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Abstract: Failure time data occur in many fields and in various forms and, as a

result, have been studied extensively by researchers. To handle such data, many

semiparametric regression models have been proposed and investigated, including

the proportional hazards model and the additive hazards model. In this study,

we consider a class of partially linear varying-coefficient transformation models.

Given the limitations of existing inference procedures, we propose a more general

rank estimation procedure. Furthermore, we establish the finite and asymptotic

properties of the resulting estimators of the regression parameters and illustrate

the proposed procedure by means of an example.
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1. Introduction

In this study, we conduct a regression analysis of right-censored failure time

data, for which many regression models have been proposed and investigated. Of

these, the proportional hazards or Cox model is perhaps the most widely used

(Cox (1972); Kalbfleisch and Prentice (2002)). Other popular models include

the accelerated failure time model (Jin et al. (2003)) and the additive hazards

model (Lin and Ying (1994)). However, these models share a common limitation

in the sense that they can only be applied to specific situations. To address this

problem, several general models have been proposed, including various types of

transformation models, which have the advantage of flexibility and include many

commonly used specific models as special cases (Chen, Jin and Ying (2002); Chen

and Tong (2010); Jin, Ying and Wei (2001); Li and Zhang (2012)).

We begin by introducing the transformation models. Let T denote the failure

time of interest and suppose that the covariates of interest can be written in three

parts, X, Z, and W , for notational simplicity. Here, X is a vector, and Z and
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W are scalar values, as defined below. To model the effect of X on T , one of the

first transformation models to be used was the linear transformation model

H0(T ) = XTβ0 + ε, (1.1)

where H0 denotes an unknown, strictly increasing function, β0 is a vector of

regression parameters, and ε is an error term. Several studies have developed in-

ference approaches for estimating β0 under the assumption that the distribution

of ε is known (Chen, Jin and Ying (2002); Khan and Tamer (2007)). However,

this assumption does not always hold in practice. To address this, Khan and

Tamer (2007) and Song et al. (2007) examined the situation where the distri-

bution of ε is unknown. The former proposed a partial rank (PR) estimation

procedure that was a generalization of the method proposed in Han (1987) and

Sherman (1993) for uncensored data, and the latter proposed a smooth version

of the PR estimation procedure.

Although model (1.1) includes some commonly used models as special cases,

it can be restrictive in certain applications (Chen and Tong (2010); Lu and Zhang

(2010); Li and Zhang (2012)). For example, it only allows covariates that have

linear effects, and thus excludes those that have nonlinear effects. To address this

limitation, several studies have examined the following class of partially linear

varying-coefficient transformation models:

H0(T ) = XTβ∗0 + Zφ0(W ) + ε, (1.2)

where β∗0 = (1, βT0 )T , H0, and ε are defined as in model (1.1), and Z represents

a covariate that has a possible nonlinear effect on the response variable through

covariate W and an unknown function φ0. Note that X represents the covariates

that have linear effects on the response variable, and W is usually a time-related

(but fixed) covariate over which the effect of Z on the response variable may

vary. For example, W might be the age of onset of a disease in a prevalent

cohort. Furthermore, in model (1.2), we assume that the first component of β∗0
is equal to one in order to avoid the identifiability problem.

Among others, Chen and Tong (2010) and Lu and Zhang (2010) have ex-

amined inference problems using model (1.2) when the distribution of ε can be

specified by a parametric model. Li and Zhang (2012) considered model (1.2)

under the assumption that T can have a known special conditional cumulative

distribution function. However, their method relies heavily on the assumption

of a standard normal distribution function, and also the proposed algorithm is

complicated. Because these assumptions may not hold in practice, we propose an

inference procedure that does not require such assumptions. In other words, we
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will consider the situation in which the distribution of ε is completely unknown.

The remainder of the paper is organized as follows. Section 2 presents a

smooth estimation procedure for model (1.2), where following Chen and Tong

(2010), we employ a linear combination of B-splines to approximate the nonpara-

metric function φ0. In addition, we establish the convergence rate and asymp-

totic normality of the proposed estimators and present a bootstrapping method

for inferences. Section 3 discusses the results of an extensive simulation study

conducted to evaluate the proposed inference procedure, showing that it works

well in practical situations. In Section 4, we provide an illustrative example of

the proposed procedure, and Section 5 concludes the paper.

2. Inference Procedure

Consider a failure time study that consists of n independent subjects. Let Ti,

Xi, Zi, and Wi be defined as above, but associated with subject i. Furthermore,

let Ci denote the censoring time on subject i, which is assumed to be independent

of Ti. Assume that the observed data have the form

{Vi = min(Ti, Ci),∆i = I(Ti ≤ Ci), Xi, Zi,Wi; i = 1, . . . , n}.

That is, the data are right-censored. Here, we aim to estimate the regression

parameters.

For an estimation or inference using model (1.2), denote Bn(·) = (b1(·), . . . ,
bqn(·))T and consider a B-spline basis of order `+ 1, where qn = Kn + ` and Kn

denotes the number of knots and is the integer part of nν , with 0 < ν < 0.5. Then,

following Song et al. (2007), we propose estimating β0 and φ0(·) by (β̂n, φ̂n(·)),
defined as φ̂n(·) = Bn(·)T α̂n and

(β̂n, α̂n) = argmax(β,α)On(β, α), (2.1)

where

On(β, α) =
1

n(n− 1)

∑
i 6=j

∆jI(Vi ≥ Vj)

× sn(XT
i β + ZiBn(Wi)

Tα−XT
j β − ZjBn(Wj)

Tα). (2.2)

Here, sn(u) = s(u/ηn) is a smooth function, where s(u) is typically set as the

sigmoid function s(u) = 1/{1+exp(−u)} and ηn is a sequence of strictly positive

numbers converging to zero.

Clearly, if φ0(·) = 0, model (1.2) reduces to model (1.1) and the proposed

estimation procedure reduces to that of Song et al. (2007). Furthermore, if we

employ s(u) = I(u ≥ 0) as the indicator function, the estimation procedure
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reduces to that of Khan and Tamer (2007). In practice, we may omit the in-

dicator function to avoid using a computationally intensive grid search for the

maximization.

Now, we establish the asymptotic properties of the estimators β̂n and φ̂n(·)
defined above. Let θ = (βT , φ(·))T and θ̂n = (β̂Tn , φ̂n(·))T , and without loss of

generality, assume that W has support on [0, 1]. Define y = (x, z, w, δ, v) and

τn(y, θ) = E{∆I(v ≥ V )sn(xTβ + zφ(w)−XTβ − Zφ(W ))}.

We require the following regularity conditions:

Condition A1. The true value β0 ∈ B, a compact subset of Rp.

Condition A2. The true function φ0 ∈ Fr, with r = l + γ > 0.5, where

Fr = {φ(·) : |φ(l)(w1)− φ(l)(w2)| ≤ A0|w1 − w2|γ for all 0 ≤ w1 ≤ w2 ≤ 1},

l+ 1 is the order of the B-spline functions, and φ(l) is the lth derivative function

of φ(·).
Condition A3. The random variable εi is independent of the random vector

(Ci, Xi, Zi,Wi) and is independent and identically distributed. In addition, there

exists a positive constant c0 such that the censoring time C satisfies infx,z,w P (C >

τ |X = x, Z = z,W = w) > c0, where τ is the largest followup study period.

Condition A4. The first component of X has a density with respect to the

Lebesgue measure that is positive everywhere, conditional on the other compo-

nents of X and on Z and W .

Condition A5. For each y, τn(y, θ) is twice differentiable with respect to θ (in

the Gâteux sense) in a neighborhood of θ0 with the kth derivative
`
k τn(y, θ),

for k = 1, 2. The second derivative
`

2 τn(y, θ) satisfies the Lipschitz condition.

Condition A6. E‖
`

1 τn(Y, θ)‖2 and E‖
`

2 τn(Y, θ)‖ are finite, and the eigenval-

ues of E{
`

2 τn(Y, θ)} are bounded away from zero.

Note that Conditions A1 and A2 are standard regularity conditions (Chen

and Tong (2010)), and Conditions A3 and A4 ensure the identification of θ0
(Khan and Tamer (2007)). Conditions A5 and A6 are inherited from Song et

al. (2007) and are needed to establish the Lipschitz conditions required for the

Taylor expansion arguments. Let θ0 denote the true value of θ and ‖ · ‖2 be the

usual L2 norm. In addition, define the metric

ρ(θ1, θ2) = |β1 − β2|+ ‖φ1 − φ2‖2,

for θ1, θ2 ∈ B × Fr. In the following, we first give the convergence rate of

θ̂n = (β̂Tn , φ̂n(·))T and then the asymptotic normality of β̂n. The proofs are

provided in the Supplementary Material.



PARTIALLY LINEAR VARYING-COEFFICIENT TRANSFORMATION MODELS 1967

Theorem 1 (Convergence Rate). Assume that Conditions A1–A6 hold and that

ηn → 0 as n→∞. Then, we have that

ρ(θ̂n, θ0) = Op(n
−(1−v)/2 + n−rv).

Theorem 2 (Asymptotic Normality). Assume that Conditions A1–A6 hold and

that ηn → 0 as n→∞. Furthermore, assume that qn = O(nv) with 1/4r < v <

0.5. Then, we have that

n1/2(β̂n − β0)→ N(0,Σ)

in distribution, where Σ is defined in the Supplementary Material.

To make an inference about β0 based on the above results, it is apparent

that we need to estimate the covariance matrix Σ. A natural way to do so is to

derive a consistent estimate of Σ, which is possible, but complicated. As such,

we instead suggest using the weighted bootstrap strategies proposed by Jin, Ying

and Wei (2001) and Cai, Tian and Wei (2005). Specifically, consider the following

perturbed objective function:

Own (β, α) =
1

n(n− 1)

∑
i 6=j

ψ(Ri, Rj)∆jI(Vi ≥ Vj)

× sn(XT
i β + ZiBn(Wi)

Tα−XT
j β − ZjBn(Wj)

Tα), (2.3)

where ψ(Ri, Rj) satisfies one of the following two conditions:

(I) R has a known mean µ > 0 and variance 4µ2, and ψ(Ri, Rj) = Ri +Rj ;

(II) R has mean 1 and variance 1, and ψ(Ri, Rj) = RiRj .

For a given integer B and each 1 ≤ b ≤ B, let (R
(b)
1 , . . . , R

(b)
n ) denote a set of

random variables generated from one of the two scenarios above, and let θ̂
∗(b)
n be

the minimizer of (2.3) corresponding to (R
(b)
1 , . . . , R

(b)
n ). Then, we can approx-

imate the distribution of θ̂n − θ0 using the empirical distribution of the sample

{θ̂∗(b)n − θ̂n; b = 1, . . . , B}, and make an inference about θ0. The simulation study

below indicates that this approach works well in practical situations.

To implement the aforementioned weighted bootstrap inference procedure,

we need to choose B, some distribution for the generation of R
(b)
i , the degree of

the B-splines, the number and location of the knots, and the smoothing param-

eter ηn. Here, a larger B yields better results, and many distributions can be

used for R
(b)
i . In the numerical studies below, we use B = 400, generate R

(b)
i /10

from the beta distribution Beta(0.125, 1.125) for the type-I bootstrap method,

and generate (
√

2− 1)R
(b)
i /
√

2 from the beta distribution Beta(
√

2− 1, 1) for the
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type-II bootstrap method. For the B-spline approximation, a common choice

is to use cubic B-splines with 1.5n1/3 knots located according to the quantiles

of the observed event times. The simulation study below suggests that these

choices work well and that the estimation results are not too sensitive to them.

With respect to ηn, one choice is to set ηn = cn−1/2 and to compare the results

given by different c; see the simulation study described below. An alternative,

used in the example below, is to apply the approach suggested by Gammerman

(1996) and Song et al. (2007) for choosing an optimal c. More specifically, we

first choose an initial value, say, c0 = 1, and then estimate β̂c0 based on c0. Next,

we determine the largest constant c1 such that 95% of the pairs {(Zi, Zj)}i 6=j
satisfy |β̂Tc0(Zi − Zj)/(c1n

−1/2)| > 5. Finally, we choose copt = min(c0, c1).

3. A Simulation Study

In this section, we present the results of an extensive simulation study con-

ducted to evaluate the finite-sample performance of the proposed estimation pro-

cedure. We first generated the covariates X = (X1, X2)
T from the bivariate

normal distribution with mean (0.2, 0.2)T , and the variance for both covariates,

with correlations of 0.5 and 0.1, respectively. We also generated the covariate

Z from the binary distribution with Pr(Z = 0) = Pr(Z = 1) = 0.5, and the

covariate W from the uniform distribution over (0, 1). Given the covariates, the

failure times are generated from model (1.2), with H0(t) = log(t) (t > 0) and

φ0(w) = sin(2πw). For the distribution of ε, we considered three situations: the

normal distribution with mean 0 and standard error σ, the Gumbel (or type-I

extreme value) distribution with location 0 and scale
√

6σ/π, and the logistic

distribution with location 0 and scale
√

3σ/π. Note that under the above trans-

formation function, the Gumbel distribution corresponds to the proportional

hazards model, whereas the logistic distribution corresponds to the proportional

odds model. The censoring times were generated from an exponential distribu-

tion to give the required percentage of right-censoring. The simulation results

given below are based on 500 replications with sample sizes of n = 200 or 400.

Tables 1 and 2 present the results for the estimation of the regression pa-

rameter β0, with true values of β0 = 1 or −1, σ2 = 0.5 or 1, and c = 0.5 or 1.

In Table 1, the percentage of right-censored observations is set to 20%, and the

corresponding percentage in Table 2 is 40%. The results include the estimated

bias (Bias) given by the average of the estimates minus the true value, empir-

ical standard error (SE), normalized median absolute deviation (MAD) of the
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Table 1. Simulation results under different scenarios with a 20% censoring rate.

n = 200 n = 400
Bootstrap I Bootstrap II Bootstrap I Bootstrap II

β σ2 Dis. c Bias SE MAD SEE CP MAD SEE CP Bias SE MAD SEE CP MAD SEE CP
1 0.5 N 0.5 −0.037 0.132 0.133 0.142 94 0.139 0.146 94 −0.016 0.079 0.079 0.082 95 0.080 0.083 95

1.0 0.022 0.128 0.131 0.136 93 0.133 0.138 95 0.011 0.077 0.077 0.079 94 0.078 0.079 94

G 0.5 −0.061 0.203 0.201 0.218 94 0.203 0.214 95 −0.033 0.114 0.124 0.130 94 0.123 0.129 95
1.0 0.048 0.201 0.204 0.216 94 0.202 0.213 95 0.027 0.113 0.122 0.127 95 0.119 0.124 95

L 0.5 −0.033 0.108 0.118 0.126 95 0.122 0.128 95 −0.012 0.070 0.069 0.072 95 0.071 0.073 93
1.0 −0.019 0.106 0.114 0.120 95 0.118 0.122 95 −0.006 0.069 0.068 0.069 94 0.069 0.070 95

1.0 N 0.5 0.050 0.166 0.179 0.189 94 0.180 0.188 95 0.027 0.107 0.108 0.111 94 0.107 0.110 94
1.0 −0.035 0.162 0.178 0.186 95 0.176 0.184 94 −0.021 0.104 0.105 0.108 94 0.104 0.107 94

G 0.5 0.085 0.250 0.257 0.280 91 0.253 0.266 91 0.054 0.150 0.164 0.173 96 0.162 0.171 95
1.0 −0.074 0.251 0.264 0.284 92 0.260 0.275 91 −0.051 0.148 0.163 0.172 95 0.160 0.168 95

L 0.5 −0.043 0.154 0.158 0.169 93 0.160 0.170 93 −0.018 0.092 0.093 0.097 95 0.093 0.097 95
1.0 −0.028 0.151 0.156 0.165 94 0.154 0.162 93 −0.012 0.090 0.092 0.095 95 0.090 0.093 96

−1 0.5 N 0.5 −0.035 0.134 0.132 0.142 92 0.138 0.146 93 −0.010 0.079 0.079 0.083 95 0.082 0.085 96
1 −0.019 0.129 0.131 0.138 93 0.135 0.140 94 −0.005 0.078 0.078 0.080 94 0.080 0.081 94

G 0.5 −0.059 0.205 0.202 0.216 93 0.202 0.213 93 −0.029 0.121 0.124 0.130 94 0.125 0.131 95
1 −0.045 0.198 0.204 0.215 93 0.202 0.212 93 −0.024 0.119 0.124 0.128 95 0.122 0.127 95

L 0.5 0.023 0.116 0.120 0.128 95 0.125 0.132 95 0.010 0.064 0.070 0.072 96 0.071 0.074 96
1 −0.006 0.114 0.119 0.123 94 0.122 0.126 95 −0.004 0.063 0.067 0.068 95 0.070 0.071 96

1.0 N 0.5 −0.038 0.176 0.177 0.189 94 0.182 0.190 93 −0.028 0.104 0.106 0.110 93 0.107 0.112 94
1 −0.022 0.171 0.175 0.186 95 0.177 0.186 96 −0.022 0.103 0.106 0.109 94 0.105 0.108 93

G 0.5 0.075 0.279 0.261 0.283 91 0.256 0.271 90 0.035 0.160 0.165 0.176 94 0.163 0.172 94
1 0.064 0.275 0.267 0.289 92 0.261 0.279 92 0.030 0.157 0.163 0.173 94 0.162 0.170 94

L 0.5 0.028 0.160 0.155 0.168 93 0.162 0.171 95 0.013 0.096 0.094 0.098 94 0.096 0.099 94
1 −0.012 0.154 0.158 0.166 95 0.159 0.166 94 −0.008 0.095 0.094 0.096 95 0.094 0.096 95

estimates, average of the estimated standard errors (SEE), and 95% empirical

coverage probability (CP). Note that in the tables, we use N, G, and L to de-

note the normal, Gumbel, and logistic distribution error terms, respectively. In

general, the reults suggest that the proposed estimator is unbiased and that the

weighted bootstrap method works well in terms of both the variance estimation

and the approximation to the distribution of the proposed estimator. Moreover,

as expected, the results improve as the sample size increases.

In addition, the results given in Tables 1 and 2 indicate that the tuning

parameter c and the constant σ2 may have some effect on the estimation. More

specifically, the proposed estimators with c = 1 show a relatively smaller bias

and are more efficient than those with c = 0.5. Furthermore, as expected, the

estimators with a smaller censoring percentage and σ2 perform relatively better.

However, when the sample size is sufficiently large, the proposed estimator does

not seem sensitive to the choice of c. In addition, the type-I bootstrap method

performs slightly better than the type-II bootstrap method does under most

simulation settings. However, for large sample sizes, the difference tends to
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Table 2. Simulation results under different scenarios with a 40% censoring rate.

n = 200 n = 400
Bootstrap I Bootstrap II Bootstrap I Bootstrap II

β σ2 Dis. c Bias SE MAD SEE CP MAD SEE CP Bias SE MAD SEE CP MAD SEE CP
1 0.5 N 0.5 −0.065 0.134 0.142 0.148 91 0.145 0.152 92 −0.032 0.076 0.085 0.089 95 0.086 0.089 95

1 0.053 0.127 0.136 0.143 93 0.139 0.145 94 0.027 0.075 0.083 0.084 95 0.083 0.084 94

G 0.5 −0.078 0.199 0.206 0.222 92 0.209 0.219 92 −0.049 0.126 0.130 0.138 92 0.131 0.137 94
1 −0.068 0.198 0.210 0.225 92 0.208 0.219 93 −0.045 0.123 0.129 0.135 93 0.129 0.134 93

L 0.5 0.040 0.117 0.123 0.132 95 0.131 0.137 96 0.018 0.070 0.072 0.075 94 0.073 0.076 93
1 −0.026 0.110 0.121 0.127 95 0.125 0.130 97 −0.013 0.069 0.070 0.072 94 0.071 0.072 94

1.0 N 0.5 0.053 0.177 0.181 0.196 94 0.183 0.194 94 0.031 0.112 0.111 0.118 95 0.113 0.118 95
1 −0.040 0.174 0.181 0.193 94 0.181 0.192 94 −0.027 0.110 0.110 0.115 94 0.109 0.113 95

G 0.5 −0.102 0.267 0.262 0.286 90 0.257 0.273 90 −0.052 0.167 0.172 0.181 94 0.171 0.178 94
1 0.087 0.271 0.273 0.295 91 0.267 0.282 90 0.050 0.165 0.171 0.180 94 0.168 0.176 94

L 0.5 0.065 0.156 0.156 0.168 92 0.161 0.169 92 0.031 0.092 0.095 0.099 93 0.095 0.099 94
1 −0.051 0.151 0.156 0.163 93 0.158 0.165 95 −0.026 0.091 0.093 0.096 93 0.092 0.095 94

−1 0.5 N 0.5 −0.045 0.137 0.146 0.152 93 0.150 0.156 94 −0.012 0.086 0.086 0.089 95 0.088 0.091 95
1 0.031 0.132 0.142 0.147 95 0.145 0.149 94 0.006 0.084 0.084 0.086 96 0.085 0.087 95

G 0.5 −0.066 0.214 0.209 0.227 92 0.210 0.223 91 −0.035 0.126 0.133 0.139 95 0.132 0.137 95
1 −0.054 0.208 0.213 0.228 92 0.213 0.225 93 −0.031 0.124 0.130 0.136 94 0.129 0.134 94

L 0.5 0.028 0.123 0.128 0.136 93 0.133 0.139 94 0.012 0.070 0.073 0.076 95 0.075 0.078 96
1 −0.013 0.118 0.124 0.130 93 0.127 0.131 94 −0.007 0.068 0.072 0.073 96 0.072 0.074 96

1.0 N 0.5 −0.081 0.182 0.182 0.196 91 0.186 0.196 91 −0.025 0.110 0.114 0.119 94 0.114 0.119 95
1 0.071 0.177 0.181 0.193 91 0.184 0.192 91 0.019 0.109 0.114 0.117 94 0.112 0.115 95

G 0.5 0.102 0.258 0.266 0.290 92 0.256 0.274 91 0.060 0.172 0.173 0.184 93 0.171 0.180 93
1 0.089 0.258 0.270 0.293 93 0.270 0.286 93 0.058 0.169 0.171 0.182 93 0.166 0.178 93

L 0.5 −0.045 0.158 0.158 0.169 93 0.161 0.171 93 −0.024 0.091 0.094 0.099 94 0.097 0.101 95
1 −0.030 0.154 0.154 0.163 94 0.158 0.166 94 −0.017 0.090 0.093 0.096 95 0.094 0.096 95

disappear. Note that the weighted bootstrap distribution could be skewed for a

small sample size and when outlier estimates are unavoidable. That is why we

calculate the MAD of the proposed estimates, which may give better results for

the standard error of the estimate when sample size is small.

Tables 1 and 2 also show that the shape of the error distribution may affect

the proposed estimate for small sample sizes. More specifically, the proposed

method seems to perform slightly better under symmetric error distributions,

such as normal and logistic distributions, than it does under skewed error dis-

tributions, such as the Gumbel distribution. Once again, when the sample size

increases, the performance difference and the shape effect become smaller or can

be ignored. To further illustrate this point and to compare the proposed method

with an existing method, Figure 1 shows the averages of the estimates of the

nonlinear effect function φ0 given by the method of Chen and Tong (2010) and

the proposed method under the three error distributions. The graphs are based

on the simulated data giving the results in Table 1 with β0 = −1, c = 1, σ = 0.5,

and n = 200. Note that the former method requires a known error distribution,
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Figure 1. The estimated nonlinear effect function φ0 using Chen and Tong’s (2010)
method and the proposed method.

which is assumed to be the Gumbel distribution in the figure. Figure 1 clearly

shows that the proposed method gives better estimates and is more robust than

the method of Chen and Tong (2010).

We also considered other setups and obtained similar conclusions. In the

Supplementary Material, we provide estimation results obtained from error dis-

tributions that are more heavy-tailed than that considered above. There, we

also present the results of comparisons between the proposed menthod and the

methods of Khan and Tamer (2007) and Lu and Zhang (2010). In all cases, the

proposed estimator tends to be more stable and robust than the other methods.
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4. An Illustrative Example

In this section, we apply the proposed methodology to the Veterans’ Ad-

ministration lung cancer data on patients with advanced inoperable lung cancer,

discussed by Kalbfleisch and Prentice (2002) and Li and Zhang (2012), among

others. The data set consists of 137 patients who were randomized to receive

either standard or a test form of chemotherapy. In the study, one of the primary

endpoints for the therapy comparison is the time to death. Of the patients in the

sample, 128 were followed to death. In addition to the treatment, several covari-

ates were observed, including the Karnofsky score, the time in months from the

diagnosis to randomization (diagtime), prior therapy (yes or no), the patient’s

age in years, and the type of lung cancer cell (small, squamous, or large). Note

that to fit model (1.2), we first need to choose a benchmark variable or covariate,

the coefficient of which is set to one. A common method of doing so is to choose

the most interesting or important covariate as the benchmark. To determine

this, we calculated the Kendall-τ between the failure time and each covariate.

As a result, we selected the Karnofsky score, which yielded the largest Kendall-τ

of 0.387, as the benchmark variable. Note that both Kalbfleisch and Prentice

(2002) and Li and Zhang (2012) also concluded that the Karnofsky score is the

most important covariate.

In addition to the treatment and covariate effects on the time to death,

identifing the optimal age for chemotherapy treatment is also of interest. Thus,

we consider the following varying-coefficient transformation model:

H(T ) =X1 +

5∑
i=1

βiXi+1 + φ1(W ) + Z φ2(W ) + ε , (4.1)

where the covariates are defined as follows: X1 = Karnofsky/10, X2 = diagtime/

100, X3 = prior/10, X4 = X5 = X6 = 1 if the cell type is small, squamous,

or large, respectively, and 0 otherwise; Z = 1 for the patients given the test

chemotherapy, and 0 otherwise; and W = age/100, where prior = 0 if there has

been no prior therapy, and 1 otherwise. Note that in model (4.1), φ1(W ) char-

acterizes the possible nonlinear effect of the patient’s age, and φ2(W ) represents

the possible effect of the chemotherapy treatment at different age points or the

interaction effect between the treatment and age on the death time.

Table 3 presents the estimation results for the covariates X2, . . . , X6 given by

the proposed inference procedure. The estimated nonlinear functions φ̂1(w) and

φ̂2(w) are given in Figures 2, with pointwise 95% confidence bands. Note that

the estimated standard errors were obtained using the type-I bootstrap method,
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Table 3. Estimation results for the Veterans’ Administration data.

Cell type
β1 β2 β3 β4 β5

Estimate 0.626 −0.154 −0.324 1.387 1.703
Stand Error 1.017 0.514 0.505 0.774 0.711
P-values 0.538 0.765 0.521 0.073 0.017

−
−

ϕ

ϕ

−
−

ϕ

ϕ

(a) (b)

Figure 2. The estimates of curves φ1(·) and φ2(·) for the Veterans’ Administration data.

and the confidence bands were determined using the 0.025 and 0.975 quantiles of

1,000 resampling estimates. Table 3 shows that, given the Karnofsky score, the

death time seems to be significantly related to the tumor type, but not to the

other covariates. Figure 2 (b) shows that the chemotherapy treatment may bene-

fit patients between the ages of 48 and 60. The optimal age for the chemotherapy

treatment is approximately 54. The treatment becomes less effective in younger

and older patients. Furthermore, for patients younger than 48 years and older

than 60 years, the treatment effect on survival may even be negative. These con-

clusions support those of Li and Zhang (2012), who used the normal distribution

assumption, as discussed above.

5. Conclusion

In this study, we investigated a class of partly linear varying-coefficient trans-

formation models for regression analyses of right-censored failure time data. To

estimate the regression parameters, we presented a rank-based objective function,



1974 LI ET AL.

showing that it yields valid estimators. In addition, the asymptotic consistency

and normality of the resulting estimators were established. The results of an

extensive simulation study suggeste that the proposed methodology works well

in practice. Although other researchers have discussed the same model, their

inference methods require restrictive assumptions or apply only to limited situ-

ations.

We have focused on estimating linear or nonlinear covariate effects. However,

it may be necessary at times to estimate the transformation function H0(·) and

the error distribution function, in which case new estimation procedures are

required. In the proposed methodology, we assume that we know which covariates

have linear effects and which have nonlinear effects on the failure time of interest.

However, this information might not always be available. Thus, it would be

useful to develop procedures to identify these covariates. Another limitation of

the proposed method is its lack of efficiency, the improvement of which is left to

future research.

Supplementary Materials

The Supplementary Material provides proofs of Theorems 1 and 2, as well

as additional simulation results obtained under heavy-tailed error distributions

for comparative purposes.
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