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Abstract: Numerous statistical methods have been developed to explore genomic

imprinting and maternal effects, which are causes of parent-of-origin patterns in

complex human diseases and are confounded. However, most of these methods

have limitations: they may model only one of the two confounded epigenetic effects;

they may make strong, yet unrealistic assumptions about the population to avoid

over-parameterization; or they are applicable only to study designs that require the

recruitment of difficult-to-obtain control families. In this study, we develop a partial

likelihood method for detecting imprinting and maternal effects for a discordant

sibpair design (LIMEDSP ) utilizing all available sibship data without the need to

recruit separate control families. By matching affected and unaffected probands and

stratifying according to their familial genotypes, a partial likelihood component free

of nuisance parameters can be extracted from the full likelihood. This alleviates the

need to make assumptions about the population. Our theoretical analysis shows

that the partial maximum likelihood estimators based on LIMEDSP are consistent

and asymptotically normally distributed. Using a closed-form formula, we compare

a study design with more independent families and a design with larger families

by keeping the total number of individuals that need to be genotyped fixed. We

also conduct a simulation study to demonstrate the robust property of LIMEDSP

and show that it is a powerful approach that does not require recruiting control

families. To illustrate its practical utility, LIMEDSP is applied to a clubfoot disease

data set and to the data from the Framingham Heart Study.

Key words and phrases: Ascertainment, association study, discordant sibpair de-

sign, imprinting effect, maternal effect, partial likelihood.

1. Introduction

Genome-wide association studies (GWAS) are used to identify common ge-

netic variants associated with complex human traits and provide valuable insights

into the genetic architecture of such traits. However, the variants identified thus

far explain only a small proportion of the variability in most complex traits, lead-

ing to concerns about “missing heritability” (Manolio et al. (2009)). Efforts to
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understand this missing heritability have revealed that, because gene expression

is a dynamic process, DNA sequence polymorphism is not the only factor con-

tributing to phenotypic variation. For example, other mechanisms that may be

involved include epigenetic modification and transcriptional/translational regula-

tion (Hirschhorn (2009); Peters (2014)). As a result, researchers are increasingly

focusing on epigenetic factors, including imprinting and maternal genotype effects

(Kohda (2013)).

Genomic imprinting is an epigenetic factor involving methylation and histone

modifications that completely or partially silence the expression of a gene inher-

ited from a particular parent, without altering the genetic sequence (Patten et al.

(2014)). As such, genomic imprinting can lead to a parent-of-origin pattern in

gene expressions, that is, an unequal expression of a heterozygous genotype, de-

pending on whether the imprinted variant is inherited from the mother (maternal

imprinting) or from the father (paternal imprinting). The imprinting effect has

been hailed as a key factor in understanding the interplay between the epigenome

and genome (Ferguson-Smith (2011)). On the other hand, the maternal genotype

effect, another epigenetic effect, can also lead to a parent-of-origin pattern. This

effect refers to the phenomenon in which the genotype of a mother is expressed in

the phenotype of her offspring. This is usually attributed to the mother passing

extra mRNAs and proteins to her offspring during pregnancy, which may change

the expression level of certain genes.

Normal genetic imprinting contributes to a wide range of human growth

and development (Wilkinson, Davies and Isles (2002); Peters (2014)). However,

the deregulation of imprinted genes has been found to contribute to a number

of complex human diseases, such as Beckwith–Wiedemann syndrome, Silver–

Russell syndrome, Angelman syndrome, and Prader–Willi syndrome (Lim and

Maher (2009)). At the same time, studies have shown that maternal effects play

an important role in a variety of diseases, especially those related to pregnancy

outcomes, such as childhood cancers and birth defects (Haig (2004)), certain

psychiatric illnesses (Palmer et al. (2008)), and pregnancy complications (Svens-

son et al. (2009)). However, limited data availability and the insufficient power

of current methods means that very few genes have been identified as having

genomic imprinting or maternal effects.

Because both imprinting and maternal effects exhibit parent-of-origin pat-

terns, family data are needed to trace inheritance paths. Here a common study

design is that of case-parent triads, which may also include control-parent tri-

ads. Based on this design, numerous methods have been proposed to model
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imprinting and maternal effects simultaneously in order to avoid potential con-

founding, because methods that attempt to detect only one of these effects may

have inflated false positive or false negative rates when the other effect exists as

well (see Lin (2013) and the references therein). However, almost all of these

methods rely on strong, yet unrealistic assumptions about the population (e.g.,

mating symmetry) to avoid over-parameterization. The likelihood ratio test is a

classic example (Weinberg, Wilcox and Lie (1998)). An exception is the recently

proposed partial likelihood method for detecting imprinting and maternal effects

(LIME), which alleviates the need to make unrealistic assumptions (Yang and

Lin (2013)). However, the study design for the LIME method requires the re-

cruitment of both case families and control families (Yang and Lin (2013)), with

information from additional siblings accounted for in an extension to this method

(Han, Hu and Lin (2013)). Thus, the price paid for avoiding assumptions that

are difficult to satisfy is the need for separate control families, which are typi-

cally difficult to recruit. Recently, a mixture modeling approach was proposed

for detecting imprinting. However, the data employed in this approach are gene

expressions from a population sample (Li et al. (2015)), which differs from our

family-based design.

To enjoy the benefits of the LIME method without needing control fam-

ilies, here we propose a LIME method based on a discordant sibpair design

(LIMEDSP ). The proposed method borrows from the work of Yang and Lin

(2013) and Han, Hu and Lin (2013), but considers an alternative study design

in which a nuclear family is recruited if there is a discordant sibpair; that is,

one sibling is affected and the other is unaffected. Data from additional sib-

lings (whether affected or not) may also be incorporated to further increase the

method’s power. The idea of LIMEDSP is to match affected proband-parent

triads with unaffected proband-parent triads, and then to factor out common

terms involving mating-type probabilities, the nuisance parameters. By doing

so, LIMEDSP circumvents the problem of over-parameterization, unrealistic as-

sumptions, and the need for control families in the original LIME design. When

control families are available, they can be utilized to further increase the sta-

tistical power of the method. Finally, note that the discordant sibpair design

is popular in linkage and association studies (Horvath and Laird (1998)), which

provide practical applications for LIMEDSP .



1918 ZHANG, KHALILI AND LIN

2. Partial Likelihood Method (LIMEDSP)

2.1. Notation and genetic model

Consider a candidate genetic marker with two alleles A and B, where A is

the allele of interest, the variant allele, which may represent disease susceptibility

or an epigenetic effect. In a nuclear family, let F and M be the random variables

denoting the number of A alleles carried by the father and mother respectively,

which can take values 0, 1, or 2, corresponding to genotypes BB, AB, or AA,

respectively. Similarly, let Ci be a random variable denoting the number of A

alleles (i.e. the genotype) of child i, for i = 1, 2, . . . . Specifically, C1 and C2

denote the affected and unaffected probands, respectively, through which the

family is recruited, whereas Ci, for i = 3, . . . , denote the additional siblings, if

any. Then Di, for i = 1, 2, . . . , denotes the disease status of a child (affected = 1;

normal = 0). Thus, D1 = 1 and D2 = 0. The development of LIMEDSP is based

on a multiplicativ risk model for disease prevalence for a triad family:

P (D = 1|M = m,F = f, C = c) = δr
I(c=1)
1 r

I(c=2)
2 r

I(c=1m)
im s

I(m=1)
1 s

I(m=2)
2 , (2.1)

where r1 and r2 denote the effects of one or two copies of an individual’s own

variant allele, rim denotes the imprinting effect, s1 and s2 denote the effects of

one or two copies of the mother’s variant allele, and δ is the phenocopy rate. The

notation c = 1m indicates that the child’s genotype is AB, where the variant allele

A is from the mother. We need to estimate the model parameters, collectively

denoted as θ = (δ, r1, r2, rim, s1, s2)
T , although the phenocopy rate δ may also

be regarded as a nuisance parameter. Note that all parameters are positive, and

a parameter is identifiable and estimable only if the required data are available.

Furthermore, rim > 1, < 1,= 1 signify paternal, maternal, or no imprinting

effects, respectively. Although no restriction is placed on s1 and s2, they are

typically ≥ 1, with the equality denoting no maternal effect. A further constraint

placed on the parameters is that P (D|M = m,F = f, C = c) ≤ 1.

2.2. Ascertainment and probability formulation

Because families are ascertained through discordant sibpairs, the probability

of the observed data from a family will be conditional on the affection status of

the two probands only (i.e., not on any additional siblings):

P (M = m,F = f, C1 = c1, C2 = c2, Ci = ci, Di = di, i = 3, · · · | D1 = 1, D2 = 0)

= P (M = m,F = f, C1 = c1|D1 = 1, D2 = 0)

P (M = m,F = f, C2 = c2|D1 = 1, D2 = 0) (2.2)
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×
∏
i≥3

P (Ci = ci|M = m,F = f)P (Di = di|M = m,F = f, Ci = ci) (2.3)

× P (D1 = 1, D2 = 0)

P (M = m,F = f)P (D1 = 1|M = m,F = f)P (D2 = 0|M = m,F = f)
.(2.4)

A detailed derivation of this formula can be found in Supplementary Material

S1. On the right-hand side of the above formula, the probability of the observed

data is expressed as the product of three components: the proband-parents triad

probability (mother, father, and child) conditional on the proband disease sta-

tus (2.2), the joint probability of the genotypes and phenotypes of any additional

siblings given the parents’ genotypes (2.3), and the remaining part (2.4). The

component expressed in 2.2 regarding the contribution from the probands can be

thought of as being obtained from a “retrospective” design, which can be turned

into a “prospective” design using stratification, as discussed in detail below. The

second component, given in 2.3, accounts for information from additional siblings

and is formulated using a “prospective” design and free of any nuisance param-

eters. The last component shown in 2.4 is the remaining term that contains the

nuisance parameters. Whereas the prospective part is straightforward, involving

parameters of interest only, as can be seen from disease risk model (2.1), the

retrospective part is more intricate and is examined in detail in the following

subsection.

We first note that, in (2.2),

P (M = m,F = f, C1 = c1|D1 = 1, D2 = 0)

=
P (M = m,F = f, C1 = c1, D1 = 1, D2 = 0)

P (D1 = 1, D2 = 0)
. (2.5)

There are 15 possible combinations of genotypes for the parents (M, F) and

a child (C); these, together with their labeling (types), are listed in Table 1,

with the corresponding probability for the numerator in (2.5) given in the last

column of the top segment. Similarly, the probability P (M = m,F = f, C2 =

c2, D1 = 1, D2 = 0) is given in the last column of the bottom segment of the

table. Derivations of the probabilities for a few of the cases are provided in

Supplementary Material S2. In the expressions in Table 1, µmf (m = 0, 1, 2, f =

0, 1, 2) denotes the mating-type probabilities, that is, µmf = P (M = m,F = f).

Note that we do not make any assumptions about the mating-type probabilities,

such as Hardy-Weinberg equilibrium (HWE) or even mating symmetry; thus,

µmf is not necessarily equal to µfm. As shown in the table, these nuisance

parameters can be factored out completely from the six model parameters. This
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Table 1. Joint probability of mother-father-child triad genotypes and proband disease
status.

(a). Triad genotype with affected child
Type m f c P (M = m,F = f, C1 = c,D1 = 1, D2 = 0)a

1 0 0 0 µ00δ(1− δ) b

2 0 1 0 µ01(1/2)δ(1/2)(2− δ − δr1)
3 0 1 1 µ01(1/2)δr1(1/2)(2− δ − δr1)
4 0 2 1 µ02δr1(1− δr1)
5 1 0 0 µ10(1/2)s1δ(1/2)(2− δs1 − δr1rims1)
6 1 0 1 µ10(1/2)δr1rims1(1/2)(2− δs1 − δr1rims1)
7 1 1 0 µ11(1/4)δs1(1/4)(4− δs1 − δs1r1 − δs1r1rim − δr2s1)
8 1 1 1 µ11(1/4)δs1r1(1+rim)(1/4)(4−δs1−δs1r1−δs1r1rim−δr2s1)
9 1 1 2 µ11(1/4)δs1r2(1/4)(4− δs1 − δs1r1 − δs1r1rim − δr2s1)

10 1 2 1 µ12(1/2)δr1s1(1/2)(2− δr1s1 − δr2s1)
11 1 2 2 µ12(1/2)δr2s1(1/2)(2− δr1s1 − δr2s1)
12 2 0 1 µ20δr1s2rim(1− δr1s2rim)
13 2 1 1 µ21(1/2)δr1s2rim(1/2)(2− δr1s2rim − δr2s2)
14 2 1 2 µ21(1/2)δr2s2(1/2)(2− δr1s2rim − δr2s2)
15 2 2 2 µ22δr2s2(1− δr2s2)

(b). Triad genotype with unaffacted child
Type m f c P (M = m,F = f, C2 = c,D1 = 1, D2 = 0)a

1 0 0 0 µ00δ(1− δ)
2 0 1 0 µ01(1/2)(1− δ)(1/2)δ(1 + r1)
3 0 1 1 µ01(1/2)(1− δr1)(1/2)δ(1 + r1)
4 0 2 1 µ02δr1(1− δr1)
5 1 0 0 µ10(1/2)(1− δs1)(1/2)δs1(1 + r1rim)
6 1 0 1 µ10(1/2)(1− δr1rims1)(1/2)s1δ(1 + r1rim)
7 1 1 0 µ11(1/4)(1− δs1)(1/4)δs1(1 + r1 + r1rim + r2)
8 1 1 1 µ11(1/4)(2− δs1r1(1 + rim))(1/4)δs1(1 + r1 + r1rim + r2)
9 1 1 2 µ11(1/4)(1− δs1r2)(1/4)δs1(1 + r1 + r1rim + r2)

10 1 2 1 µ12(1/2)(1− δr1s1)(1/2)δs1(r1 + r2)
11 1 2 2 µ12(1/2)(1− δr2s1)(1/2)δs1(r1 + r2)
12 2 0 1 µ20δr1s2rim(1− δr1s2rim)
13 2 1 1 µ21(1/2)(1− δr1s2rim)(1/2)δs2(r1rim + r2)
14 2 1 2 µ21(1/2)(1− δr2s2)(1/2)δs2(r1rim + r2)
15 2 2 2 µ22δr2s2(1− δr2s2)

Note: aM, F, and C are the number of variant alleles carried by the mother, father,
and child in a triad, and take values of 0, 1, or 2; the mating type probability for
(M,F ) = (m, f) is denoted by µmf ; D1 = 1 (D2 = 0) indicates that the child is
affected (unaffected). bNotation for model parameters, δ: the phenocopy rate; r1:
relative risk of carrying one variant allele; r2: relative risk of carrying two variant
alleles; rim: imprinting effect parameter with a single variant allele from mother; s1:
maternal effect with mother carrying one variant allele; s2: maternal effect with mother
carrying two copies of the variant allele.
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observation forms the basis of the partial likelihood formulation.

2.3. Organization of data

Table 1 shows that, conditional on each possible triad genotype vector (m, f,

c), the counts of the affected and unaffected proband-parent triads share the same

nuisance parameter components µmf . Thus, the proportion of affected proband-

parents triads among all triads with that genotype vector is free of nuisance

parameters. For example, among all proband-parent triads with the genotype

combination (m, f, c), the probability of observing an affected proband-parent

triad is

pmfc =
NP (m, f,C1 = c|D1 = 1, D2 = 0)

NP (m, f,C1 = c|D1 = 1, D2 = 0) +NP (m, f,C2 = c|D1 = 1, D2 = 0)

=
P (m, f,C1 = c,D1 = 1, D2 = 0)

P (m, f,C1 = c,D1 = 1, D2 = 0) + P (m, f,C2 = c,D1 = 1, D2 = 0)

=
P (D = 1|m, f, c)P (D = 0|m, f)

P (D = 1|m, f, c)P (D = 0|m, f) + P (D = 0|m, f, c)P (D = 1|m, f)
,

(2.6)

which includes only those parameters in (1). This manipulation turns the data

from a retrospective design into a “prospective” design using stratifation accord-

ing to each triad genotype combination. We denote the denominator of (2.6) as

Smfc. Thus, pmfc = P (D = 1|m, f, c)P (D = 0|m, f)/Smfc.

By applying this idea to the overall likelihood, we can extract a partial like-

lihood component that only involves the parameters of interest. Let n1mfc and

n0mfc denote the count of affected proband-parent triads and unaffected proband-

parent triads, respetively, with genotype M = m, F = f , and C = c. Note that

N =
∑

m,f,c n
1
mfc+

∑
m,f,c n

0
mfc is the number of independent families. Similarly,

let sn1mfc and sn0mfc denote the counts of affected additional sibling-parent tri-

ads and unaffected additional sibling-parent triads, respectively, with genotype

combination M = m, F = f , and C = c. Recall that we denote the vector of

the parameters of interest by θ = (δ, r1, r2, rim, s1, s2)
>. We further denote the

vector of nuisance parameters (including the mating-type probabilities) by φ.

Then, according to the three component factorization,

L(θ,φ) =∏
m,f,c

[P (m, f,C1 = c|D1 = 1, D2 = 0)]n
1
mfc [P (m, f,C2 = c|D1 = 1, D2 = 0)]n

0
mfc
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×
∏
m,f,c

[P (c|m, f)]sn
1
mfc+sn0

mfc [P (D = 1|m, f, c)]sn1
mfc [P (D = 0|m, f, c)]sn0

mfc

×
∏
m,f,c

[
P (D1 = 1, D2 = 0)

P (m, f)P (D2 = 0|m, f)P (D1 = 1|m, f)

]n1
mfc

∝
∏
m,f,c

p
n1

mfc

mfc (1− pmfc)
n0

mfc

∏
m,f,c

q
sn1

mfc

mfc (1− qmfc)
sn0

mfc (2.7)

×
∏
m,f,c

S
n1

mfc+n0
mfc

mfc

[
P (D1 = 1, D2 = 0)

P (m, f)P (D2 = 0|m, f)P (D1 = 1|m, f)

]n1
mfc

, (2.8)

where pmfc and Smfc are defined as above, and qmfc = P (D = 1|M = m,F =

f, C = c).

Note that all of the nuisance parameters in φ are present only in (2.8),

whereas the factors in (2.7) contain only the parameters in θ, which is therefore

taken as our partial likelihood. The parameters in θ can be inferred by max-

imizing the partial likelihood instead of the full likelihood to avoid estimating

the nuisance parameters (Cox (1975)). In fact, the first factor of the partial

likelihood component can be regarded as the likelihood of the reorganized data,

conditional on each possible triad (m, f, c) type. Within each type, the counts of

the affected-proband triads follow a “renormalized” binomial distribution with

the conditional probability pmfc. The second factor, on the other hand, rep-

resents the contributions from the additional siblings. Because the affection

statuses of the additional siblings are obtained prospectively, the probability of

observing affected sibling-parent triads in a particular familial genotype combina-

tion (m, f, c) is simply the penetrance probability. Furthermore, by design, pmfc

does not involve population disease prevalence information P (D = 1), which is

another nuisance parameter.

2.4. Partial likelihood and asymptotic properties

From the above organization of the data, it is clear that the log partial

likelihood lpar(θ) is as follows:

lpar(θ) =
∑
m,f,c

{
n1mfc × log[pmfc] + n0mfc × log[1− pmfc]

}

+
∑
m,f,c

{
sn1mfc × log[qmfc] + sn0mfc × log[1− qmfc]

}
.

By solving the score-type equation
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∂lpar(θ)

∂θ
= l′par(θ) = 0, (2.9)

the maximum partial likelihood estimator (mple) of θ can be obtained following

the work of Zhang, Khalili and Lin (2016).

We use n to represent the total number of the four types of triads inferred

from the families in the partial log-likelihood lpar(θ): affected proband-parent

triads, unaffected proband-parent triads, affected additional sibling-parent triads,

and unaffected additional sibling-parent triads. That is,

n =
∑
m,f,c

n0mfc +
∑
m,f,c

n1mfc +
∑
m,f,c

sn0mfc +
∑
m,f,c

sn1mfc.

As we can see from the partial likelihood, these four types of triads contribute

independent information, conditional on the genotype of the parents. Thus, n is

regarded as the effective sample size. We study the asymptotic properties of the

mple of θ, denoted by θn, as the effective sample size n tends to infinity.

Let θ0 denote the true value of the parameter vector θ = (δ, r1, r2, rim, s1,

s2)
>. We assume that θ0 is an interior point of the parameter space Θ ⊂ R6.

Theorem 1. Under the regularity conditions provided in Supplementary Material

S3, we have the following:

(i) The likelihood equation has a unique consistent solution θ̂n, i.e. θ̂n −→ θ0

with probability tending to one.

(ii) Asymptotic normality:
√
n(θ̂n − θ0) −→ N(0, I−1(θ0)), where I(θ0) is the

information matrix given by

I(θ0) =
∑
m,f,c

[p′mfc(θ0)][p
′
mfc(θ0)]

> ×Bmfc

pmfc(θ0)(1− pmfc(θ0))

+
∑
m,f,c

[q′mfc(θ0)][q
′
mfc(θ0)]

> × Cmfc

qmfc(θ0)(1− qmfc(θ0))
,

where 0 ≤ Bmfc < 1 and 0 ≤ Cmfc < 1 are the limits in probability of

{(n1mfc + n0mfc)/n} and {(sn1mfc + sn0mfc)/n}, respectively, when n→∞.

The proof of the theorem can be found in Supplementary Material S3. Note

that although the consistent solution of partial likelihood score equation (2.9) is

unique (Chanda (1954); Lindsay (1980)), there may exist inconsistent roots.

2.5. Combining data from the two study designs

In a real data analysis, both case-control family data and discordant sibpair



1924 ZHANG, KHALILI AND LIN

data may exist. Therefore, it is important to combine all information to make

full use of the data, leading to the proposal of LIMED+. Suppose data set A is

obtained from a case-control family design. Then, the LIME method of Yang and

Lin (2013) is applied to extract the partial likelihood pLA(θ). On the other hand,

if data set B is the consequence of a discordant sibpair study design, then we

use the currently proposed LIMEDSP approach to obtain the partial likelihood

component pLB(θ). The total partial likelihood for all available data is then

pL(θ) = pLA(θ) ∗ pLB(θ), given that the data in sets A and B are independent.

Note that if both studies focus on the the same underlying disease model, then

the parameters of interest are identical. The model parameters in θ are estimated

by maximizing the partial likelihood pL(θ). The MPLE of LIMED+ has the same

asymptotic properties as those of LIMEDSP .

3. Evaluation of Information Content

In practical applications, resources are finite. As such, it is important to have

a good understanding of the information contained in commonly used study de-

signs. Questions of interest include the roles of additional siblings in the DSP

design, and in particular, whether it is better to recruit additional siblings (if

available) or additional independent families by considering “per individual” in-

formation. To facilitate this investigation, we consider eight disease models (Ta-

ble 2). The first three models have no imprinting nor maternal effects. Models

4 has maternal effects only, models 5 and 6 have imprinting effects only, and

models 7 and 8 have both types of parent-of-origin effects. For each of these

eight models, we consider eight scenarios, which are combinations of two lev-

els of minor allele frequency (MAF) {0.1, 0.3}, two levels of population disease

prevalence P (D = 1) (PREV) {0.05, 0.15}, and two levels of HWE (not hold

= 0, hold = 1). Suppose p is the MAF, then the probabilities of a genotype

taking the values 0, 1, and 2 are (1− p)2(1− ζ) + (1− p)ζ, 2p(1− p)(1− ζ), and

p2(1− ζ) + pζ, respectively, where ζ is the inbreeding parameter (Weir (1996)).

When HWE holds, ζ = 0. When HWE does not hold, ζ is set to 0.1 and 0.3

for males and females, respectively. Note that with the specification of each

scenario and a disease model, the penetrance probability (2.1) is fully specified.

Because the summation over the 15 joint probabilities P (D = 1,M, F,C) is equal

to the disease prevalence P (D = 1), the phenocopy rate can be solved from the

equation.

Intuitively, including additional siblings in a DSP design will typically in-
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Table 2. Eight disease models and eight scenarios comprised of three factors.

Model Parametersa Scenario Factorsb

model/scenario r1 r2 rim s1 s2 MAF PREV HWE
1 1 1 1 1 1 0.1 0.05 0
2 2 3 1 1 1 0.1 0.05 1
3 1 3 1 1 1 0.1 0.15 0
4 1 3 1 2 2 0.1 0.15 1
5 1 3 3 1 1 0.3 0.05 0
6 3 3 1/3 1 1 0.3 0.05 1
7 1 3 3 2 2 0.3 0.15 0
8 3 3 1/3 2 2 0.3 0.15 1

Note: aThe notation for the model parameters is the same as that in Table 1. bMAF:
minor allele frequency; PREV: prevalence (rare = 0.05; common = 0.15); HWE:
Hardy-Weinberg equilibrium (Yes = 1; No = 0); a specification of a disease model and
a scenario completely determines the penetrance model specified in equation (2.1).

crease the information available for estimating the model parameters, and, hence

the detection power for a fixed sample of N families. In fact, this is demonstrated

using a theoretical calculation of “per family” information content (Supplemen-

tary Fig. S1). However, including additional siblings leads to a larger number

of total individuals, and hence greater genotyping and phenotyping costs, even

if the number of families N remains fixed. As such, whether it is beneficial to

recruit additional siblings is no longer clear from the perspective of “per indi-

vidual” information content, which is the average information contributed by a

single family member. We take up this investigation by considering three study

designs, D, D+ 1, and D+ 2, denoting a DSP design with 0, 1, and 2 additional

siblings, respectively, leading to a total of 4, 5, and 6 individuals, respectively,

per family. Figure 1 shows the information content per individual for the three

study designs when HWE holds and MAF is 0.3 (scenarios 6 and 8 in Table 2)

for all eight disease models. Plots for the other scenarios are given in the Sup-

plementary Material, Fig. S2-4. Unsurprisingly, the figures show that there is

essentially no information for inferences on the maternal effect parameters s1, s2
when only discordant sibpairs are recruited. This is because the two siblings in a

discordant sibpair share the same mother, which provides a very limited contrast

for the maternal effect. A theoretical explanation is provided in Supplementary

Material S4. Fortunately, when additional siblings are available, maternal effects

can be estimated. For the other parameters r1, r2, and rim, the efficiency depends

on the disease prevalence. When the disease prevalence is high (0.15), recruiting
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Figure 1. Information content per individual for eight disease models and two PREVs
when HWE holds and MAF is 0.3. Each curve depicts the information for estimating
one of the five parameters for data types D, D + 1, and D + 2.

additional siblings, which are likely to include affected cases given the common

disease, will increase the efficiency. On the other hand, when the disease preva-

lence is low (0.05), recruiting additional independent families or siblings leads

to fairly similar results (apart from estimating the maternal effects), although

having a larger number of independent families is slightly better for estimating

the other parameters. Thus, depending on the disease prevalence and the which
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Figure 2. Type I error rate and power of LIMEDSP under eight disease models and
scenario 1, as given in Table 2. The three rows represent three data types: D, D+1, and
D+2. The three bars refer to association, imprinting, and maternal effects, respectively.
The horizontal line marks the nominal level of 0.05.

parameters are of greater interest, the most efficient design may vary.

4. Simulation

Given our understanding of LIMEDSP from the theoretical analysis, in this

section, we demonstrate its empirical performance with finite samples by studying
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its size and power in a simulation for a typical sample size in genetic epidemiology.

We consider D, D+1, and D+2 designs, each with 300 families. All combinations

of the eight disease models and eight population scenarios are included, leading

to 192 (3× 8× 8) simulation settings, with 1,000 simulated data sets under each

setting.

Figure 2 shows the empirical type I error rates and the power of LIMEDSP

under all eight disease models and scenario 1. The three rows represent the three

designs considered. The three bars refer to association, imprinting, and maternal

effects, respectively. The results show that the type I error rates are close to the

nominal value of 0.05, marked by a horizontal dashed line for association under

model 1, the imprinting effect under models 1, 2, 3, and 4, and the maternal effect

under models 1, 2, 3, 5, and 6, across all three designs. Note that when there are

no additional siblings (i.e. the D design), the type I error rate for the maternal

effect is rather low. This is not surprising because, as we discussed earlier, such

data provide no information for inferring the maternal effect. Comparing the

three designs, we can see that the power increases as additional siblings are

recruited, especially when detecting the maternal effect. Note that LIMEDSP is

incapable of detecting the maternal effect when there are only discordant sibpairs,

but that the power increases when additional siblings are available. The results

for the other seven scenarios are similar and are shown in the Supplementary

Material, Fig. S5-11.

5. Real Data Analysis

To illustrate the application of LIMEDSP and LIMED+ to real human genetic

studies, we consider two complex diseases with established genetic bases, namely,

clubfoot and the Framingham Heart Study (FHS). Both studies are family based

and have extended pedigrees. In the clubfoot data, we extract nuclear families

with discordant sibpairs and additional siblings, if available. Thus, LIMEDSP

is applicable to these data. For the FHS, we extract nuclear families that have

discordant sibpairs or are case-parent or control-parent triads, all potentially

involving additional siblings, and analyze these data using LIMED+.

5.1. Analysis of the clubfoot data

Clubfoot is a congenital deformity in which the affected foot appears to have

been rotated internally at the ankle. With treatment, most patients recover

completely during early childhood and are able to walk and participate in ath-

letics. Thus, understanding the underlying causal mechanism is important for
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Table 3. Top SNPs for association, imprinting, and maternal effects for the clubfoot
data using LIMEDSP .

Effect SNP Chr Position (BP)∗ Gene −log10 (P-value)
Association rs1568717 15 61362446 RORA 3.52
Imprinting rs2145214 20 42237066 IFT52 11.99

rs11048527 12 26604100 ITPR2 11.10
rs6785520 3 170991646 TNIK 10.97

Maternal rs9446305 6 71598570 B3GAT2 4.55
rs11766624 7 69887084 AUTS2 4.50

rs585157 13 99045319 FARP1 4.47

∗Position (BP) is the genomic position of the SNP relative to the start of the
chromosome (Chr) in terms of the base pair (BP).

the development of effective treatment strategies. Our LIMEDSP analysis uses

87 discordant sibpairs with 33 additional siblings. These range from discordant

sibpairs without additional siblings to discordant sibpairs with six siblings. The

data are obtained from dbGaP (www.ncbi.nlm.nih.gov/gap/).

Among the top (i.e. the smallest p-values) single nucleotide polymorphisms

(SNPs) identified by LIMEDSP (Table 3), some reside within genes that have

been identified in the literature, either for symptoms directly related to club-

foot or for other congenital diseases. For example, two SNPs (rs11048527 and

rs6785520) with very small p-values for imprinting effects are in genes that have

recently been found to be associated with clubfoot. Specifically, a duplication

in a region of the gene ITPR2 was found in a patient presenting symptoms that

include clubfoot (Al-Qattan (2013)). The most direct evidence of the involve-

ment of the gene TNIK comes from the study of Zhang et al. (2014), in which

the authors showed that the p-value for the association between the gene and

clubfoot is less than 0.001. As another example, one of the top SNPs (rs9446305)

with some evidence of a maternal effect is in gene B3GAT2, the association of

which with the clubfoot syndrome has been discussed (http://biograph.be/

concept/graph/C1866294/C1412717). In addition, SNP rs11766624, residing in

the AUTS2 gene, also has a relatively small p-value for detecting the maternal

effect. It has been found that deletion of exon 6 of the AUTS2 gene can cause

congenital disorders, including eversion of the feet. Note that multiple studies

have identified rare mutations in the AUTS2 gene with autism, another congeni-

tal disease (Oksenberg et al. (2013)). In fact, autism has been found to be related

to maternal effects (Zandi et al. (2006)), consistent with our finding.

www.ncbi.nlm.nih.gov/gap/
http://biograph.be/concept/graph/C1866294/C1412717
http://biograph.be/concept/graph/C1866294/C1412717
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Table 4. Top SNPs for association, imprinting and maternal effects for the Framingham
Heart Study data using LIMED+.

Effect SNP Chr Position (BP)∗ Gene −log10 (P-value)
Association rs16892095 4 15518356 CC2D2A 15.65

rs2229188 7 92134309 CYP51A1 15.11
Imprinting rs2290201 8 82394701 FABP4 5.32

rs2213162 12 48390721 COL2A1 4.46
rs1562705 2 142796062 LRP1B 4.36
rs6471053 8 133310740 KCNQ3 4.10

Maternal rs2272487 3 126451936 CHCHD6 8.44
rs9852584 3 126445456 CHCHD6 6.26

rs13230531 7 6114558 CHCHD6 5.52
rs7741727 6 132069916 ENPP3 5.19
rs1370656 2 178607997 PDE11A 5.18
rs7133914 12 40702910 LRRK2 5.16

∗The Position(BP) is the genomic position of the SNP relative to the start of the
chromosome (Chr) in terms of base pair (BP).

LIMEDSP also identifies some other genes that have been reported to be

associated with complex developmental traits in the literature. For example,

RORA is related to autism (Nguyen et al. (2010)), and TNIK and FARP1 are

related to fetal brain outgrowth and development (Coba et al. (2012)). In a re-

cent study, gene IFT52 was linked to skeletal ciliopathy, manifestations of which

include congenital diseases (Girisha et al. (2016)). A list of the top-20 SNPs

(with the smallest p-values) identified by LIMEDSP for each of the association,

imprinting, and maternal effects can be found in the Supplementary Material,

Tables S1-3. Given the large number of SNPs investigated, some of those identi-

fied may not be genome-wide significant. A complete set of results for all of the

SNPs analyzed are provided in the Supplementary Material, Fig. S12-14.

5.2. Analysis of the FHS data

The FHS is a long-term, ongoing cardiovascular risk study on cohorts of resi-

dents in Framingham, Massachusetts. We focus on hypertension, a multifactorial

complex trait, which can increase the risk of coronary heart disease. A person

is classified as hypertensive if his/her systolic blood pressure is ≥ 140mmHg, or

diastolic blood pressure is ≥ 90mmHg, or if he/she takes medication to control

blood pressure. In this analysis, we focus on 263 DSP families (with 229 addi-

tional siblings), 436 case-parent triads, and 281 control-parent triads (with 230

additional siblings in total). Because the data comprise not only DSP families,
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but also case-control families, we use the LIMED+ procedure, which is applicable

to a mixture of these two types of families.

Many top SNPs identified as associated with the hypertensive trait by LIMED+

(top segment of Table 4) have been identified in the literature as related to hyper-

tension, cardiovascular-related disorders, or other complex diseases. Specifically,

SNP rs16892095, residing in the intron region of gene CC2D2A on chromosome

4, is found to be associated with the Meckel and Joubert syndromes, conditions

that may be related to atrial septal defects (Elmali et al. (2014)). In addition,

rs2229188 is an SNP associated with hypertension. It is in the intron region of

gene CYP51A1 on chromosome 7. There are a number of haplotypes involving

rs2229188 that are inferred to be strongly associated with hypertension (Wang

and Lin (2014)).

Several of the genes found to potentially exert an imprinting effect on hy-

pertension (middle segment of Table 4) are worth discussing. Previous research

suggests that the FABP4 level, related to adiposity and metabolic disorders, is a

novel predictor of cardiovascular mortality in end-stage renal disease (Furuhashi

et al. (2011)). In addition, FABP4 has been found to contribute to blood pres-

sure elevation and the atherogenic metabolic phenotype, and an elevated FABP4

level is predisposed by a family history of hypertension (Ota et al. (2012)). Gene

COL2A1 in chromosome 12 is highly expressed in endocardial cushions and is very

important in heart valve function (Peacock et al. (2008)). Furthermore, LRP1B

is important in the development of atherosclerosis, a disease that affects arterial

blood vessels (www.scbt.com/datasheet-49230-lrp1b-n-19-antibody.html).

On the other hand, gene KCNQ3 in chromosome 8, together with other KCNQ

channels, is believed to play a functional role in pulmonary artery smooth muscle

(Joshi, Balan and Gurney (2006)).

Finally, four of the top genes for maternal effects that harbor multiple SNPs

(last segment of Table 4) have been discussed in the literature. In particular,

gene CHCHD6 has been identified as having a hypertension risk effect in a link-

age analysis on chromosome 3 (Chiu et al. (2014)). On the other hand, gene

ENPP3 in chromosome 6 is a member of the ENPP family. Rucker et al. (2007)

demonstrated the presence of this family in the cardiac system, which suggests

that these enzymes could contribute to the fine-tuning control of the nucleotide

levels at the nerve terminal endings of left ventricles involved in several cardiac

pathologies. As another example, gene PDE11A is associated with the develop-

ment of adrenocortical hyperplasia, which leads to Cushing syndrome (Horvath

et al. (2006)), and Cushing syndrome has clinical manifestations of arterial hyper-

www.scbt.com/datasheet-49230-lrp1b-n-19-antibody.html
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tension. Finally, LRRK2 mutant mice was found to have caused blood pressure

changes (Herzig et al. (2011)). A list of the top-20 SNPs (with the smallest p-

values) identified by LIMED+ for associatoon, imprinting, and maternal effects

can be found in the Supplementary Material, Tables S4-6. As with the clubfoot

study, some of the SNPs identified may not reach genome-wide significance. A

complete set of results for all of the SNPs analyzed is provided in the Supple-

mentary Material, Fig. S15-17.

6. Discussion

Imprinting and maternal effects are two confounding epigenetic factors that

are increasingly being explored for their roles in complex traits. The partial

likelihood method proposed in this paper, LIMEDSP , provides a robust approach

for detecting these two effects without needing to make unrealistic assumptions

or requiring the collection of separate control families. Based on the asymptotic

property of LIME and a closed-form formula for calculating information, we

provide a tool for comparing the relative efficiency of various study designs for a

specific underlying disease model. We carried out a simulation study with finite

samples to demonstrate the robustness of LIMEDSP without sacrificing power.

We further applied LIMEDSP and LIMED+ to two data sets to illustrate

their utility in analyses of real data. The results show that many of our find-

ings are consistent with those in the literature, but potential novel genes also

emerged. Interestingly, for the FHS data, even though 2,332 of the 48,071 SNPs

investigated (about 5%) failed the HWE test at the 0.1% level, none needed to

be removed in our analysis, because LIMED+ is robust to departures from HWE.

In fact, four of the SNPs among the top-20 presented in the Supplementary Ma-

terial, Table S4 (including one with a small p-value of 3×10−7), failed the HWE

test, which would not have been studied using traditional methods for detecting

an association. We also checked for the familial consistency of geneotypes and

did not uncover any problems. For the clubfoot data, a large proportion of the

SNPs (over 60%) failed the HWE tests. This is not surprising because the sample

is composed of roughly 50% Hispanic and 50% non-Hispanic subjects. Further

HWE testing within each of the two subsamples showed that less than 5% of the

SNPs failed the test, which is similar to the result from the FHS data. As inves-

tigated and discussed in Yang and Lin (2013), the LIME methodology is robust

to this type of population stratification, that is, when the sample is a mixture

from two subpopulations in which HWE may or may not hold. Therefore, the
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results presented in this paper remain valid.

Because proband information is required in our analysis, we investigated the

sensitivity of LIMED+ against the designations by studying the variability of the

outcomes with multiple sets of proband labeling. We considered SNP rs1562705

as an example, using 100 replications to test for imprinting effects. In each

replication, a discordant sibpair was chosen randomly as probands from every

DSP family and a child was chosen randomly as the proband for each case or

control family. From the plot of the − log10 (p-value) versus the replication index

(Supplementary Material, Fig. S18), we can see that although there is variation

across the 100 replications, the results remain qualitatively the same because the

p-values are small (less than 10−3). Thus, the proposed method is robust to the

somewhat arbitrary designations of probands, echoing the results from an earlier

study (Han, Hu and Lin (2013)), which included only case and control families.

Despite its advantages, LIMEDSP has several limitations. A disadvantage

of LIMEDSP when compared to LIME is that it cannot be applied directly to

families when the father’s genotype is missing. This is because after we match

the affected proband-mother pair with the unaffected proband-mother pair using

the child-mother genotype combination, nuisance parameters can no longer be

separated from the parameters of interest. Details are provided in Supplementary

Material S5. A potential solution is to infer the haplotype frequencies first using

information from nearby loci, and then applying LIMEDSP based on the imputed

data from compatible haplotypes. By weighting the likelihood according to the

probabilities of the compatible haplotypes, a preliminary simulation shows that

the empirical type I error is close to the nominal value, whereas the power is

close to that when using the complete family data (results not shown). However,

the HWE assumption is generally needed to infer haplotypes, which leads to

bias if the assumption is violated, such as when population stratification exists.

Therefore, further study is needed to find a satisfactory solution.

The DSP design addresses a practical difficulty in recruiting control families.

As such, design efficiency is not the foremost criterion. Nevertheless, it is im-

portant to understand the relative efficiency of these two designs, namesly, DSP

versus family case-control, to quantify the information loss in a more practicable

design. To this end, we compared the “per individual” information for these two

study designs (Supplementary Material S6). The results (Supplementary Ma-

terial, Fig. S19-S26) show that the family case-control design is typically more

powerful, especially in detecting maternal effects. Nevertheless, LIMEDSP can

be more informative than LIME for estimating some of the parameters, espe-
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cially when there is a severe imbalance between the number of case families and

the number of control families. This is illustrated by a simulation study; details

are provided in Supplementary Material S6. Because control families are more

difficult to recruit, LIMEDSP is a useful addition to the statistical toolbox for

genetic analyses. Most importantly, if data from both types of study designs are

available, they should be utilized fully, as demonstrated in our FHS analysis.

Supplementary Materials

The Supplementary Material contains detailed derivations of the probability

for a DSP with an arbitrary number of siblings, additional information on the

calculation of the probabilities in Table 1, the regularity conditions and proof of

Theorem 1, estimations of maternal effects for a DSP design without additional

siblings and a DSP design with missing father genotypes, the relative efficiency

of LIMEDSP vs. LIME, and supplementary tables and figures.
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