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Abstract: We develop a new procedure called the “pseduo-value method” (PVM)

for ultra high-dimensional variable selection problems in semiparametric survival

models. Currently, the prevailing strategies available for working with ultra high-

dimensional lifetime data are the sure independence screening (SIS) strategies. The

proposed unified methodology covers a much broader class of survival models,

including general transformation models and the accelerated failure time (AFT)

model. The proposed method is versatile because the conversion involved easily

casts the problem of interest as a regular linear regression. Through this translation,

all existing techniques developed for linear regression problems can be leveraged at

almost no extra cost. The numerical performance of the PVM shows promising

results: in addition to outperforming the (iterative) SIS for the Cox model, the

new method accurately selects the effective variables for probit, proportional odds,

and AFT models, which have been studied in ultra high-dimensional contexts on

a case-by-case basis. We apply our unified method to analyze diffuse large-B-cell

lymphoma data, finding genes that may be overlooked, but that could be influential.

This finding is potentially of scientific importance on its own.

Key words and phrases: Accelerated failure time model, penalized log-marginal
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1. Introduction

Time-to-event data, which are characterized by the presence of (right-) cen-

sored observations, are often collected in clinical studies. Survival analyses at-

tempt to model the dependence of the survival time T of a subject on the covariate

variables Z = (Z1, . . . , Zp)
>, where p indicates the dimensionality of the covari-

ate space. Variable selection has been studied extensively since the mid-1990s,

with rapid technological development making the collection of vast amounts of

data technically and economically feasible.
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For lifetime data, a popular class of semiparametric models is that of trans-

formation models, of which the Cox (1972, 1975) proportional hazards model and

the proportional odds model (Bennett (1983)) are special cases. Given conven-

tional high-dimensional data sets, variable selection for the Cox model is usually

carried out using the parametric partial likelihood. Here, penalties are often

imposed, such as the least absolute shrinkage and selection operator (LASSO,

(Tibshirani (1996))), smoothly clipped absolute deviation (SCAD, (Fan and Li

(2001))), least angle regression selection (LARS, (Efron et al. (2004))), and elastic

net (Zou and Hastie (2005)).

For the Cox model, Li and Luan (2003) proposed a procedure that uses re-

producing kernel Hilbert spaces for inferences on censored data. In addition, Gui

and Li (2005) and Antoniadis, Fryzlewicz and Letue (2010) employ a threshold

gradient descent regularization and the Dantzig selector, respectively, for infer-

ence problems using the Cox model. For the proportional odds model, Lu and

Zhang (2007) proposed an inference procedure that uses a penalized marginal

likelihood of ranks. This was later extended by Li and Gu (2012) to include a

more general family of transformation models; see also Li et al. (2014).

An attractive alternative to the Cox model is the accelerated failure time

model (AFT), which directly relates the log of the survival time to the covari-

ates; see Ying (1993) and Jin et al. (2003), among others. This model offers

a straightforward interpretation and is more appealing than the proportional

hazards model in many aspects. Several variable selection methods have been

proposed. Huang and Harrington (2005) applied a LASSO-type penalty to a

Buckley−James-type estimator. Furthermore, a rank-based variable selection

procedure for regular high-dimensional data was studied by Cai, Huang and

Tian (2009) and Xu, Leng and Ying (2010) for the AFT model because in this

case, unlike the Cox model, the partial likelihood is not available.

Microarray, proteomic, and SNP data from bioimaging technology stud-

ies have induced a recent surge of interest in variable selection in ultra high-

dimensional settings. Here, problems of interest involve an exponentially grow-

ing parameter space with respect to the sample size, that is, log(p) = O(nα), for

α ∈ (0, 1/2). In view of this new statistical challenge, Fan, Yang and Wu (2010)

applied the sure independence screening (SIS; see also (Fan and Lv (2008)))

method to Cox’s proportional hazard models, and Song et al. (2014) applied SIS

to censored rank data for transformation models with an independent censor-

ing assumption. Recently, Khan and Shaw (2016) extended the weighted least

squares formulation of Stute (1993, 1996) to a class of elastic net techniques to
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handle ultra high-dimensional data. However, there is no unified procedure for

other lifetime data models in ultra high-dimension frameworks for a more general

class of semiparametric transformation models. Here, the main difficulty remains

the handling of censored data. Here, unlike the special case of the Cox model,

where the partial likelihood can serve as an effective vehicle for inferences, we

may need to handle the likelihood or (rank-based) estimating equations directly

to make the variable selection procedure possible.

Ing and Lai (2011) developed the orthogonal greedy algorithm (OGA), which

is a stepwise regression modified for (ultra) high-dimensional linear regression

models. Coupled with the high-dimensional information criterion (HDIC), the

efficient OGA algorithm avoids a potentially restrictive assumption on the maxi-

mum eigenvalue of the covariance matrix of the candidate regressors, which may

not hold when all regressors are equally correlated. The orthogonal projections

carried out in each forward selection step ensure that all remaining variables

become perpendicular to the selected variable(s). As a result, the OGA tends

to exhibit lower false selection rates compared with its SIS counterpart. Thus,

smaller correct models can be selected. To the best of our knowledge, no studies

have examined how this powerful tool can be applied to time-to-event data.

The key objective of this study is to develop a general approach that uti-

lizes “pseduo-values” as a bridge between inference problems for survival data

and those appearing in conventional linear regression models in a ultra high-

dimensional setting. Specifically, pseudo values can be regarded as a set of edu-

cated guesses for the response variables, some of which are not fully observable

owing to censoring. We make two contributions to the literature. First, the

proposed method offers a solution to open challenges for modeling ultra high-

dimensional lifetime data. Second, the concept of pseudo values facilitates the

use of existing variable selection tools used in linear models for more general

model settings. The code for the simulations and numerical studies, composed

in MATLAB, are available upon request.

The remainder of the paper is organized as follows: Section 2 describes the

proposed pseudo value method (PVM) using two popular classes of models for

lifetime data: (i) general transformation models, and (ii) the AFT model. Sec-

tions 3 and 4 present simulations and analyses based on Stanford heart transplant

data and diffuse large-B-cell lymphoma data, respectively. Concluding remarks

are presented in Section 5.
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2. Methodology and Algorithm

To facilitate the discussion, we first introduce some standard notation. In this

paper, we let (T,C,Z) denote a triplet of the survival time, the censoring time,

and their associated covariates, respectively. Under the conditional independence

censoring mechanism, that is, C ⊥ T | Z, we can only observe T̃ = min(T,C),

with ∆ = I(T ≤ C) as the censoring indicator. The observed data set includes

independent and identically distributed (i.i.d.) samples of the triplet (T̃ ,∆,Z),

denoted by {(T̃i,∆i,Zi)}i=1,...,n, where dim(Zi) = p. For i = 1, . . . , n, we also let

Yi = Z>i β.

Traditionally, estimations of β in regression problems are performed using

(convex) optimization on an appropriate likelihood/loss function, say L∗(β |
Z) = L(Z>β | Z), where Z = (Z1, . . . ,Zn) is of dimension p × n. However,

in (ultra-) high dimensional settings, it is difficult to estimate the optimizer β̂

directly with respect to L∗. Thus, the key contribution of our methodology lies

in the observation that the effect of β is manifested through Y = (Y1, . . . , Yn)> =

Z>β. As a result, we first obtain a set of values Ŷ = (Ŷ1, . . . , Ŷn)> that max-

imizes L. Then, we use these optimizers to estimate β̂. These optimizers Ŷ

are the “pseduo-values”. Note that the proposed method significantly reduces

the dimension of the problem of interest because dim(Ŷ) = n� p. Using these

pseudo values, we can apply the OGA with a high-dimensional information cri-

terion (Ing and Lai (2011)) in the second stage of the inference without needing

further modifications, owing to the model-specific settings.

A generic algorithm for the proposed method is composed of three stages:

Stage 1: Obtain an initial set of pseudo values that maximizes the objective

function L. Recall that our problem of interest is to infer β in H(T ) =

Z>β + ε based on assumptions on the monotone transformation function

H(·) and the residual ε for different models. Therefore, at this stage of the

optimization, it is natural to impose a restriction that the pseudo values

should lie on the linear span of Z, denoted as span(Z). In other words,

we reparametrize the parameters of interest to resolve challenges resulting

from the high dimensionality of β.

Stage 2: We introduce a penalty at this stage to reduce the dimension of the

problem. Traditionally, as in the LASSO, hard thresholding, and SCAD, a

penalty pλ(·) is imposed on the regression coefficient β. Our procedure first

treats Y as the parameter of interest. Thus, we suggest the following con-

version. Because Y = Z>β, we can write β = TZY, where TZ = (ZZ>)+Z
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and A+ denotes the Moore−Penrose inverse of a matrix A. Generically, the

optimization carried out in this stage can be expressed as

Ŷ = arg max
Y

[log{L(Y)} − Pλ(Y)] , (2.1)

where Pλ(Y) =
∑p

i=1 pλ{|TZYi|} is an appropriate penalty. This step works

properly because (2.1) is concave in Y; see Boyd and Vandenberghe (2004).

The results obtained in Stage 1 can be used as an initial set of values for

this round of optimization. From another perspective, the introduction of

this penalty adjusts for the fact that minimizing ‖Y −Y0‖2 with respect

to Y is not equivalent to minimizing ‖L(Y)− L(Y0)‖2 with respect to Y.

In general, popular penalty approaches, including the LASSO, SCAD, and

adaptive LASSO, can be applied to this method. Note that although the

penalty applied here borrows the idea of penalizing the parameter of in-

terest β, the main goal is to obtain pseudo values upon which the variable

selection methods developed for linear models can be applied. In our simu-

lation exercise in Section 3, we demonstrate that these three approaches all

produce similar and desirable results.

Stage 3: Perform the variable selection procedure on β by solving a high-

dimensional linear regression problem with Ŷ as the response variable; that

is, we estimate Y = Z>β + ε. Here, any effective variable selection pro-

cedure can be applied. After obtaining the active set, the set of nonzero

β, estimate the final regression coefficient using the classical procedures for

low-dimensional settings.

In summary, the PVM procedure maximizes the corresponding objective function

using Ŷ with an appropriate regularization penalty and linear constraints. The

last stage is to apply the OGA to the transformed Ŷ on the original covariates in

the linear regression to complete the final variable selection procedure. As shown

in Sections 3 and A2, we divide the algorithm into three stages to demonstrate the

computation time needed for each step. In the following subsections, we provide

two generic examples (Sections 2.1 and 2.2) to show how to use this method for

variable selection problems that appear in general transformation models and

the AFT model.

2.1. General transformation models

General transformation models assume that the true underlying failure time

T is related to the covariates in the following form:
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SZ(t) = Φ{S0(t),Z,β}, (2.2)

where S0(·) is an unknown continuous baseline survival function, SZ(·) is the

survival function of T , given Z, and Φ(u, v, w) is assumed to be known, with

Φ(0, v, w) = 0 and Φ(1, v, w) = 1 for any v and w. By letting Φ(u, v, w) =

g−1{g(u) − v>w}, where g−1(·) = 1 − F (·) = Pr{ε ≥ ·}, we can rewrite (2.2)

as H(T ) = Z>β + ε, which is the traditional transformation model; see Gu,

Sun and Zuo (2005). This generalized class of transformation models covers a

class of frailty models, heteroscedastic hazards regression models (Hsieh (2001)),

and general heteroscedastic rank regression models/probit rank regression models

(Chen and Little (2001)).

Suppose we have n i.i.d. observations {(T̃i,Zi,∆i)}i=1,...,n. We define kn =∑n
i=1 ∆i as the total number of observed failure times. We also denote R∗n as

the partial ranking of the kn observed failure times and the specific observations

between each pair of uncensored failure times, and Rn as the complete ranking

of the underlying failure times Tn = {T1, . . . , Tn}>. Given the observed R∗n, we

define Sn as a set composed of all possible complete rankings Rn and

Cn = {tn = (t1, t2, . . . , tn) : ti1 < ti2 < · · · < tikn
, tj ≥ tir ,

for j ∈ Lir and 0 ≤ r ≤ kn}

as a time set that is consistent with the order restriction R∗n. Here, ir denotes

the rth ordered observed failure and Lir is the set of censored observations in

[Tir , Tir+1
), with Ti0 = 0 and Tikn+1

=∞. It follows that the marginal likelihood

can be rewritten as

L(Y) = Pr{Rn ∈ Sn | R∗n} = Pr{tn ∈ Cn | R∗n}

= (−1)n
∫
tn∈Cn

n∏
i=1

φ{S0(ti), Yi}
n∏
i=1

dS0(ti)

=

∫
ξ

n∏
i=1

φ(1− ui, Yi)
n∏
i=1

dui, (2.3)

where φu(u, v) = ∂Φ(u, v)/∂u. Here, ξ is the corresponding collection of Uni(0,

1) vectors consistent with the order restriction specified in Cn.

As suggested in Gu and Kong (1998) and Gu, Wu and Huang (2014), the

Monte Carlo method can be used to maximize (2.3). We assume that Φ(u, v) is

twice differentiable with respect to u and v, and define φv(u, v) = ∂φ(u, v)/∂v

and Si(Y) = ∂ logL(Y)/∂Yi as the ith element of the score function S(Y) =

∂ logL(Y)/∂Y. It follows that, for i = 1, . . . , n and u = (u1, . . . , un)>,
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Si(Y ) =

∫
ε
H(Yi;ui)p(u,Y)du, (2.4)

where

H(Yi, ui) =
φv(1− ui, Yi)
φu(1− ui, Yi)

,

with

p(u,Y) = {L(Y)}−1
n∏
i=1

φu(1− ui, Yi)I(u ∈ ε), (2.5)

denotes the conditional density of u.

To implement the PVM, we first solve the following optimization problem

without performing variable selection. At this stage, we can obtain preliminary

estimates for our pseudo values that we will use in the next stage of our proce-

dure. The maximum likelihood estimates of Y, given (2.3), can be obtained by

maximizing

log{L(Y)} subject to (I−HZ)Y = 0,

where HZ = Z(ZZ>)+Z>. The constraint imposed here restricts Y to lie on

the linear span of Z. Equivalently, we can solve

S(Y) = 0 subject to (I−HZ)Y = 0. (2.6)

In many cases, L(Y) is a log-concave function. For example, in the Cox

proportional hazards model, we have

φu(u, v) =
exp{log(u)e−v}e−v

u
.

Because φ(u, v) is a log-concave function for v, using Theorem 6 in Prekopa

(1973), we have that L(Y) is also log-concave. This problem can be solved using

Newton’s method with equality constraints; see Boyd and Vandenberghe (2004).

A difficulty with this optimization is that the integral is usually of a very high

dimension and the normalising constant in p(u,Y) defined in (2.5) has no closed

analytic expression. Thus, the computation of (2.6) cannot be solved trivially

using standard numerical methods. Here, we adopt the Markov chain Monte

Carlo-Stochastic Approximation algorithm (MCMC-SA), following Gu and Kong

(1998) and Gu, Sun and Zuo (2005), for our initial pseudo value estimation. The

corresponding algorithm is described as follows:

Step 1: Choose positive integers λ, m, and κ1, an initial value Y(0), an

initial matrix Γ(0), an initial data U
(0)
m , and a sequence νk ↓ 0. Repeat (i)

and (ii) κ1 times:



1946 SIT ET AL.

(i) For a fixed k, set U
(k)
0 = U

(k−1)
m . For i = 1, . . . ,m, generate U

(k)
i

from the transition probability ΠY(k−1){U (k)
i−1}. The construction of

the Markov transition probability is similar to the procedure discussed

in Li and Gu (2012).

(ii) Update the estimate Ŷ iteratively using

Y(k) = Y(k−1) + νk∆Y(k),

where[
∆Y(k)

ω(k)+

]
=

[
−Γ(k) (I−HZ)>

I−HZ 0

]−1
×

[
−H̄{Ŷ(k−1),U (k)}
−(I−HZ)Ŷ(k−1)

]
Γ(k) = Ī0{Y(k−1),U (k)}

ω(k) = ω(k−1) + νk

{
ω(k)+ − ω(k−1)

}
,

with

H̄{Y,U (k)} = m−1
n∑
i=1

H
{

Y,U
(k)
i

}
Ī0{Y,U (k)} = −m−1

n∑
i=1

∂

∂Y
H
{

Y,U
(k)
i

}
.

At the end of this stage, we obtain Ŷ0 as the average of the last 10% of the

sequence {Ŷ(k)}k=1,...,κ1
.

Step 2: Our main task is to solve the optimization problem (2.1), subject

to the space constraint on Y:

S(Y)− ∂Pλ(Y)

∂Y
= 0

subject to (I−HZ)Y = 0. (2.7)

Similar to Step 1, we propose an MCMC-SA algorithm to solve (2.7). In

contrast to (2.6), we have to address the problem that the penalty function

pλ(β) is irregular at the origin and may not be twice differentiable at some

points. This problem can be solved by the approach of Fan and Li (2001)

and Fan, Yang and Wu (2010) and applying a local quadratic approximation

to the objective function. Because the iterative update procedure is similar

to Step 1, we defer a description of the algorithm to Appendix A1.

Step 3: After the first two steps of our proposed algorithm, we obtain Ŷ,

which contains the pseudo values for the true Y = Z>β. In other words,
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the transformation of a high-dimensional semiparametric problem to a high-

dimensional linear regression problem is complete. The remaining problem

is to estimate the effective regression parameter. This can be done using

existing variable selection methods designed for a high-dimensional linear

regression model: Ŷ = Z>β + ε. Here, our experience suggests that the

OGA offers fast and accurate results. After choosing the effective regression

coefficients, say β̂∗, we then need to use the corresponding selected variable

Z∗ as a new input to the algorithm of Gu, Sun and Zuo (2005).

2.2. The AFT model

The PVM can be applied to ultra high-dimensional problems under the AFT

model framework. The AFT model has the form:

log(T ) = Z>β + ε, (2.8)

where ε is an error term with an unspecified distribution.

For low-dimensional cases, Jin et al. (2003) proposed that the parameter of

interest can be estimated by minimizing L∗G(β) = n−1
∑n

i=1

∑n
j=1 ∆i{e∗i (β) −

e∗j (β)}−, where e∗i (β) = log(T̃i)−Z>i β and a− = |a|I(a < 0). To apply the PVM

to the AFT model in a high-dimensional setting, we rewrite ei(Yi) as e∗i (β), that

is, ei(Yi) = log(T̃i) − Yi for i = 1, . . . , n. Similarly to the procedure introduced

in Section 2.1, we can equivalently minimize

L(Y) =

n∑
i=1

n∑
j=1

∆i|ei(Yi)− ej(Yj)|+
∣∣∣∣M − n∑

k=1

n∑
l=1

∆k(Il − Ik)
>Y

∣∣∣∣,
subject to the constraint (I−HZ)Y = 0, where Il denotes the lth column vector

of I, for l = 1, . . . , n, and M is a large constant. Because the gradient of L(Y)

in this case is not differentiable, to implement the PVM using the procedure

introduced in Section 2.1, we use an identity matrix to approximate its gradient;

that is, we replace Γ by I in the aforementioned MCMC-SA algorithm.

2.3. Asymptotic properties

We adopt the conditions required in Ing and Lai (2011), which ensure the

convergence of the OGA for linear regression models of the form of Y = Zβ+ ε.

Specifically, we assume that p = pn →∞ and impose the following six conditions:

(C1) log pn = o(f(n) ∧ n), for some function f of n.

(C2) Model-specific assumptions that guarantee P (‖β̃ − β‖1 > λ) = o(1), with

λ = O(log pn/n).
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(C3) |zj | ≤ Cmax <∞ for j = 1, . . . , pn. This also implies lim supn→∞max1≤j≤pn
E(exp(s1z

2
j )) <∞, for some s1 > 0.

(C4) Weak sparse assumption: supn≥1
∑pn

j=1 |βjσj | <∞, where σj is the standard

deviation for the jth attribute.

(C5) Sparse assumption: there exists 0 ≤ γ < 1 such that nγ = o((n/ log pn)1/2)

and

lim inf
n→∞

nγ min
1≤j≤pn;βj 6=0

β2j σ
2
j > 0.

(C6) Define J as a set of selected attributes, Γ(J) = E(z(J)z(J)T ), gi(J) =

E(ziz(J)). Then,

min
1≤#(J)≤Kn

λmin(Γ(J)) > δ, max
1≤#(J)≤Kn,i/∈J

‖Γ−1(J)gi(J)‖1 < M.

Remark 1. Because different models, penalties, and chosen attributes relate to

the possible bound of pn, we express this simply as f(n) in (C1).

Remark 2. For the Cox model, we can take a large constant with respect to

λ to satisfy P (‖β̃ − β‖1 > λ) = o(1), according to Huang et al. (2013), for

the LASSO penalty. For general transformation models, Klaassen, Kueck and

Spindler (2017), note that the LASSO can also provide the desired result in (C2),

given log pn = o(n1/4). In this case, f(n) = n1/4 in (C1). For the AFT model,

using the method described in Xu, Leng and Ying (2010), we have that β̃i is

n−1/2-consistent for i = 1, . . . , s and β̃i = βi = 0 for i = s + 1, . . . , pn. If pn
increases with n, we have

P (‖β̃ − β‖1 > λ) ≤ P (
√
s‖β̃ − β‖2 ≤ λ) ≤ O

(
s2/n

λ2

)
= O

(
s2

log pn

)
= o(1).

The following two theorems provide a justification for the proposed procedure.

The corresponding proofs are provided in the Supplementary Material.

Theorem 1. Under (C1) to (C6), suppose Kn/n
γ → ∞, such that Kn =

O((n/ log pn)1/2) ∧ pn. Then, limn→∞ P (Nn ⊆ ĴKn
) = 1, where Nn = {1 ≤

j ≤ pn : βj 6= 0} denotes the set of relevant input variables.

The HDIC introduced in Ing and Lai (2011) is defined as HDIC(J) =∑n
t=1(yt−ŷt:J)2{1+n−1(#(J)wn log pn)}, where wn satisfies wn →∞, wn log pn =

o(n1−2γ). By minimizing the HDIC using the OGA, we have the following result:

Theorem 2. Under (C1) to (C6), define Kn as in Theorem 1. Then,

lim
n→∞

P (k̂ ≥ k̃) = 1,
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where

k̂ = arg min
1≤k≤Kn

HDIC(Ĵk)

and

k̃ = min{k : 1 ≤ k ≤ Kn, Nn ⊆ Ĵk}.

Furthermore,

P (Nn ⊆ N̂n) = 1.

Remark 3. The above theorems are modified results based on Theorems 3, 4,

and 5 of Ing and Lai (2011) under the PVM framework. These results guarantee

that all relevant variables can be selected using our proposed method. Although

our theoretical results cannot completely eliminate cases with over-selection, our

numerical experience suggests that, with the regularization in the early step of

the PVM, the use of the OGA can select substantially fewer variables, almost all

of which are relevant; see also Section 3.

3. Simulations

To demonstrate the finite-sample performance of the proposed method, we

conducted an extensive simulation study based on the two classes of models

discussed in Section 2. We consider three special cases for the transformation

models, namely, Cox’s proportional hazards model, the probit model, and the

proportional odds (PO) model. In addition, we also include the results for the

AFT model under various settings.

In the following examples, after obtaining the pseudo values Ŷ in stage two,

we apply the OGA method with HDIC as the selection criterion to perform the

variable selection on the regression parameter β. Note that we only report our

selection results here, because the final estimation performance is determined by

the classical low-dimensional regression procedure. The simulation results were

obtained using a standard desktop computer equipped with an i7-2600 3.40GHz

CPU and 8.00Gb RAM. Note that although the PVM utilizes the MCMC-SA op-

timization procedure, the mean computation time needed for the model selection

based on a data set with a sample size of 400 and 5,000 covariates is only around

3,485 seconds (58 minutes). The computational burden for our proposed method

is much less demanding than it appears, especially when parallel computing is

employed. We relegate the details about the computation time to section A2 of

the Appendix. The simulation results are shown in Tables 1–5 in the main text.

For the transformation models, similar to Case 5 of the simulation discussed



1950 SIT ET AL.

Table 1. Performance between the PVM on (a) Cox proportional hazards model, (b)
probit model, (c) PO model, and (d) the AFT model under ultra high-dimensional
settings, i.e. n � p. Frequency, in 100 simulations, of including all relevant variables
(Correct), selecting exactly the relevant variables (E), selecting all relevant variables
and i irrelevant variables (E + i), and selecting some relevant variables with i relevant
variables omitted (E− i). The column “Correct” specifies the number of cases where all
relevant variables are selected.

n p E E + 1 E + 2 Correct E − 1 E − 2 n p E E + 1 E + 2 Correct E − 1 E − 2
(a) Cox Proportional Hazards Model (b) Probit Model

150 1,000 96 1 1 98 2 0 150 1,000 97 3 0 100 0 0
200 1,000 99 1 0 100 0 0 200 1,000 100 0 0 100 0 0
400 1,000 100 0 0 100 0 0 400 1,000 100 0 0 100 0 0
200 5,000 99 0 0 99 1 0 200 5,000 99 0 0 99 1 0
200 10,000 100 0 0 100 0 0 200 10,000 100 0 0 100 0 0
400 5,000 100 0 0 100 0 0 400 5,000 100 0 0 100 0 0
400 10,000 100 0 0 100 0 0 400 10,000 100 0 0 100 0 0

(c) Proportional odds Model (d) The Accelerated failure time (AFT) model
300 1,000 96 4 0 100 0 0 200 1,000 100 0 0 100 0 0
400 1,000 100 0 0 100 0 0 400 1,000 100 0 0 100 0 0
300 5,000 99 0 0 99 1 0 200 5,000 98 0 0 98 2 0
300 10,000 94 0 0 94 4 2 200 10,000 100 0 0 100 0 0
400 5,000 100 0 0 100 0 0 400 5,000 100 0 0 100 0 0
400 10,000 100 0 0 100 0 0 400 10,000 100 0 0 100 0 0

in Fan, Yang and Wu (2010), we generated variables Z as a p × n matrix from

a multivariate Gaussian distribution N(0, V1), where V1 is a p × p matrix with

diagonal elements equal to one, and all other elements equal to 0.5. We set

p = 1,000 and n = 150, 200, and 400 for each model. The survival time T is

generated from model (2.2), with H−1(·) in Φ(u, v, w) = H−1{H(u) + v>w},
using the standard extreme value survival function, standard normal survival

function, and standard logistic survival function for Cox’s proportional hazards

model, probit model, and PO models, respectively. The true regression param-

eters are set to the values considered in Fan, Yang and Wu (2010), that is,

β0 = (−1.5140, 1.2799,−1.5307, 1.5164,−1.3020, 1.15833, 0, . . . , 0)>, which is a

p-column vector with only the first six elements nonzero.

In Step 1 of the MCMC-SA procedure, as in Gu, Sun and Zuo (2005), m was

chosen to be 50. Different penalties were applied for the three cases to demon-

strate that the proposed method works well for various penalties. In particular,

for the Cox proportional hazards model, we adopted the LASSO penalty, and

chose γk = k−1/6; for the probit model, we added the SCAD penalty, and set

γk = k−1; for the PO model, we imposed the adaptive LASSO penalty, with

γk = k−1/6. Our numerical results show that the choice of penalty function
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does not affect the selection result significantly. The corresponding tuning pa-

rameter was determined using the GCV specified in Li and Gu (2012). The

censoring times were generated from an exponential distribution with mean 10,

which yielded an average censoring rate of 25%. As presented in Table 1, the

PVM performed well for the transformation models.

For the AFT model, we mimicked the example investigated in Xu, Leng

and Ying (2010), except that we considered an ultra high-dimensional setting

(p = 1,000, 5,000, and 10,000). In particular, we set β0 = (3, 1.5, 0, 0, 2, 0, . . . , 0),

where β0 is a p-column vector; Z is generated from a multivariate Gaussian

distribution N(0, V2), with V2 as a p × p matrix with element (i, j) equal to

0.5|i−j|.

Table 1 summarizes the performance of the PVM under ultra high-dimensional

settings. For cases with relatively small sample sizes, say n = 200, the PVM al-

ways discovers all relevant variables and, occasionally, one extra variable. This

sample size was chosen to represent a similar situation to that considered in our

data analysis. It can also be seen from Table 1 that, in most cases, the PVM

selects all relevant variables and, occasionally, a few irrelevant variables. Under

the setting of n = 400 with p = 5,000 or 10,000, the PVM always selects exactly

all of the relevant variables.

We present a comparison between the PVM and some existing methods

for the general transformation models (Li et al. (2014)) and the AFT model

(Xu, Leng and Ying (2010)) under a high-dimensional setting with p < n. The

corresponding results are summarized in Table 2. For the transformation models,

the PVM outperforms the method of Li et al. (2014), especially for small sample

cases, where n = 150. With the exception of the PO model, the PVM never omits

any relevant variables. In contrast, the approach of Li et al. (2014) tends to omit

one to two relevant variables. In addition, for cases where all relevant variables

are selected, the PVM produces a smaller active set, as shown in columns 4−7

of Table 2. A similar, yet more distinctive pattern is also found in a comparison

between the PVM and the method of Xu, Leng and Ying (2010).

Under the ultra high-dimensional settings, we also compare the PVM with

SIS (Fan, Yang and Wu (2010)) and the method of Song et al. (2014) for Cox’s

proportional hazards model and the PO model, respectively. For Cox’s model, we

adopted the same setting shown in Table 1, except that n < p. For the PO model,

we change the variance matrix to be a p× p matrix with element (i, j) equal to

0.5|i−j|. The regression parameters β0 follow those in Song et al. (2014), which

are (−1,−0.9, 0, 0, 0, 0, 0, 0, 0.8, 1, 0, . . . , 0, 0), with H(t) = log{0.5(e2t− 1)}. The
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Table 2. Comparison of performance between the PVM and relevant existing methods
on (a) Cox proportional hazards model, (b) probit model, (c) PO model and (d) the
AFT model under traditional high-dimensional settings, i.e., n > p, p ≈ n. Frequency,
in 100 simulations, of including all relevant variables (Correct), selecting exactly the
relevant variables (E), selecting all relevant variables and i irrelevant variables (E + i),
and selecting some relevant variables with i relevant ones omitted (E− i). The notation
3+ denotes the results with at least three irrelevant variables selected. The column
“Correct” specifies the number of cases where all relevant variables are selected.

Method n p E E+1 E+2 E+3+ Correct E−1 E−2 E−1+1 E−2+3 E−3+2
(a) Cox Proportional Hazards Model

PVM 150 100 100 0 0 0 100 0 0 0 0 0
PVM 200 150 100 0 0 0 100 0 0 0 0 0
PVM 400 300 100 0 0 0 100 0 0 0 0 0

Li et al. (2014) 150 100 60 27 2 2 91 4 1 2 1 1
Li et al. (2014) 200 150 94 4 0 0 98 2 0 0 0 0
Li et al. (2014) 400 300 99 1 0 0 100 0 0 0 0 0

(b) Probit Model
PVM 150 100 98 2 0 0 100 0 0 0 0 0
PVM 200 150 100 0 0 0 100 0 0 0 0 0
PVM 400 300 100 0 0 0 100 0 0 0 0 0

Li et al. (2014) 150 100 88 10 1 0 99 1 0 0 0 0
Li et al. (2014) 200 150 99 1 0 0 99 0 0 0 0 0
Li et al. (2014) 400 300 100 0 0 0 100 0 0 0 0 0

(c) Proportional odds Model
PVM 150 100 95 2 0 0 97 3 0 0 0 0
PVM 200 150 96 3 0 0 99 1 0 0 0 0
PVM 400 300 100 0 0 0 100 0 0 0 0 0

Li et al. (2014) 150 100 89 5 0 0 94 2 4 0 0 0
Li et al. (2014) 200 150 95 4 0 0 99 1 0 0 0 0
Li et al. (2014) 400 300 100 0 0 0 100 0 0 0 0 0

(d) The Accelerated failure time (AFT) model
PVM 150 100 99 1 0 0 100 0 0 0 0 0
PVM 200 150 100 0 0 0 100 0 0 0 0 0
PVM 400 300 100 0 0 0 100 0 0 0 0 0

Xu, Leng and Ying (2010) 150 100 64 23 9 3 99 1 0 0 0 0
Xu, Leng and Ying (2010) 200 150 67 23 9 0 99 1 0 0 0 0
Xu, Leng and Ying (2010) 400 300 82 16 2 0 100 0 0 0 0 0

censoring times were generated from uniform distributions Uniform(0, 5.8) and

Uniform(0, 1.9) to achieve censoring rates of 15% and 40%, respectively. Table 3

presents the results. Note that the two contenders assign a rank to each regres-

sion covariate. The corresponding performance is usually measured by reporting

the minimum number of variables selected such that all relevant variables are in-

cluded. Therefore, no relevant variables are ever missing. This explains why the

E− column in Table 3 is always zero for these two methods. We also summarize

the mean numbers of extra irrelevant variables, E+. The figures in Table 3 reveal

that the PVM offers a high probability of selecting the important variables, and
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Table 3. Comparison of performance between the PVM and (a) SIS for Cox proportional
hazards model and (b) Song et al.’s (2014) method for the PO model under ultra high-
dimensional settings. The average numbers of missing relevant and extra irrelevant
variables are denoted as E− and E+, respectively.

Method n p CP E− E E+

(a) Cox proportional hazards model
PVM 150 1,000 23 0.02 (0.14) 5.98 (0.14) 0.03 (0.22)
PVM 200 1,000 23 0 (0) 6 (0) 0.01 (0.10)
PVM 400 1,000 23 0 (0) 6 (0) 0 (0)
PVM 200 5,000 23 0.01 (0.10) 5.99 (0.10) 0 (0)
PVM 200 10,000 23 0 (0) 6 (0) 0 (0)
PVM 400 5,000 23 0 (0) 6 (0) 0 (0)
PVM 400 10,000 23 0 (0) 6 (0) 0 (0)
SIS 150 1,000 23 0.14 (0.64) 5.86 (0.64) 1.64 (1.43)
SIS 200 1,000 23 0 (0) 6 (0) 2.35 (1.60)
SIS 400 1,000 23 0 (0) 6 (0) 7.91 (3.57)
SIS 200 5,000 23 0.09 (0.64) 5.91 (0.64) 0.99 (3.15)
SIS 200 10,000 23 0.36 (1.11) 5.64 (1.11) 1.46 (5.27)
SIS 400 5,000 23 0 (0) 6 (0) 1.63 (1.38)
SIS 400 10,000 23 0 (0) 6 (0) 0.85 (0.90)

(b) Proportional odds model
PVM 300 5,000 15 0 (0) 4 (0) 0.41 (0.71)
PVM 300 5,000 40 0.15 (0.39) 3.85 (0.39) 0.64 (0.98)

Song et al. (2014) 300 5,000 15 0 (0) 4 (0) 7.60 (4.70)
Song et al. (2014) 300 5,000 40 0 (0) 4 (0) 22.10 (7.80)

includes few irrelevant variables. In particular, for the PO model, the method of

Song et al. (2014) chooses 22.1 irrelevant variables, on average, whereas the PVM

selects 0.64 irrelevant variables, on average, under the (n, p) = (300, 5,000) case.

Detailed results for the performance of SIS under various settings is included in

Appendix A3.

To examine the performance of the PVM for cases in which some important

variables are marginally independent of the response variable, we also conducted

simulations with settings that correspond to Cases 3 and 4 discussed in Fan,

Yang and Wu (2010). In particular, for Case 3, the covariates Z1, . . . , Zp follow

a multivariate Gaussian distribution. They follow a marginally N(0, 1) distri-

bution, with the correlation structure corr(Zi, Z4) = 1/
√

2 for all i 6= 4, and

corr(Zi, Zj) = 0.5 if i and j are distinct elements of {1, . . . , p}\{4}. The co-

variates are configured as β = (4, 4, 4,−6
√

2, 0, 0, . . . , 0). The censoring rate is

30%. For Case 4, Z1, . . . , Zp are also multivariate Gaussian, each of which is

marginally N(0, 1) distributed, with correlation structure corr(Zi, Z5) = 0 for
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Table 4. Comparison of performance between the PVM and Fan, Yang and Wu’s (2010)
approach under Cases 3 and 4.

Method n p Fan, Yang and Wu (2010) E− E E+

Cox proportional hazards model
PVM 300 400 Case 3 0.23 (0.55) 3.77 (0.55) 0.84 (1.8)
PVM 300 400 Case 4 0.32 (0.55) 4.68 (0.55) 1.15 (1.74)
PVM 400 1,000 Case 3 0.14 (0.51) 3.86 (0.51) 0.13 (0.63)
PVM 400 1,000 Case 4 0.27 (0.62) 4.73 (0.62) 0.3 (1.2)
ISIS 300 400 Case 3 0 (0) 4 (0) 14.76 (3.91)
ISIS 300 400 Case 4 0 (0) 5 (0) 14.84 (4.03)
ISIS 400 1,000 Case 3 0 (0) 4 (0) 10.93 (3.77)
ISIS 400 1,000 Case 4 0 (0) 5 (0) 11.26 (3.32)

all i 6= 5, corr(Zi, Z4) = 1/
√

2 for all i /∈ {4, 5}, and corr(Zi, Zj) = 0.5 if i

and j are distinct elements of {1, . . . , p}\{4, 5}. The covariates are configured

as β = (4, 4, 4,−6
√

2, 4/3, 0, 0, . . . , 0). The corresponding censoring rate is also

around 30%, and similar performance is observed (see Table 4).

Finally, we also considered a high-dimensional setting for the AFT model

similar to that studied in Khan and Shaw (2016). Specifically, we set (n, p) =

(100, 120), with the first 20 coefficients for β set to four, and the remaining

coefficients chosen to be zero. The covariates were generated as Z from Uni-

form(0, 1), with correlations 0 and 0.5|i−j| for the two separate cases, and the

error following a standard normal distribution. The censoring time was gener-

ated using the log-normal distribution exp{N(
√

2c0, 2)}, where c0 was calculated

analytically to produce the chosen censoring rate of 30% or 50%. According to

the results shown in Table 5, where pγ refers to significant variables and p − pγ
represents non-relevant variables, the PVM produces the highest net selection

accuracy, which we define as the percentage of relevant covariates selected mi-

nus that of nonrelevant variables chosen. The performance is more distinct for

the nondependent case. This can be explained by the fact that OGA employs

orthogonal projections to determine the next immediate relevant covariate. In

cases where the linear dependence is strong amongst the variables, the OGA ap-

proach may choose the next linearly independent covariate that is not explained

by the previously selected variables.

To conclude this section, we provide numerical results for cases with cen-

soring times that depend on covariates. Specifically, we consider four models,

namely, the Cox, probit, PO and AFT, with i.i.d. covariates Zij generated from

Uniform (0, 1). The covariates are configured as β = (4,−4, 4,−4, 4, 0, . . . , 0).
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Table 5. Comparison of performance between the PVM and Khan and Shaw’s (2016)
approach under ultra high-dimensional settings

CP Methods Parameters rij = 0 rij = 0.5|i−j|

30 PVM pγ 91.9 43.4
p− pγ 4.6 1.0

AEnet pγ 84.8 50.7
p− pγ 9.4 21.1

AEnetCC pγ 89.8 62.0
p− pγ 14.3 40.3

WEnet pγ 80.0 43.3
p− pγ 12.3 1.4

WEnetCC pγ 87.3 61.8
p− pγ 12.4 11.0

50 PVM pγ 68.5 32.0
p− pγ 5.1 0.7

AEnet pγ 68.1 50.7
p− pγ 8.8 26.0

AEnetCC pγ 76.4 57.2
p− pγ 23.6 37.9

WEnet pγ 56.8 28.4
p− pγ 10.6 1.8

WEnetCC pγ 75.4 55.5
p− pγ 21.1 12.4

The censoring times are generated from an exp(6Z1) distribution. The results

are presented in Table 6. Again, our proposed procedure yields acceptable results,

with few cases of over-selection.

4. Data Analyses

We examine two data sets in this section, namely, Stanford heart trans-

plant data (Miller and Halpern (1982)) and diffuse large-B-cell lymphoma data

(Rosenwald et al. (2002)).

4.1. Stanford heart transplant data

To demonstrate the PVM’s performance for a data set with a regular dimen-

sion, we first present an analysis of a classical data set for the Cox proportional

hazards model, namely, the Stanford heart transplant data collected in February

1980. The data set contains 157 observations of the following four variables:

(i) the survival days for each patient, (ii) the censoring indicator, (iii) the age

at time of first transplant, and (iv) the mismatch score. Because we need not
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Table 6. Comparison of performance between the PVM and relevant existing methods
on the (a) Cox proportional hazards model, (b) probit model, (c) PO model and (d)
AFT model under dependent censoring. Frequency, in 100 simulations, of including
all relevant variables (Correct), selecting exactly the relevant variable (E), selecting all
relevant variables and i irrelevant variables (E+ i), and selecting some relevant variables
with i relevant variables omitted (E − i). The notation 3+ denotes the results with at
least three irrelevant variables selected. The column “Correct” specifies the number of
cases where all relevant variables are selected.

Model n p E E + 1 E + 2 Correct E − 1 E − 2
Cox 400 10,000 99 1 0 100 0 0

Probit 400 10,000 100 0 0 100 0 0
PO 400 10,000 99 1 0 100 0 0

AFT 400 10,000 100 0 0 100 0 0

Table 7. Analysis of Stanford heart transplant data using the PVM

Estimator Age(β̂1) Mismatch score (β̂2)
Original Cox 0.030 0.167

Cox with PVM 0.030 0.157

carry out a dimension-reduction procedure here, we only execute the first stage

of our algorithm. Compared with the result obtained from the original Cox re-

gression model, our estimates are virtually the same; see Table 7. This verifies

the performance of the PVM for low-dimensional cases.

4.2. Diffuse large-B-cell lymphoma studies

Here, we analyze a type of diffuse large-B-cell lymphoma, which is the

most common type of lymphoma in adults, and can be cured by chemother-

apy for only 35 to 40 percent of patients. Rosenwald et al. (2002) examined

whether gene-expression profiles of the lymphoma of interest can be used to

predict the outcome of chemotherapy using a multivariate Cox proportional haz-

ards model. Biopsy samples of diffuse large-B-cell lymphoma from 240 patients

were examined for 7,399 gene expressions using DNA microarrays and were an-

alyzed for genomic abnormalities. The data set is available to the public at

http://llmpp.nih.gov/DLBCL/. Of the 240 samples, 138 patients died (57% of

the patients recruited) during the follow-ups, with a median death time of 2.8

years. The median age of the patients was 63 years, and 56 percent were men.

According to the Ann Arbor classification, 15 percent of patients had stage I

disease, 31 percent had stage II, 20 percent had stage III, and 34 percent had

stage IV. The Kaplan−Meier plot of the overall survival for this data set is shown

http://llmpp.nih.gov/DLBCL/
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Figure 1. Kaplan−Meier plot of overall survival of patients for large-b-cell lymphoma
data.

in Figure 1.

To analyze this data set, we adopted the same initial setup as that shown

in our simulation studies. Using the pseudo values Ŷ obtained in the first two

stages of our procedure, we performed the variable selection using the OGA

with the HDIC as the model selection criterion. The genes selected are listed

in Table 8. In particular, the genes with asterisks were identified as significant

classes of genes in Rosenwald et al. (2002), namely, the Germinal-center B-cell

signature, MHC class-II signature, and Lymph-node signature. It is natural for

our method to select the three genes under the Cox model, because Rosenwald

et al. (2002) adopted the same model in their analysis. The additional genes

selected under the various models are worthy of attention because they are the

influential variables most likely to be overlooked.

Gui and Li (2005) studied the same data set using the LARS method on the

L1-penalized Cox model. Amongst the four genes selected by their method, Gui

and Li (2005) also regarded the Germinal-center B-cell signature and MHC class

II signature as influential genes. Whereas genes that belong to the Lymph-node

signature were also selected in Gui and Li (2005), they selected LC 29222 and

X59812 in their final conclusion.

To compare the conclusions from the different approaches, we also performed

a likelihood ratio test to compare our selection with that of Gui and Li (2005)

based on the Cox model. As reported, the PVM chose six variables and the

corresponding log-likelihood is −387.13; Gui and Li (2005) selected ten variables

with a log-likelihood of −386.23. Combining these two results, we constructed
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Table 8. Rosenwald et al. (2002), diffuse large B-cell lymphoma studies data: Significant
genes selected under Cox, probit, and AFT models with respect to the survival time.
Genes marked with asterisks (*) and daggers (†) correspond to genes that were also
selected in Rosenwald et al. (2002) and Gui and Li (2005), respectively.

Model GenBank IDs of the selected genes

Cox X00452*, † AA805575*, † X14420* U14791 M63438 X90858
Probit X00452*, † AA805575*, † AI540204 U64197
AFT X14420* AA805575*, †

a test that covered the union of the 14 variables selected. The corresponding

new model (Model C1) has a log-likelihood of −383.60. Here, we define D1,2

as twice the difference between the log-likelihoods, which means that for two

models M1 and M2, D1,2 = 2 × (log-likelihood for M1 − log-likelihood for M2).

The statistics DPVM, C1
and DGui and Li (2005), C1

are found to be −7.1 and −5.3

with 8 and 4 degrees of freedom, respectively. Neither of these two models was

found to be statistically different from the full model. In other words, both

models are statistically equivalent; however, the model obtained from the PVM

is more parsimonious. To make the comparison easier to understand, we also

chose the best ten variables based on the PVM, which yielded a log-likelihood

of −383.56. With the model that involves 10 variables chosen by Gui and Li

(2005), the corresponding log-likelihood is −386.23. Thus, the model chosen by

the PVM achieves a higher (log-)likelihood with the same number of variables

selected.

5. Discussion

We have introduced an innovative PVM with applications to ultra high-

dimensional lifetime data. These pseudo values can be regarded as a set of

educated guesses for the response variables, some of which are not fully observable

owing to censoring. Our numerical results have demonstrated the promising

performance of the PVM. That is, the model identifies the relevant variables,

while minimizing the number of irrelevant variables under statistically challenging

settings with n� p.

Although many procedures have been designed to address variable selection

problems, most have been developed in a linear regression context. To implement

these ideas in survival models, we have to rely heavily on the (pseudo-/partial-)

likelihood upon which a penalty can be applied. As a result, it is not trivial

to incorporate a SIS (Fan and Lv (2008)) component into these semiparametric
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models because the likelihood cannot be easily calculated. One main contribution

of our method is that it bridges the gap between the tools developed for linear

models and semiparametric survival models such that ultra high-dimensional

variables and censored data can be handled properly.

Finally, note that the PVM is a generic approach, and so is not restricted

to the two classes of models studied here. Other models, such as general lin-

ear models and quantile regression models, can also be handled using a similar

procedure. It is expected that this method will be effective for a wide range

of regression-type problems. The development for such models is left to future

research.

Supplementary Materials

The Supplementary Material includes the algorithm adopted in Step 2 of

our proposed method for the general transformation models, additional details

on the computation time of our proposal, and further numerical results for Cox’s

proportional hazards model using SIS. The proofs for the theorems presented in

Section 2.3 are also included here.

Acknowledgment

The first author acknowledges the financial support of Hong Kong Research

Grant Council Research Grants ECS-24300514 and GRF-14317716.

References

Antoniadis, A., Fryzlewicz, P. and Letue, F. (2010). The dantzig selector in cox’s proportional

hazads model. Scandinavian Journal of Statistics 37, 531–552.

Bennett, S. (1983). Analysis of survival data by the proportional odds model. Statistics in

Medicine 2, 273–277.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Cai, T., Huang, J. and Tian, L. (2009). Regularized estimation for the accelerated failure time

model. Biometrics 65, 394–404.

Chen, H. Y. and Little, R. J. (2001). A profile conditional likelihood approach for the semipara-

metric transformation regression model with missing covariates. Lifetime Data Analysis 7,

207–224.

Cox, D. (1972). Regression models and life tables (with discussion). Journal of the Royal Sta-

tistical Society, Series B (Statistical Methodology) 34, 187–220.

Cox, D. (1975). Partial likelihood. Biometrika 62, 269–276.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. J. (2004). Least angle regression. The

Annals of Statistics 32, 407–499.



1960 SIT ET AL.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle

properties. Journal of American Statistical Association 96, 1348–1360.

Fan, J. and Lv, J. (2008). Sure indepdence screening for ultrahigh dimensional feature space

(with discussion). Journal of the Royal Statistical Society, Series B (Statistical Methodol-

ogy) 70, 849–911.

Fan, J., Yang, F. and Wu, Y. (2010). High-dimensional variable selection for cox’s proportional

hazards model. IMS Collections, Borrowing Strength: Theory Powering Applications - A

Festschrift for Lawrence D. Brown 6, 70–86.

Gu, M. and Kong, F. H. (1998). A stochastic approximation algorithm with markov chian

monte carlo method for imcomplete data estimation problems. Proceedings of the National

Academy of Sciences 95, 7270–7274.

Gu, M. G., Sun, L. and Zuo, G. (2005). A baseline-free procedure for transformation models

under interval censorship. Lifetime Data Analysis 11, 473–488.

Gu, M. G., Wu, Y. and Huang, B. (2014). Partial marginal likelihood estimation for general

transformation models. Journal of Multivariate Analysis 123, 1–18.

Gui, J. and Li, H. (2005). Penalized cox regression analysis in the high-dimensional and low-

sample size settings, with applications to microarray gene expression data. Bioinformatics

21, 3001–3008.

Hsieh, F. (2001). On heteroscedastic hazards regression models: Theory and application. Journal

of the Royal Statistical Society, Series B (Statistical Methodology) 63, 63–79.

Huang, J. and Harrington, D. (2005). Iterative partial least squares with right censored data

analysis: a comparison to other dimension reduction techniques. Biometrics 61, 17–24.

Huang, J., Sun, T., Ying, Z., Yu, Y. and Zhang, C.-H. (2013). Oracle inequalities for the lasso

in the cox model. The Annals of Statistics 41, 1142.

Ing, C.-K. and Lai, T. (2011). A stepwise regression method and consistent model selection for

high-dimensional sparse linear models. Statisica Sinica 21, 1473–1513.

Jin, Z., Lin, D., Wei, L. J. and Ying, Z. (2003). Rank-based inference for accelerated failure

time model. Biometrika 90, 341–353.

Khan, M. H. R. and Shaw, J. E. H. (2016). Variable selection for survival data with a class of

adaptive elastic net techniques. Statistics and Computing 26, 725–741.

Klaassen, S., Kueck, J. and Spindler, M. (2017). Transformation models in high-dimensions.

arXiv preprint arXiv:1712.07364.

Li, H. and Luan, Y. (2003). Kernel cox regression models for linking gene expression profiles to

censored survival data. Pacific Symposium on Biocomputing 8, 65–76.

Li, J. and Gu, M. (2012). Adaptive lasso for general transformation modelds with right censored

data. Computational Statistics and Data Analysis 56, 2583–2597.

Li, J., Gu, M., Zhang, R. and Lian, H. (2014). Variable selection for general transformation

models with ranking data. Statistics 48, 81–100.

Lu, W. and Zhang, H. (2007). Variable selection for proportional odds model. Statistics in

Medicine 26, 3771–3781.

Miller, R. and Halpern, J. (1982). Regression with censored data. Biometrika 69, 521–531.

Prekopa, A. (1973). On logarithmic convace measures and functions. Acta Scientiarum Mathe-

maticarum 34, 335–343.

Rosenwald, A., Wright, G., Chan, W., Connors, J., Campo, E., Fisher, R., Gascoyne, R.,



PSEUDO VALUE METHOD 1961

Muller-Hermelink, H., Smeland, E. and Staudt, L. (2002). The use of molecular profiling

to predict survival after chemotherapy for diffuse large-b-cell lymphoma. The New England

Journal of Medicine 346, 1937–1947.

Song, R., Lu, W., Ma, S. and Jeng, X. (2014). Censored rank independence screening for high-

dimensional survival data. Biometrika 101, 799–814.

Stute, W. (1993). Consistent estimation under random censorship when covariables are available.

Journal of Multivariate Analysis 45, 89–103.

Stute, W. (1996). Distributional convergence under random censorship when covariables are

present. Scandinavian Journal of Statistics 23, 461–471.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, Series B (Statistical Methodology) 58, 267–288.

Xu, J., Leng, C. and Ying, Z. (2010). Rank-based variable selection with censored data. Statistics

and Computing 20, 165–176.

Ying, Z. (1993). A large sample study of rank estimation for censored regression data. The

Annals of Statistics 21, 76–99.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal

of the Royal Statistical Society, Series B (Statistical Methodology) 67, 301–320.

Department of Statistics, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.

E-mail: tonysit@sta.cuhk.edu.hk

Department of Statistics, Purdue University, West Lafayette, IN 47907, USA.

E-mail: xing49@purdue.edu

Department of Statistics, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.

E-mail: colexyz@163.com

Department of Statistics, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.

E-mail: minggao@sta.cuhk.edu.hk

(Received February 2017; accepted February 2018)

mailto:tonysit@sta.cuhk.edu.hk
mailto:xing49@purdue.edu
mailto:colexyz@163.com
mailto:minggao@sta.cuhk.edu.hk

	Introduction
	Methodology and Algorithm
	General transformation models
	The AFT model
	Asymptotic properties

	Simulations
	Data Analyses
	Stanford heart transplant data
	Diffuse large-B-cell lymphoma studies

	Discussion

