Haziza and Rao

(2006), Tan (2006), Kang and Schafer (2007), Cao, Tsiatis and Davidian (2009),

and Kim and Haziza (2014), among others. Although doubly robust methods

offer some protection, the point and variance estimators may perform poorly in

terms of bias and efficiency if both models are misspecified, as noted by Kang

and Schafer (2007) and Chen and Haziza (2017), among others.

To provide additional protection, Han and Wang (2013) introduced the con-

cept of multiple robustness; see also Han (2014a,b, 2016a,b), Chan and Yam

(2014), Chen and Haziza (2017), and Duan and Yin (2017). Multiply robust

procedures use multiple outcome regression models and/or multiple propensity

score models. An estimation procedure is said to be multiply robust if it remains

consistent if any one of these multiple models is correctly specified. Multiply ro-

bust procedures are attractive in many practical situations; see Chen and Haziza

(2017) for a discussion. When all of the models are misspecified, the literature

provides evidence that multiply robust estimation procedures outperform dou-

bly robust procedures based on the same working models in terms of bias and

efficiency; see, for example, Han (2014b) and Chen and Haziza (2017). In this
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study, we extend the procedure of Long, Hsu and Li (2012) by proposing a mul-

tiply robust nonparametric multiple imputation (MRM) procedure that can be

implemented easily. As argued by Long, Hsu and Li (2012), the proposed im-

putation procedure is proper. Therefore, we advocate using Rubin’s variance

formula. The empirical results presented in Section 5 suggest that Rubin’s vari-

ance estimator works well, at least in our experiments. Han (2014b) proposed

a variance estimator for multiply robust procedures based on Taylor lineariza-

tion procedures. However, Rubin’s variance formula is simpler to implement in

practice.

The remainder of this paper is organized as follows. In Section 2, we present

the basic setup. The proposed method is presented in Section 3, and we we

establish its asymptotic properties in Section 4. The results of a simulation

study that assesses the performance of the method in terms of bias, efficiency,

and coverage probability, are reported in Section 5. All technical details and

proofs are relegated to the Appendix.

2. Basic Setup

We are interested in estimating the population mean, µ0 = E(Y ), of a study

variable Y subject to missingness. We consider a random sample of size n,

selected at random from the target population. Let X be a p-vector of fully

observed variables, and let R be a response indicator such that R = 1 if Y is

observed, and R = 0, otherwise. The observed data are the independent and

identically distributed triplets (YiRi, Xi, Ri), for i = 1, 2, . . . , n. Let sr and sm
denote the sets of responding units and nonresponding units, respectively for the

study variable Y .

The relationship between Y and X is described by the following outcome

regression model:

Yi = m(Xi;β0) + εi, i = 1, 2 . . . , n, (2.1)

where m(Xi; ·) is a given function with a parameter β evaluated at β0 such that

E(εi | Xi) = 0, var(εi | Xi) = σ2 and E(εiεj | Xi, Xj) = 0, for i 6= j. We assume

that Y is missing at random (Rubin (1976)); that is, the true propensity score

p(Xi) satisfies

Pr(Ri = 1|Xi, Yi) = Pr(Ri = 1|Xi) ≡ p(Xi;α0), (2.2)

where p(Xi; ·) is a given function with a parameter α evaluated at α0.

If complete reliance is imposed on the outcome regression model (2.1), a
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natural estimator of µ0 is the imputed estimator

µ̂RI =
1

n

n∑
i=1

{
RiYi + (1−Ri)m(Xi; β̂)

}
, (2.3)

where β̂ is a consistent estimator of β0 obtained by solving the following estimat-

ing equations:

Sm(β) =
1

n

n∑
i=1

φiRi {Yi −m(Xi;β)} ∂m(Xi;β)

∂β
= 0, (2.4)

where φi is a coefficient attached to unit i. Often, the coefficient φi is set to one.

If complete reliance is imposed on the propensity score model (2.2), a natural

estimator of µ0 is the inverse probability weighted estimator

µ̂IPW =
1

n

n∑
i=1

Ri
p(Xi; α̂)

Yi, (2.5)

where α̂ is a consistent estimator of α0 obtained by solving the following esti-

mating equations:

Sp(α) =
1

n

n∑
i=1

Ri − p(Xi;α)

p(Xi;α) {1− p(Xi;α)}
∂p(Xi;α)

∂α
= 0. (2.6)

Both (2.3) and (2.5) are based on a single working model. Estimators of the form

µ̂DR =
1

n

n∑
i=1

Ri
p(Xi; α̂)

Yi +
1

n

n∑
i=1

(
1− Ri

p(Xi; α̂)

)
m(Xi; β̂) (2.7)

are doubly robust in the sense that they remain consistent for µ0 if either (2.1)

or (2.2) is correctly specified. Unlike (2.3) and (2.5), the estimator (2.7) uses

two working models: an outcome regression model and a propensity score model.

However, when both models are incorrectly specified, doubly robust estimators

are inconsistent and tend to have poor numerical properties; see Han (2014b)

and Chen and Haziza (2017).

Multiply robust procedures provide additional protection against model mis-

specification because they rely on multiple propensity score models and/or mul-

tiple outcome regression models see, for example, Han and Wang (2013), Han

(2014a, 2016a,b), Chan and Yam (2014), and Chen and Haziza (2017). Let

C1 = {pj(Xi;α
j); j = 1, . . . , J} be a class of J propensity score models, where

pj(·;αj) is a known function associated with the jth propensity score model, and

let C2 = {mk(xi;β
k); k = 1, . . . ,K} be a class of K outcome regression working

models, where mk(·;βk) is a known function associated with the kth outcome

regression model. The corresponding estimators α̂j and β̂k may be obtained by
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solving the following estimating equations:

Sjp(α
j) =

1

n

n∑
i=1

sjp(Xi, Ri;α
j) = 0, j = 1, . . . J, (2.8)

and

Skm(βk) =
1

n

n∑
i=1

skm(Xi, Ri;β
k) = 0, k = 1, . . .K, (2.9)

respectively, where

sjp(Xi, Ri;α
j) =

Ri − pj(Xi;α
j)

pj(Xi;αj) {1− pj(Xi;αj)}
∂pj(Xi;α

j)

∂αj

and

skm(Xi, Ri;β
k) = Ri

{
Yi −mk(Xi;β

k)
} ∂mk(Xi;β

k)

∂β
.

A multiply robust estimator of µ0 is

µ̂MR =

n∑
i=1

wiRiYi, (2.10)

where wi is the weight attached to unit i that satisfies the calibration constraints
n∑
i=1

wiRi = 1,

n∑
i=1

wiRiL

{
1

pj(Xi; α̂j)

}
= n−1

n∑
i=1

L

{
1

pj(Xi; α̂j)

}
,

n∑
i=1

wiRim
k(Xi; β̂

k) = n−1
n∑
i=1

mk(Xi; β̂
k),

where the function L(t) depends on the calibration method; see Chen and Haziza

(2017) for a discussion on choosing the calibration method. The estimator (2.10)

is multiply robust in the sense that it is consistent if all models in C1 or C2 but

one are misspecified.

3. Proposed Method

The multiply robust procedure described above relies on an optimization

problem with K + J + 1 constraints. To reduce the computational burden, we

adopt the approach of Duan and Yin (2017), who proposed compressing the

working models using weighted averages. Let

Ûpi = (p1(Xi; α̂
1), . . . , pJ(Xi; α̂

J))>, Ûmi = (m1(Xi; β̂
1), . . . ,mK(Xi; β̂

K))>.
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To summarize information provided by the working models, we regress Ri on Ûpi
and Yi on Ûmi, which leads to the least square regression coefficients

η̂p =

(
n∑
i=1

ÛpiÛ
>
pi

)−1( n∑
i=1

ÛpiRi

)
(3.1)

and

η̂m =

(
n∑
i=1

RiÛmiÛ
>
mi

)−1( n∑
i=1

RiÛmiYi

)
. (3.2)

The prediction Û>pi η̂p converges to p(Xi;α0) if one of the propensity score models

is correctly specified, whereas the prediction Û>miη̂m converges to m(Xi;β0) if one

of the outcome regression models is correctly specified. Define

p̂i = Ûpi ×
η̂2p
η̂>p η̂p

(3.3)

and

m̂i = Ûmi ×
η̂2m
η̂>mη̂m

, (3.4)

with a2 denoting the column vector (a21, . . . , a
2
q)
> for a given vector a = (a1, . . . ,

aq)
>. The scores p̂i and m̂i are standardized versions of Û>pi η̂p and Û>miη̂m, re-

spectively, and thus enjoy the same statistical properties. The prediction p̂i
compresses the J propensity score models into a single number, whereas the

prediction m̂i compresses the K outcome regression models.

Let Zi = (Z1i, Z2i), for i = 1, . . . , n, with Z1i = m̂i, and Z2i = p̂i. Fur-

thermore, let Si = (S1i, S2i) be the vector of standardized scores, where S1i =

σ̂−1m (m̂i − ¯̂mn) and S2i = σ̂−1p (p̂i − ¯̂pn), with ¯̂mn and ¯̂pn denoting the usual sam-

ple means of p̂i and m̂i, respectively, and σ̂m and σ̂p denoting the corresponding

sample standard deviations. Our proposed MRM procedure is implemented as

follows:

(Step 1). Calculate Si, for i = 1, . . . , n, from the original sample.

(Step 2). To obtain the lth imputation, draw a bootstrap sample of size n, with

replacement, from the original sample, fit the working models in C1
and C2 using the bootstrap sample, and calculate S

(l)
i , the version of

Si corresponding to the lth imputation.

(Step 3). Calculate the distance between each missing subject i ∈ sm and every

response subject j ∈ s(l)r as
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d(l)(i, j) =

{
λ
(
S1i − S(l)

1j

)2
+ (1− λ)

(
S2i − S(l)

2j

)2}1/2

, (3.5)

where 0 ≤ λ ≤ 1 and s
(l)
r denotes the set of respondents corresponding

to the lth imputation. The value of λ reflects our confidence in a

working model. A small value of λ places more weight on the outcome

regression models, whereas a large value of λ places more weight on the

propensity score models.

(Step 4). Define the nearest-H neighborhood R
(l)
H (i) for each missing unit i ∈ sm

as the H units in s
(l)
r that have the smallest H distances (d) from unit

i.

(Step 5). Randomly select one unit from R
(l)
H (i), and use its value Y

∗(l)
i as the

imputed value for unit i.

(Step 6). Repeat (Step 2) to (Step 5) L times to obtain L multiply imputed data

sets with Ỹ
(l)
i =

{
RiYi + (1−Ri)Y ∗(l)i

}
, for i = 1, . . . , n, l = 1, . . . , L.

A point estimator is obtained by pooling the L multiply imputed data sets,

which leads to

µ̂MRM =
1

L

L∑
l=1

µ̂(l), (3.6)

where µ̂(l) = n−1
∑n

i=1 Ỹ
(l)
i . Using Rubin’s rule, the variance of (3.6) is readily

estimated by

V̂MRM = ŪL +

(
1 +

1

L

)
BL, (3.7)

where ŪL and BL denote the within- and between-components given respectively

by

ŪL =
1

L

L∑
l=1

U (l) (3.8)

and

BL =
1

L− 1

L∑
l=1

(
µ̂(l) − µ̂MRM

)2
, (3.9)

with U (l) denoting the sampling variance of µ̂MRM based on the lth imputed

data set.

An 100(1− γ)th confidence interval of µ0 can be constructed as follows:
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µ̂MRM − z1−γ/2V̂

1/2
MRM , µ̂MRM + z1−γ/2V̂

1/2
MRM

)
,

where z1−γ/2 is the 100(1 − γ/2)th percentile taken from a standard normal

distribution.

Remark 1. The size of the neighborhood H in Step 4 of the proposed procedure

is assumed to satisfy H/n = o(1) and log(n)/H = o(1); see Condition C4 in

Appendix A. Long, Hsu and Li (2012) empirically evaluated different choices

of H for their doubly robust imputation procedure. They found that the bias

of the point estimators increased as H increased, whereas their standard errors

decreased slightly. In their empirical experiments, the point estimators exhibited

slightly lower mean square errors with H = 3. In practice, choosing the optimal

value of H is challenging. We suggest applying the proposed procedure with

different values of H (say between 2 and 6), and then choosing the value of H

corresponding to the smallest standard error computed using (3.7).

4. Asymptotic Properties

Here, we show that the estimator (3.6) is multiply robust and establish its

asymptotic normality. The regularity conditions are described in Appendix A.

Theorem 1 establishes the multiply robustness property of (3.6).

Theorem 1. Assume that the regularity conditions (C1)–(C5) in Appendix A

hold. If 0 < λ < 1, and at least one of the outcome regression models or the

propensity score models is correctly specified, then µ̂MRM is consistent for µ0.

An outline of the proof of Theorem 1 is presented in Appendix B.

Let θ = (α1, . . . , αJ , β1, . . . , βK)> and θ̂ = (α̂1, . . . , α̂J , β̂1, . . . , β̂K)>. Let

θ∗ = (α∗1, . . . , α∗J , β∗1, . . . , β∗K)> denote the probability limit of θ̂. Define

Smp(θ) =
(
S1
p(α1), . . . , SJp (αJ), S1

m(β1), . . . , SKm (βK)
)

and

s(Xi, Ri; θ) = (s1p(Xi, Ri;α
1), . . . , sJp (Xi, Ri;α

J), s1m(Xi, Ri;β
1), . . . ,

sKm(Xi, Ri;β
K)).

Theorem 2 establishes the root-n consistency and asymptotic normality of (3.6).

Theorem 2. Assume that the regularity conditions (C1)-(C5) in Appendix A

hold. If 0 < λ < 1 and at least one of the outcome regression models or the

propensity score models is correctly specified, then
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µ̂MRM =
1

n

n∑
i=1

[
Ri

π(Z∗i )
Yi +

{
1− Ri

π(Z∗i )

}
µ(Z∗i ) +As(Xi, Ri; θ

∗)

]
+ op(n

−1/2),

(4.1)

as n → ∞ and L → ∞, where Z∗i denotes Zi evaluated at θ∗, π(Z∗i ) = E(Ri =

1|Z∗i ), µ(Z∗i ) = E(Yi|Z∗i ), and

A = −E
{

(1−Ri)
∂µ(Z∗i )

∂θ

}{
E

(
∂Smp(θ

∗)

∂θ

)}−1
.

Furthermore, we have

n1/2(µ̂MRM − µ0)→d N(0, σ2MRM ),

where

σ2MRM = V

{
Ri

π(Z∗i )
Yi +

{
1− Ri

π(Z∗i )

}
µ(Z∗i ) +As(Xi, Ri; θ

∗)

}
. (4.2)

An outline of the proof of Theorem 2 is presented in Appendix C.

Remark 2. Alternatively, the estimator µ̂MRM in Theorem 2 can be written as

µ̂MRM =
1

n

n∑
i=1

[
Ri

π(Zi)
Yi +

{
1− Ri

π(Zi)

}
µ(Zi)

]
+ op(n

−1/2), (4.3)

where π(Zi) = E(Ri = 1|Zi) and µ(Zi) = E(Yi|Zi). If one of propensity score

models and one of outcome regression models are correctly specified, then ac-

cording to (4.3), it can be shown that

µ̂MRM =
1

n

n∑
i=1

m(Xi;β0) +
1

n

n∑
i=1

Ri
p(Xi;α0)

{Yi −m(Xi;β0)}

+
1

n

n∑
i=1

Ri

{
1

π(Zi)
− 1

p(Xi;α0)

}
{Yi −m(Xi;β0)}

+
1

n

n∑
i=1

{
1− Ri

π(Zi)

}
{µ(Zi)−m(Xi;β0)}

=
1

n

n∑
i=1

[
Ri

p(Xi;α0)
Yi +

{
1− Ri

p(Xi;α0)

}
m(Xi;β0)

]
+op(n

−1/2). (4.4)

Therefore, µ̂MRM achieves a semiparametric lower bound in this scenario.

Using Theorem 2, we can construct a normal approximation-based confidence

interval of µ0. However, estimating the variance of µ̂MRM given by (4.2) is gen-

erally tedious and requires a nonparametric method, such as kernel smoothing,

to estimate the density. To overcome this problem, we recommend using Rubin’s
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formula for variance estimation. According to Long, Hsu and Li (2012), the pro-

posed imputation procedure is proper. The addition of a bootstrap step allows

us to estimate the variance of the estimators in other settings as well (Heitjan

and Little (1991); Rubin and Schenker (1991)). In our numerical experiments,

L = 5 imputations led to good performance for finite samples; see also Rubin

(1987).

5. Simulation Study

We performed a simulation study to evaluate the performance of the pro-

posed estimators. We used the simulation setup of Kang and Schafer (2007), also

considered by Chan and Yam (2014), Han (2014a), and Chen and Haziza (2017).

The Monte Carlo size was set to B = 1, 000 and the sample size was set to

n = 400. We first generated a vector of covariates X = (X1, X2, X3, X4)
> from a

standard multivariate normal distribution. Then, we generated a study variable

Y from the linear regression model Y = 210 + 27.4X1 + 13.7(X2 +X3 +X4) + ε,

with the errors ε generated from a standard normal distribution. Given X and

Y, the response indicators R were generated from a Bernoulli distribution with

probability

p =
exp (α0 + α1X1 + α2X2 + α3X3 + α4X4)

1 + exp (α0 + α1X1 + α2X2 + α3X3 + α4X4)
,

where (α0, α1, α2, α3, α4, α5) = (0,−1, 0.5,−0.25,−0.1). The corresponding re-

sponse rate was approximately 50%.

To evaluate the performance of the proposed procedure when some models

are misspecified, we considered the following transformations of the X-variables:

V1 = X2 {1 + exp(X1)}−1 + 10 and V2 = (X1X3/25 + 0.6)3; see also Kang and

Schafer (2007). The correct models were fitted using X = (X1, X2, X3, X4) as

predictors in both the outcome regression and the propensity score models. The

incorrect models were fitted using V = (V1, V2) as predictors in both models.

We were interested in estimating the population mean µ0 = E(Y ) = 210. Be-

cause the proposed imputation procedure may be based on different combinations

of the models, we use four digits between parentheses to distinguish between the

estimators constructed from the different models. The first two digits correspond

to the correct and incorrect propensity score models, respectively. The last two

digits correspond to the correct and incorrect outcome regression models, respec-

tively. For example, the estimator µ̂(1010) is based on correct nonresponse and

outcome regression models, whereas µ̂(1111) denotes the estimator based on all
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models.

We computed the following estimators:

1. The complete data estimator µ̂COM = n−1
∑n

i=1 Yi, which assumes no miss-

ing values.

2. The unadjusted estimator µ̂RES = n−1r
∑n

i=1RiYi based on the complete

cases, where nr denotes the number of responding units.

3. The customary multiply imputed estimators (MI) based on a single outcome

regression model: µ̂MI(0010) and µ̂MI(0001), where the two estimators

were obtained under the correct and incorrect outcome regression models,

respectively, with normal errors. The imputations were performed using the

R package ‘mice’; see van Buuren et al. (2014).

4. The doubly robust nonparametric multiple imputation estimator (DRM) of

Long, Hsu and Li (2012), based on a single propensity score model and a

single outcome regression model: µ̂DRM (1010), µ̂DRM (1001), µ̂DRM (0110),

and µ̂DRM (0101).

5. The proposed MRM estimator given by (3.6): µ̂MRM (0111), µ̂MRM (1011),

µ̂MRM (1101), µ̂MRM (1110), and µ̂MRM (1111).

For the DRM and the MRM estimators, we used H = 3 units in each neigh-

borhood and L = 5 imputed values. We also evaluated the effect of λ in (3.5)

by considering λ = 0.2, 0.5, and 0.8. For each estimator, we computed the

Monte Carlo bias (Bias), standard error (SE), and relative root mean square

error (RRMSE). The results, presented in Tables 1–3, correspond to values of λ

equal to 0.2, 0.5, and 0.8, respectively.

From Tables 1–3, the complete data estimator, µ̂COM , performed best in

terms of RB, RSE, and RRMSE, as expected. On the other hand, the unad-

justed estimator, µ̂RES , was biased in all scenarios, as expected. When either

the propensity score model or the outcome regression model was correctly spec-

ified, the DRM estimators showed small values of RB, suggesting that they are

doubly robust. However, when both models were misspecified, the estimator

µ̂DRM (0101) exhibited a large bias. For example, for λ = 0.5, the relative bias

was approximately equal to −5.1%; see Table 2. The MRM estimators showed

negligible bias in all scenarios. The estimators µ̂DRM (1111) based on all four

models were almost as efficient as the estimator µ̂DRM (1010) based on two cor-

rectly specified models. This suggests that incorporating an additional propen-
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Table 1. Relative bias (RB), relative standard error (RSE), and relative root mean
squared error (RRMSE) of several estimators with H = 3, L = 5, and λ = 0.2.

Estimators RB(%) RSE(%) RRMSE(%)
µ̂COM 0.000 0.871 0.871
µ̂RES −4.761 1.220 4.915
µ̂MI(0010) −0.002 0.871 0.871
µ̂MI(0001) −5.771 1.178 5.890
µ̂DRM (1010) −0.207 0.915 0.938
µ̂DRM (1001) −0.370 1.093 1.154
µ̂DRM (0110) −0.855 0.897 1.239
µ̂DRM (0101) −5.096 1.172 5.229
µ̂MRM (0111) −0.850 0.904 1.241
µ̂MRM (1011) −0.195 0.924 0.944
µ̂MRM (1101) −0.363 1.100 1.159
µ̂MRM (1110) −0.194 0.924 0.944
µ̂MRM (1111) −0.194 0.924 0.944

Table 2. Relative bias (RB), relative standard error (RSE), and relative root mean
squared error (RRMSE) of several estimators with H = 3, L = 5, and λ = 0.5.

Estimators RB(%) RSE(%) RRMSE(%)
µ̂COM 0.000 0.871 0.871
µ̂RES −4.761 1.220 4.915
µ̂MI(0010) −0.002 0.871 0.871
µ̂MI(0001) −5.781 1.175 5.899
µ̂DRM (1010) −0.191 0.907 0.927
µ̂DRM (1001) −0.662 1.089 1.274
µ̂DRM (0110) −0.506 0.899 1.032
µ̂DRM (0101) −5.165 1.205 5.303
µ̂MRM (0111) −0.505 0.888 1.022
µ̂MRM (1011) −0.182 0.897 0.915
µ̂MRM (1101) −0.622 1.077 1.244
µ̂MRM (1110) −0.182 0.895 0.913
µ̂MRM (1111) −0.182 0.892 0.911

sity score model and an additional outcome regression model does not have a

significant effect on the efficiency of the resulting estimator.

We also computed the coverage rate (CR) and relative average length (RAL)

of the confidence intervals based on the DRM and MRM estimators for λ = 0.5;

see Table 4. The results for λ = 0.2 and λ = 0.8 were very similar, and thus are

not presented here. Table 4 shows the CRs of the MRM estimators were close to

the nominal rate of 95% and were slightly better than those obtained using the

DRM estimators. In most cases, the RALs of the MRM estimators were smaller
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Table 3. Relative bias (RB), relative standard error (RSE), and relative root mean
squared error (RRMSE) of several estimators with H = 3, L = 5, and λ = 0.8.

Estimators RB(%) RSE(%) RRMSE(%)
µ̂COM 0.000 0.871 0.871
µ̂RES −4.761 1.220 4.915
µ̂MI(0010) −0.002 0.872 0.872
µ̂MI(0001) −5.766 1.180 5.886
µ̂DRM (1010) −0.180 0.898 0.916
µ̂DRM (1001) −1.049 1.063 1.493
µ̂DRM (0110) −0.311 0.897 0.949
µ̂DRM (0101) −5.179 1.177 5.311
µ̂MRM (0111) −0.305 0.888 0.939
µ̂MRM (1011) −0.169 0.894 0.910
µ̂MRM (1101) −1.040 1.085 1.503
µ̂MRM (1110) −0.170 0.892 0.908
µ̂MRM (1111) −0.171 0.892 0.909

Table 4. Coverage rate (CR) and relative average length (RAL) of confidence intervals
with H = 3, L = 5, and λ = 0.5.

Estimators CR(%) RAL(%)
µ̂MI(0010) 95.3 3.38
µ̂MI(0001) 0.2 4.52
µ̂DRM (1010) 95.7 3.80
µ̂DRM (1001) 91.6 4.76
µ̂DRM (0110) 92.4 3.77
µ̂DRM (0101) 1.7 4.74
µ̂MRM (0111) 92.9 3.76
µ̂MRM (1011) 95.5 3.79
µ̂MRM (1101) 92.7 4.83
µ̂MRM (1110) 95.4 3.79
µ̂MRM (1111) 95.8 3.79

than those of the DRM estimators. When both models were incorrect, the DRM

method showed a very low CR of 11.7%.
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Appendix

A: Regularity conditions

Let Ẑi = (Ẑ1i, Ẑ2i), where Ẑ1 = m̂i and Ẑ2 = p̂i. Let β∗K , α∗j , η∗m, and η∗p be

the probability limits of β̂k, α̂j , η̂m, and η̂p, respectively. Denote Z∗i = (Z∗1i, Z
∗
2i)

as

Z∗1i = Û∗mi ×
η∗2m

η∗>p η∗m
, Z∗2i = Û∗pi ×

η∗2p
η∗>p η∗p

,

where

Û∗mi =
(
m1(Xi;β

∗1), . . . ,mK(Xi;β
∗K)
)

and Û∗pi =
(
p1(Xi;α

∗1), . . . , pJ(Xi;α
∗J)
)
.

Finally, let f(Z∗) be the density function of Z∗.

We assume the following regularity conditions needed to prove Theorems 1–3.

Conditions (C1) and (C2) apply to each propensity score model, for j = 1, . . . , J,

and each outcome regression model, for k = 1, . . . ,K, respectively.

(C1). α̂j is the unique solution of Sjp(αj) = 0 and β̂k is the unique solution of

Skm(βk) = 0, where Sjp(αj) and Skm(βk) are defined in Section 3.

(C2). Sjp(αj) converges almost surely to S∗jp (αj) = E{Sjp(αj)}, uniformly in αj ,

and S∗jp (αj) = 0 has a unique solution α∗j . In addition, Skm(βk) converges

almost surely to S∗km (βk) = E
{
Skm(βk)

}
, uniformly in βk, and S∗km (βk) = 0

has a unique solution β∗k.

(C3). E(Y 2) <∞ and E
{
µ2(Z∗)

}
<∞, where µ(Z∗) = E(Y |Z∗).

(C4). H/n = o(1) and log(n)/H = o(1).

(C5). f(Z∗) and π(Z∗) are continuous and bounded away from zero in the com-

pact support of Z∗.

Conditions (C1) and (C2) ensure the consistency of α̂j and β̂k. They are satisfied

for most regression models, such as linear and generalized linear models as well

as other estimating equations. Condition (C3) is used to derive the asymptotic

expansion of µ̂MRM and its asymptotic normality. Condition (C4) is used to

control the asymptotic order of H. Condition (C5) is used frequently in non-

parametric statistics to avoid extreme values of the density and the propensity

score.
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B: An outline of the proof of Theorem 1

Let α̂ = (α̂1, . . . , α̂J), β̂ = (β̂1, . . . , β̂K), α∗ = (α∗1, . . . , α∗J), and β∗ =

(β∗1, . . . , β∗K). According to (C1), (C2), and Section 5.2 of Van der Vaart (1998),

it can be shown that α̂→p α∗ and β̂ →p β∗, even when the working models are

incorrect. Next, we show the multiply robustness property of µ̂MRM . If one of

the outcome regression models is correct, say m1(Xi;β
1), then we have β∗1 = β0

and η∗m = (1, 0, . . . , 0)>, which implies that Z∗1i = m(Xi;β0). Then, it follows

that

E(Y |R,Z∗) = E {E(Y |R,Z∗, X)|R,Z∗}
= E {E(Y |Z∗, X)|R,Z∗}
= E(Z∗1 |R,Z∗) = Z∗1 = E(Y |Z∗). (B.1)

If one of the propensity score models is correctly specified, say p1(Xi;α
1), then

α∗1 = α0, η
∗
p = (1, 0, . . . , 0)>, and Z∗2i = p(Xi;α0). Therefore,

E(Y |R,Z∗) = E(Y |Z∗), (B.2)

because Y is independent of R, given Z∗2 . According to Devroye and Wagner

(1977) and Silverman (1978), it can be shown that∑
j∈RH(i)

1

H
Yj →p E(Yi|Z∗i , Ri = 1), (B.3)

1

H

∑
j∈RH(i)

(Yj − ȲRH(i))
2 →p V (Yi|Z∗i , Ri = 1), (B.4)

uniformly for any i ∈ S as n → ∞, L → ∞, and H → ∞ and conditions (C4)

and (C5). In addition, according to Chebyshev’s inequality, (B.3) and (B.4), we

have

Pr

(∣∣∣∣∣ 1n
n∑
i=1

(1−Ri)
1

L

L∑
l=1

Y
∗(l)
i − E

{
(1−Ri)E(Y

∗(l)
i |Y,X,R)

} ∣∣∣∣∣ > ε

)

≤ ε−2V

{
1

n

n∑
i=1

(1−Ri)
1

L

L∑
l=1

Y
∗(l)
i

}

= ε−2

[
V

{
1

n

n∑
i=1

(1−Ri)E(Y
∗(l)
i |Y,X,R)

}

+ E

{
1

n2

n∑
i=1

(1−Ri)
1

L
V (Y

∗(l)
i |Y,X,R)

}]
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= ε−2

[
V

{
1

n

n∑
i=1

(1−Ri)
∑

j∈RH(i)

1

H
Yj

}

+ E

{
1

n2

n∑
i=1

(1−Ri)
1

L

1

H

∑
j∈RH(i)

(Yj − ȲRH(i))
2

}]

= ε−2

[
V

{
1

n

n∑
i=1

(1−Ri)E(Yi|Z∗i , Ri = 1)

}

+ E

{
1

n2

n∑
i=1

(1−Ri)
1

L
V (Yi|Z∗i , Ri = 1)

}]
+ o(n−1) + o(n−1L−1)

= O(n−1) +O(n−1L−1). (B.5)

According to (B.5), we have

1

n

n∑
i=1

(1−Ri)
1

L

L∑
l=1

Y
∗(l)
i →p E

{
(1−Ri)E(Y

∗(l)
i |Y,X,R)

}
(B.6)

as n→∞, L→∞, and H →∞. Therefore, if at least one the models is correctly

specified from (B.3) and (B.6), we have

µ̂MRM =
1

n

n∑
i=1

{
RiYi + (1−Ri)

1

L

L∑
l=1

Y
∗(l)
i

}
→p E(RiYi) + E

{
(1−Ri)E(Y

∗(l)
i |Y,X,R)

}
= E(RiYi) + E

(1−Ri)E

 ∑
j∈R(l)

H (i)

1

H
Y
∗(l)
j |X,Y,R


= E(RiYi) + E

(1−Ri)
∑

j∈RH(i)

1

H
Yj


→ E(RiYi) + E {(1−Ri)E(Yi|Z∗i , Ri = 1)}
= E(RiYi) + E {(1−Ri)Yi}
= E(Y ) (B.7)

as n → ∞, L → ∞, and H → ∞, where we used the consistent probability

weights argument defined in Stone (1977) in the derivations. Hence, Theorem 1

is proved.
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C: An outline of the proof of Theorem 2

The proposed estimator can be written as µ̂MRM = µ̂+ µ̂MRM − µ̂, where

µ̂ =
1

n

n∑
i=1

RiYi + (1−Ri)
∑

j∈RH(i)

1

H
Yj

 (C.1)

and

µ̂MRM − µ̂ =
1

n

n∑
i=1

(1−Ri)

 1

L

L∑
l=1

Y
∗(l)
i − 1

H

∑
j∈RH(i)

Yj

 . (C.2)

By using a first-order Taylor expansion of µ̂ at θ = θ∗, we have

µ̂ = µ̂∗ + E

(
∂µ̂∗

∂θ

)(
θ̂ − θ∗

)
+ op(n

−1/2), (C.3)

where ∂µ̂∗/∂θ is ∂µ̂/∂θ evaluated at θ∗. Because θ̂ is the solution to the estimating

equation Smp(θ) = 0, it can be shown that

θ̂ − θ∗ = −
[
E

{
∂Smp(θ

∗)

∂θ

}]−1
Smp(θ

∗) + op(n
−1/2). (C.4)

Substituting (C.4) into (C.3) leads to

µ̂ = µ̂∗ +ASmp(θ
∗), (C.5)

where A is defined in Theorem 2 of Section 4. By using a similar argument to

that used by Long, Hsu and Li (2012), under the regularity conditions (C1)–(C5)

in Appendix A, it can be shown that

µ̂∗ − µ0 = T1 + T2 + T3 + op(n
−1/2), (C.6)

with

T1 =
1

n

n∑
i=1

{µ(Z∗i )− µ0} , T2 =
1

n

n∑
i=1

Ri {Yi − µ(Z∗i )}

and

T3 =
1

n

n∑
i=1

1− π(Z∗i )

π(Z∗i )
Ri {Yi − µ(Z∗i )} .

Because µ̂MRM − µ̂ is asymptotically independent of µ̂, we have

V (µ̂MRM − µ̂) = V {E (µ̂MRM − µ̂|X,Y,R)}+ E {V (µ̂MRM − µ̂|X,Y,R)}
= E {V (µ̂MRM − µ̂|X,Y,R)}

=
1

nL
E

{
1

n

n∑
i=1

(1−Ri)V
(
Y
∗(l)
i |Y,X,R

)}
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=
1

nL
E

 1

n

n∑
i=1

(1−Ri)
1

H

∑
j∈RH(i)

(
Yj − ȲRH(i)

)2
= O

(
1

nL

)
, (C.7)

where ȲRH(i) = H−1
∑

j∈RH(i) Yj . From the asymptotic independence between

µ̂MRM − µ̂ and µ̂, T1 and T2, T1 and T3, (C.1),(C.2),(C.5)–(C.7), and the regu-

larity condition (C3), we have

µ̂MRM =
1

n

n∑
i=1

[
Ri

π(Z∗i )
Yi +

{
1− Ri

π(Z∗i )

}
µ(Z∗i ) +As(Xi, Ri; θ

∗)

]
+ op(n

−1/2)

as n→∞ and L→∞. By the central limit theorem, we have

n1/2 (µ̂MRM − µ0)→d N(0, σ2MRM ),

with σ2MRM defined in Theorem 2 of Section 4.
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