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Abstract: Large cohort studies are often used to investigate the impact of genetic

variants or other risk factors on the age at onset (AAO) of a chronic disorder.

These studies collect family history data, including the AAO of a disease in family

members, in order to provide additional information and to improve the efficiency

of estimating associations. Statistical analyses of these data are challenging owing

to missing genotypes in family members and the heterogeneous dependence at-

tributed to both their shared genetic background and shared environmental factors

(e.g., lifestyle). Therefore, we propose a class of semiparametric transformation

models with multilevel random effects to address these challenges. The proposed

models include both the proportional-hazards model and the proportional-odds

model as special cases. The multilevel random effects contain individual-specific

random effects, including the kinship correlation structure dependent on the family

pedigree, and a shared random effect to account for any unobserved exposure to

the environment. We use a nonparametric maximum-likelihood approach for in-

ferences and propose an expectation-maximization algorithm for the computation

in the presence of missing genotypes among family members. The obtained esti-

mators are shown to be consistent, asymptotically normal, and semiparametrically

efficient. Simulation studies demonstrate that the proposed method performs well

with finite sample sizes. Finally, we apply the proposed method to examine genetic

risks in an Alzheimer’s disease study.

Key words and phrases: Alzheimer’s disease, family data, multilevel random effects,

nonparametric maximum-likelihood estimation, semiparametric efficiency.

1. Introduction

Long-term cohort studies are used to investigate the effects of risk fac-

tors, including genetic mutations, on the age at onset (AAO) of a disease (e.g.,

Alzheimer’s disease (Tang et al. (2001))). These studies collect family history

data, including the AAO of disease in family members, to provide additional

information and to improve the efficiency of estimating associations. However,
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although advancements in technology have decreased the cost of genotyping,

examining many family members and collecting their blood samples remains ex-

pensive. Therefore, family history data, which can be collected at relatively little

cost from individuals participating in cohort studies (probands), remain a useful

source of proband data and help to improve the accuracy of genetic risk assess-

ments (Whittemore (1995); Parmigiani, Berry and Aguilar (1998); Whittemore

and Halpern (2003)).

There are several challenges when using a combined family history and

proband data to study the impact of genetic risks on disease AAO (Gorfine,

Hsu and Parmigiani (2013)). First, when the disease is polygenetic, the disease

onset events of members of the same family are correlated, owing to their shared

genetic background. Second, because family members are likely to be exposed

to the same environment, such as dietary and other non-genetic risk factors, the

dependence between risk factors can also be attributed to these unobserved en-

vironmental factors. Third, because genotype information on family members

is usually not collected owing to resource constraints, exact genotypes are not

observed in relatives. In such cases, the distributions of these genotypes need to

be inferred.

A number of methods have been developed to address these challenges in

analyses of proband family data. For example, Gorfine, Zucker and Hsu (2009)

analyzed a case-control family study for correlated failure times using a shared

frailty proportional-hazards model. Moreover, a class of frailty models for familial

risk prediction with an unknown genetic mutation status were studied in Chen,

Hsu and Malone (2009), Graber et al. (2011), and Gorfine, Hsu and Parmigiani

(2013). In their proportional-hazards models, they assume that a single level of

random effects are shared by a family. Garcia et al. (2017) estimated genetic risk

functions from multivariate failure time data under a proportional-odds model.

While these works adjust for shared environmental factors using random effects,

they do not account for the dependence between these factors due to polygenetic

effects. In an earlier work, Antoniou et al. (2008) applied a polygenic model, in

which they assume that each individual has a random effect and that correlations

follow the kinship correlation structure. However, they do not consider possible

dependence due to family members sharing an environment or missing genotypes

among family members.

In this study, we consider the general class of semiparametric transformation

models of Cheng, Wei and Ying (1995) and Zeng and Lin (2007), which include

both the proportional-hazards model and the proportional-odds model as special
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cases. We include multilevel random effects in the regression model, which consist

of both individual-specific random effects and random effects shared by the fam-

ily. The former account for the dependence due to a shared genetic background

with a kinship-structured covariance Khoury, Beaty and Cohen (1993); the latter

represent dependence due to a family’s share environmental effects or lifestyle.

A nonparametric maximum-likelihood approach is used to handle missing geno-

types in the parameter estimation and inferences. A fast numeric integration

is used to perform multi-dimensional integration. We prove the semiparametric

efficiency of the proposed estimators, including establishing the invertibility of

the information operator in a proper metric space. We also derive asymptotic

variance formulae for the parameters, which avoids using a computationally in-

tensive bootstrap procedure to compute the variances. In the simulations, we

show a substantial reduction in bias, an efficiency gain, and an improvement

in the power of testing associations by properly accounting for the hierarchical

correlation structure among event times. We also demonstrate an improvement

in the efficiency of estimating the cumulative risk of dementia by including both

proband data and data on the family history of relatives in a long-term, real-world

study of aging and dementia.

The rest of the paper is organized as follows. We present the proposed

model and the expectation-maximization (EM) algorithm used to estimate the

parameters in Section 2. In Section 3, the derived estimators are shown to be

asymptotically efficient. Extensive simulation studies are described in Section 4.

Finally, we apply the proposed method to study the association between a causal

mutation and the AAO of dementia based on an ongoing, large cohort study that

uses structured family history data. All theoretical proofs are provided in the

Supplementary Material S1.

2. Method

2.1. Model and likelihood function

Assume there are n i.i.d. families. For the jth member of the ith family

of size ni, let Tij denote the event time of the AAO, Cij be the potential right-

censoring time, and Xij denote the baseline covariates, including genetic poly-

morphisms and other risk factors. Furthermore, we denote Gi· = (Gi1, . . . , Gini
)

as the genotype vector for all family members, including the proband, and let Σi

be the kinship matrix defined in accordance with family i’s pedigree structure.

To study the impact of genetic risk on the AAO, we assume the following
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transformation model: given a family-specific random effect bi and individual-

specific random effects rij , the cumulative hazard function for Tij follows

Λij (t|Gij , Xij , bi, rij) = H
{

Λ(t) exp(βGij + γTXij + bi + rij)
}
, (2.1)

where H(·) is a given transformation function, and both Λ(t) and (β, γ) are un-

known. Here, β is the genetic association parameter of interest, and γ is a vector

of parameters for other baseline covariates, including confounders. Moreover, bi
is the family-specific random effect representing a family’s shared environment,

and is assumed to follow N(0, σ2
b ). In addition, (ri1, . . . , rini

)T denotes the indi-

vidual random effects for the shared polygenic effects (genetic background) and

follows a multivariate normal distribution MVN(0, σ2
rΣi). In model (2.1), the

transformation function H(·) is chosen from the class{
α−1 log(1 + αx), α > 0,

x, α = 0.

Thus, α = 0 yields the proportional-hazards model and α = 1 yields the propor-

tional-odds model. Additionally, we assume that Mendelian transmission holds

for Gij .

In cohort studies involving family history data, Gi·s are often not available ex-

cept for the probands who are the original participants. Instead, we observe a set

Gi containing all possible genotypes (including the proband’s genotype) that are

consistent with the ith family’s pedigree structure and the proband’s genotype.

Thus, the observed data from n families consist of Oi =
{

(Yij ,∆ij , Xij ,Gi), j =

1, . . . , ni}, i = 1, . . . , n, where ∆ij = I(Tij ≤ Cij) is the censoring indicator and

Yij = min(Tij , Cij) is the observed event.

Assume that the censoring times (Ci1, . . . , Cini
)T are independent of (Ti1, . . . ,

Tini
)T and (bi, ri1, . . . , rini

)T , conditional on (Xi1, . . . , Xini
)T . Then, the ob-

served likelihood function of the parameters in (2.1) takes the form
n∏
i=1

∫ ∑
gi·∈Gi

{
pi(gi·)

ni∏
j=1

[
λ(Yij) exp

(
βgij + γTXij + bi + rij

)
×H ′

{
Λ(Yij) exp

(
βgij + γTXij + bi + rij

)} ]∆ij

× exp
[
−H

{
Λ(Yij) exp

(
βgij + γTXij + bi + rij

)}]}

×
(
2πσ2

b

)−1/2
exp

(
− b2i

2σ2
b

)(
2πσ2

r

)−ni/2 |Σi|−1/2 exp

(
−
rTi·Σ

−1
i ri·

2σ2
r

)
dbi dri·,
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where λ(t) = dΛ(t)/dt and H ′(·) denotes the derivative of H(·). Here, pi(gi·) is

the conditional probability of Gi· = gi·, given the proband’s genotype. Note that

pi(gi·), for i = 1, . . . , n, can be computed under the Mendelian transmission and

the family pedigree. Thus, in the remainder of this paper, we assume they are

known.

2.2. Nonparametric maximum-likelihood estimation (NPMLE)

We use the NPMLE approach to estimate the Euclidean parameters and

Λ(·). Specifically, we estimate Λ(t) as a step function with jumps only at the

observed failure times, and then replace λ(t) by the corresponding jump size of

Λ at t in the likelihood function. We then maximize the following function over

θ = (β, γT , σ2
b , σ

2
r )
T and all jump sizes of Λ(·):

n∏
i=1

∫ ∑
gi·∈Gi

{
pi(gi·)

ni∏
j=1

[
Λ{Yij} exp

(
βgij + γTXij + bi + rij

)
×H ′

{
Λ(Yij) exp

(
βgij + γTXij + bi + rij

)} ]∆ij

× exp
[
−H

{
Λ(Yij) exp

(
βgij + γTXij + bi + rij

)}]}

×
(
2πσ2

b

)−1/2
exp

(
− b2i

2σ2
b

)(
2πσ2

r

)−ni/2 |Σi|−1/2 exp

(
−
rTi·Σ

−1
i ri·

2σ2
r

)
dbi dri·,

(2.2)

where Λ{Yij} is the jump size of Λ at Yij .

Computationally, the above maximization can be carried out using an EM

algorithm. First, note that the transformation H(x) satisfies

exp{−H(x)} =

∫ ∞
0

exp(−tx)ψ(t)dt,

where ψ(t) is a gamma density with shape 1/α and scale α. Therefore, if we

introduce another random variable ξij ∼ Gamma(1/α, α), then the proposed

model (2.1) is equivalent to assuming that the conditional hazard rate of Tij ,

given ξij , bi, ri·, Xij , and Gij , is given as

ξijλ(t) exp
(
βGij + γTXij + bi + rij

)
. (2.3)

Treating ξij , bi, ri·, and Gi· as missing data, the observed likelihood function in

(2.2) is equivalent to the likelihood arising from the complete data consisting of

ξi· = (ξi1, . . . , ξini
)T and O∗i = (Gi·, bi, ri·, Oi) for i = 1, . . . , n, the joint density
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of which is

f(ξi·, O
∗
i ) =

ni∏
j=1

[{
ξijΛ{Yij} exp

(
βGij + γTXij + bi + rij

) }∆ij

× exp
{
−ξijΛ(Yij) exp

(
βGij + γTXij + bi + rij

)} α−1/α

Γ(1/α)
ξ

1/α−1
ij exp

(
−ξij
α

)]
× |Σi|−1/2

(
2πσ2

b

)−1/2 (
2πσ2

r

)−ni/2
exp

(
− b2i

2σ2
b

−
rTi·Σ

−1
i ri·

2σ2
r

)
pi(Gi·).

Each iteration in the EM algorithm consists of the following E- and M-steps.

In the E-step, we calculate the conditional expectation of some integral function

Q(ξi·, O
∗
i ), given Oi, denoted by Ê(Q(ξi·, O

∗
i )|Oi), using the following equation:

Ê{Q(ξi·, O
∗
i )|Oi} =

∑
gi·∈Gi

∫
ξi·,bi,ri·

Q(ξi·, O
∗
i )f(ξi·, O

∗
i )I(Gi· = gi·)dξi·dbidri·∑

gi·∈Gi
∫
ξi·,bi,ri·

f(ξi·, O∗i )I(Gi· = gi·)dξi·dbidri·
.

The multi-dimensional integration used to compute the above conditional expec-

tation can be challenging owing to multiple levels of random effects (i.e., the

family level and the individual level), especially when the family size is large.

We propose using a numeric approximation with a multi-dimension adaptive

Gaussian quadrature approach (Abramowitz and Stegum (1972); Liu and Pierce

(1994); Evants and Swartz (2000)) to evaluate the above integral. Here, we ap-

ply the sparse grid technique (Heiss and Winschel (2008)) to generate nodes for

quadratures with more than four dimensions.

In the M-step, we maximize the conditional expectation of the complete data

log-likelihood function, which is given by
n∑
i=1

ni∑
j=1

{
∆ij(log Λ{Yij}+ log ξij + βGij + γTXij + bi + rij)

− ξijΛ(Yij) exp(βGij + γTXij + bi + rij)
}

+

n∑
i=1

log{pi(Gi·)
}

− 1

2

n∑
i=1

{
log
(
2πσ2

b

)
+
b2i
σ2
b

+ ni log
(
2πσ2

r

)
+ log |Σi|+

1

σ2
r

rTi·Σ
−1
i ri·

}
,

given the observed data and the current parameter values. By simple algebra,

we update σ2
b and σ2

r as follows:

σ2
b =

1

n

n∑
i=1

Ê
(
b2i |Oi

)
, σ2

r =
1∑n
i=1 ni

n∑
i=1

Ê
(
rTi·Σ

−1
i ri·|Oi

)
.
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We then update β and γ by solving

0 =

n∑
i=1

ni∑
j=1

∆ij

{(
Ê(Gij |Oi), XT

ij

)T
−

∑n
k=1

∑ni

l=1 I(Ykl ≥ Yij)Ê{(Gkl, XT
kl)

T ξkl exp(βGkl + γTXkl + bk + rkl)|Oi}∑n
k=1

∑ni

l=1 I(Ykl ≥ Yij)Ê{ξkl exp(βGkl + γTXkl + bk + rkl)|Oi}

}
using the one-step Newton–Raphson method. Based on the updated values of β

and γ, we calculate the jump size of Λ at Ykl as∑n
i=1

∑ni

j=1 ∆ijI(Yij = Ykl)∑n
i=1

∑ni

j=1 I(Yij ≥ Ykl)Ê{ξij exp(βGij + γTXij + bi + rij)|Oi}
. (2.4)

Lastly, we iterate between the E- and M-steps until convergence, and denote the

final estimators for θ and Λ as θ̂ and Λ̂, respectively.

3. Asymptotic Properties

To establish the asymptotic distribution of the nonparametric maximum-

likelihood estimator (θ̂, Λ̂), we assume that the family size ni is a bounded random

variable. We further assume that, conditional on ni, the pedigree structure of the

family, denoted by Ki, has a discrete distribution with finite choices, and thus

Σi, the kinship matrix, is also random. Denote the true values of θ and Λ(t) as

θ0 and Λ0(t), respectively. Then, we need the following assumptions.

(A.1) The true value θ0 lies in a known compact set Θ in the interior of the

domain of θ. Moreover, the true function Λ0 is continuously differentiable,

with Λ′0(t) > 0 in [0, τ ], where τ is the duration of the study, and is

assumed to be finite.

(A.2) With probability one, X is bounded, and there exists a positive constant

δ such that P{
∑ni

j=1 I(Yij ≥ τ) ≥ 1|Xij , j = 1, . . . , ni} ≥ δ.

(A.3) There exists a constant n0 such that the family size ni satisfies P (1 ≤ ni ≤
n0) = 1 and P (ni ≥ 2) > 0.

(A.4) Conditional on ni, let eij = (1, 0, . . . , 0, 1, 0, . . . , 0)T be an (ni + 1) × 1

vector, with only the first and the jth elements equal to one for j =

1, . . . , ni. If (β, γ, c1, c2) is a constant vector and ν(t) is a deterministic

function satisfying

ν(t) + βgij + γTXij + eTij

(
c1 0

0 c2Σi

)
eij = 0, eTij

(
c1 0

0 c2Σi

)
eij′ = 0,
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for j 6= j′, j, j′ = 1, . . . , ni, gij , and t ∈ [0, τ ] with probability one (note

that both Xij and Σi corresponding to the pedigree Ki are random), then

β = 0, γ = 0, ν(t) = 0 for t ∈ [0, τ ], and c1 = c2 = 0.

(A.5) Conditional on ni, if
∑

(g1,...,gni
) q(g1, . . . , gni

)pi(g1, . . . , gni
)I((g1, . . . , gni

)

∼ Ki) = 0 with probability one for some function q(·), where the summa-

tion is over all genotype vectors (g1, . . . , gni
), and (g1, . . . , gni

) ∼ Ki means

that (g1, . . . , gni
) is compatible with the pedigree Ki, then q(g1, . . . , gni

) =

0.

Conditions (A.1)–(A.2) are standard assumptions for clustered survival data.

Condition (A.3) assumes that the family size is bounded and that there exist

at least some families with at least two members. Both conditions (A.4) and

(A.5) are used to obtain parameter identifiability in the presence of multilevel

random effects. In particular, (A.4) holds if (1, Xij , gij) has a full rank with

positive probability and if Σi has non-zero off-diagonal elements with a positive

probability. In (A.5), we require that for a fixed family size, the matrix derived

from the joint probabilities of {pi(gi·)} across all possible pedigree structures

is a full-rank matrix. Under the above assumptions, we obtain the following

asymptotic results.

Theorem 1. Under (A.1)–(A.5), we have
∣∣θ̂n − θ0

∣∣ → 0 and ‖Λ̂n − Λ0‖∞ → 0

almost surely, where | · | is the Euclidean norm and ‖ · ‖∞ is the supremum norm

in the interval [0, τ ].

The proof of Theorem 1 is given in the Supplementary Material S1. The key

idea of the proof is to first show that Λ̂ is bounded, and thus is weakly compact.

Then, we show that any convergence sequence of (θ̂, Λ̂) should converge to the

true parameters. The latter makes use of the Glivenko–Cantelli theorem for

empirical processes and the identifiability results under conditions (A.4) and

(A.5) to be established in the proof.

To establish the asymptotic distribution, let L = {h(t) : h(t) ∈ BV [0, τ ],

‖h‖BV ≤ 1}, where ‖h‖BV denotes the total variation of h. Then, by defining

Λ̂n(h) =
∫ τ

0 h(s)dΛ̂n(s) for h ∈ L, Λ̂n(t) is considered to be a bounded linear

function in l∞(L). Hence, (θ̂n − θ0, Λ̂n − Λ0) is viewed as a random element in

the metric space Rd×l∞(L), where d is the dimension of θ0. Then, the asymptotic

distribution of the estimators is given as follows.

Theorem 2. Under (A.1)–(A.5), it holds that
√
n(θ̂n − θ0, Λ̂n − Λ0) converges

weakly to a mean zero Gaussian process in the metric space Rd× l∞(L). In addi-
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tion, the asymptotic covariance matrix of
√
n(θ̂n−θ0) attains the semiparametric

efficiency bound.

Theorem 2 concludes that θ̂n is an efficient estimator for θ0. The proof

of Theorem 2 mostly follows the standard arguments for the semiparametric

transformation models in Zeng and Lin (2007). A key challenge in the proof

is to establish the invertibility of the information operator under the proposed

multilevel random-effect models. Furthermore, following the result of Theorem 4

in Zeng and Lin (2007), the asymptotic covariance of θ̂ can be estimated as the

inverse of the observed information matrix. The latter can be calculated using

the Louis formula method (Louis (1982)). Thus, using the estimated covariance

matrix, we can construct the asymptotic confidence intervals for β0 and conduct

a score test for the null hypothesis β0 = 0.

4. Simulation Studies

Extensive simulation studies are conducted to assess the performance of the

proposed method in finite samples. In the simulations, we consider the trans-

formation H(x) = x and log(1 + x), corresponding to the proportional-hazards

model and the proportional-odds model, respectively. We generate one binary

covariate Xij from Bernoulli(0.5) and the random effect bi ∼ N(0, σ2
b ), with

σb = 0.5. To generate the random effects ri· and Gi·, we consider two types of

family pedigree structures, as shown in Figure 1, namely Case I and Case II. In

particular, Case I is a two-generation pedigree that includes four members: Fa-

ther (F), Mother (M), Sibling (S) and Proband (P). Case II is a three-generation

pedigree with five members: Father (F), Mother (M), Sibling (S), Child (C), and

Proband (P). Corresponding to each case, the kingship matrices are respectively

given as

Σ1 =

F M S P
1.00 0.00 0.50 0.50

0.00 1.00 0.50 0.50

0.50 0.50 1.00 0.50

0.50 0.50 0.50 1.00

,Σ2 =

F M S C P
1.00 0.00 0.50 0.25 0.50

0.00 1.00 0.50 0.25 0.50

0.50 0.50 1.00 0.50 0.50

0.25 0.25 0.50 1.00 0.50

0.50 0.50 0.50 0.50 1.00

.
Using the kinship matrices, we generate ri· from a multivariate normal dis-

tribution with mean zero and covariance matrix σ2
rΣk for k = 1, 2, with σ2

r = 0.5

or 1.0. The proband’s alleles are obtained with equal probabilities. Next, we

use the Monte–Carlo method to obtain pi(·)s for the ith family under its given
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Figure 1. The pedigree structures used to simulate the genotype data: black solid icons
indicate mutation gene carriers for one particular mutation example.

pedigree structure: assuming the minor allele frequency is 0.02, and using the

Mendelian principles of inheritance, we use the pedigree structure to simulate all

genotypes for the whole family, including the proband, by starting from the top

level of the pedigree. We repeat this simulation 30,000 times and retain those

relatives’ genotypes that match the proband’s genotype. Then, pi(·) is calculated

as the proportion of the relatives’ genotypes in the retained samples. Finally, the

disease onset time, Tij , is generated from model (2.1), with β = 0.4, γ = −0.5,

and λ(t) = 1/2. The censoring time is simulated from the uniform distribution

in [0, 6], yielding around 30–35% censoring rates. In the simulations, we consider

sample sizes of n = 300 and 500 and conduct simulations using 1,000 replicates.

For each simulated data, we use the proposed EM algorithm with a multi-

dimension adaptive Gaussian quadrature to calculate the NPMLEs. In the EM

algorithm, the initial values of β and γ are set to zero, the initial values of σ2
b

and σ2
r are set to one, and the initial values of the jump sizes of Λ(t) are set to

1/m, where m is the total number of disease events. We use the inverse of the

observed information matrix computed using the Louis formula to estimate the

covariances, and use the Satterthwaite approximation (e.g., Satterthwaite (1946);

Burdick and Graybill (1992)) to construct the 95% confidence interval for σ2
b and

σ2
r : (υσ̂2/χ2

υ,.975, υσ̂
2/χ2

υ,.025), where υ = 2{σ̂2/ŜE(σ̂2)}2, ŜE(σ̂2) is the estimated

standard error of σ̂2, χ2
υ,q is the q-quantile of the chi-squared distribution with υ

degrees of freedom, and σ̂2 = σ̂2
b or σ̂2

r . Additionally, we compare analyses under
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the proposed model with those under a misspecified model similar to (2.1), except

that no rij is included. Thus, in the misspecified model, only the family’s shared

random effect is used to account for the dependence within the family.

Tables 1 and 2 display the simulation results for Cases I and II with sam-

ple sizes of n = 300 and 500 and σ2
r = 0.5 and 1.0. As seen in these tables,

the estimates of (β0, γ0, σ
2
b0, σ

2
r0) and Λ0(·) are virtually unbiased for larger sam-

ple sizes. Because the parameter σ2
r0 is non-negative, the empirical distribu-

tion of σ̂2
r is not symmetric, in practice. The estimated standard errors (SE)

of σ2
r0 are slightly larger than the standard deviations (SD) for small sample

sizes. However, as the sample size increases, the performance improves signifi-

cantly. Overall, the estimated standard errors accurately reflect the true vari-

ability. Furthermore, in comparison with the misspecified model, which ignores

the dependence due to the shared genetic background, the estimates from our

multilevel method are more accurate and reliable, especially when estimating

the genetic association parameter β. The coverage probabilities obtained under

the misspecified model are much lower than the nominal level. Table 3 shows

the root mean of the integrated squared error used to estimate the cumulative

hazard functions under both the proposed model and the misspecified model.

Clearly, the misspecified model can lead to estimates with large bias and vari-

ability. This conclusion is also reflected in Figure 2, where the relative bias of

the estimated Euclidean parameter θ is defined as |(θ̂n − θ0)/θ0|, and the rela-

tive efficiency improvement of the proposed model over the misspecified model

in terms of the root mean integrated squared errors (abbreviated as MSE) is de-

fined as
∣∣(MSE(Λ̂n)−MSEmissp(Λ̂n)

)
/MSE(Λ̂n)

∣∣. For example, the relative bias

under the misspecified single-level model can be as high as 20%, and the relative

efficiency gain of the multilevel model can be as high as 30%.

Finally, we compare the type-I errors of the score test for the true model

and the misspecified model, where β = 0 and the other parameters remain the

same. Our simulation results show that for both the proportional-hazard model

and the proportional-odds model, the type-I errors of the misspecified model are

heavily inflated. Specifically, for the Cox proportional-hazard model, when the

sample size is 300, the type-I error of the misspecified model is around 0.112,

with σ2
r = 1.0, and it becomes 0.094 when the sample size increases to 500. The

respective type-I error rates are 0.120 and 0.109 for the proportional-odds model.

The type-I error rates from our approach are mostly around the significance level

of 0.05.
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Table 1. Simulation results under Case I.

Proposed Model Misspecified Model

H(x) σ2
r n Par True Bias SD SE CP% Bias SD SE CP%

α = 0 0.5 300 σ2
b 0.25 0.001 0.121 0.129 92.0 0.080 0.099 0.097 77.0
σ2
r 0.50 0.001 0.328 0.341 93.4 —— —— —— ——
β 0.50 −0.028 0.335 0.332 95.0 −0.033 0.328 0.305 93.6
γ −0.50 −0.005 0.119 0.113 94.2 0.056 0.098 0.095 89.0

Λ(τ/4) 1.25 0.044 0.216 0.208 93.6 0.020 0.207 0.186 91.0
Λ(τ/2) 1.50 0.089 0.437 0.425 93.6 −0.099 0.365 0.327 86.4

500 σ2
b 0.25 −0.007 0.091 0.101 94.2 0.072 0.071 0.074 72.6
σ2
r 0.50 −0.011 0.265 0.272 95.2 —— —— —— ——
β 0.50 −0.009 0.258 0.256 95.6 −0.010 0.254 0.236 93.6
γ −0.50 −0.001 0.085 0.087 95.6 0.056 0.073 0.073 87.0

Λ(τ/4) 0.75 0.017 0.156 0.156 94.2 −0.006 0.149 0.139 91.6
Λ(τ/2) 1.50 0.031 0.315 0.314 95.2 −0.146 0.257 0.242 81.8

1.0 300 σ2
b 0.25 0.017 0.146 0.154 89.9 0.136 0.110 0.106 56.8
σ2
r 1.00 −0.076 0.468 0.492 97.0 —— —— —— ——
β 0.50 −0.022 0.387 0.378 94.1 −0.023 0.379 0.335 91.4
γ −0.50 0.001 0.128 0.124 94.7 0.093 0.098 0.097 83.2

Λ(τ/4) 0.75 0.047 0.249 0.237 93.5 0.003 0.234 0.199 88.0
Λ(τ/2) 1.50 0.073 0.503 0.481 93.4 −0.211 0.393 0.331 75.2

500 σ2
b 0.25 0.003 0.110 0.123 92.8 0.129 0.079 0.081 45.0
σ2
r 1.00 −0.068 0.433 0.392 94.9 —— —— —— ——
β 0.50 −0.014 0.293 0.292 94.9 −0.007 0.293 0.258 92.6
γ −0.50 0.006 0.094 0.096 95.2 0.096 0.074 0.074 74.8

Λ(τ/4) 0.75 0.021 0.178 0.177 94.2 −0.025 0.167 0.148 89.6
Λ(τ/2) 1.50 0.032 0.369 0.360 94.9 −0.251 0.274 0.245 67.8

α = 1 0.5 300 σ2
b 0.25 0.003 0.171 0.211 91.9 0.117 0.163 0.163 75.3
σ2
r 0.50 0.017 0.386 0.527 96.2 —— —— —— ——
β 0.50 −0.007 0.439 0.438 94.7 −0.008 0.436 0.422 94.5
γ −0.50 −0.012 0.155 0.148 94.7 0.020 0.140 0.135 93.6

Λ(τ/4) 0.75 0.040 0.280 0.276 93.6 0.045 0.276 0.264 92.6
Λ(τ/2) 1.50 0.087 0.569 0.554 93.2 0.015 0.527 0.498 90.9

500 σ2
b 0.25 −0.013 0.130 0.167 94.3 0.110 0.122 0.127 73.0
σ2
r 0.50 0.033 0.334 0.417 94.2 —— —— —— ——
β 0.50 −0.002 0.334 0.339 95.2 −0.003 0.333 0.327 95.3
γ −0.50 −0.005 0.112 0.114 95.4 0.026 0.104 0.105 94.3

Λ(τ/4) 0.75 0.022 0.204 0.207 94.3 0.019 0.202 0.199 93.6
Λ(τ/2) 1.50 0.049 0.406 0.415 94.5 −0.030 0.376 0.374 90.6

1.0 300 σ2
b 0.25 0.045 0.193 0.245 88.7 0.210 0.179 0.178 52.5
σ2
r 1.00 −0.095 0.563 0.734 97.2 —— —— —— ——
β 0.50 −0.007 0.474 0.471 95.1 −0.025 0.471 0.447 94.0
γ −0.50 −0.006 0.164 0.156 95.1 0.043 0.141 0.137 93.6

Λ(τ/4) 0.75 0.055 0.301 0.299 93.4 0.004 0.295 0.279 92.5
Λ(τ/2) 1.50 0.097 0.618 0.598 92.6 −0.109 0.549 0.511 88.5

500 σ2
b 0.25 0.027 0.153 0.190 89.6 0.206 0.131 0.137 42.8
σ2
r 1.00 −0.075 0.480 0.561 96.7 —— —— —— ——
β 0.50 0.000 0.359 0.365 95.6 0.002 0.362 0.346 94.1
γ −0.50 0.004 0.116 0.120 95.6 0.050 0.105 0.106 91.5

Λ(τ/4) 0.75 0.024 0.218 0.223 94.6 0.018 0.217 0.209 93.0
Λ(τ/2) 1.50 0.035 0.433 0.444 93.8 −0.083 0.390 0.381 88.6
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Table 2. Simulation results under Case II.

Proposed Model Misspecified Model

H(x) σ2
r n Par True Bias SD SE CP% Bias SD SE CP%

α = 0 0.5 300 σ2
b 0.25 −0.001 0.106 0.105 91.8 0.075 0.079 0.075 71.6
σ2
r 0.50 −0.002 0.283 0.311 94.8 —— —— —— ——
β 0.50 0.010 0.207 0.204 95.2 −0.027 0.191 0.183 94.8
γ −0.50 0.001 0.100 0.097 94.6 0.061 0.085 0.081 86.6

Λ(τ/4) 0.75 0.004 0.124 0.120 92.8 0.000 0.113 0.107 92.4
Λ(τ/2) 1.50 0.002 0.260 0.249 93.2 −0.141 0.198 0.187 83.6

500 σ2
b 0.25 −0.001 0.083 0.084 94.0 0.075 0.060 0.058 63.0
σ2
r 0.50 0.011 0.238 0.257 94.7 —— —— —— ——
β 0.50 −0.004 0.163 0.159 94.3 −0.049 0.149 0.142 91.8
γ −0.50 0.000 0.074 0.076 96.0 0.065 0.062 0.062 82.4

Λ(τ/4) 0.75 0.004 0.095 0.094 95.1 0.005 0.086 0.084 93.8
Λ(τ/2) 1.50 0.012 0.198 0.198 96.0 −0.126 0.150 0.147 82.4

1.0 300 σ2
b 0.25 0.011 0.127 0.128 89.8 0.129 0.086 0.081 47.2
σ2
r 1.00 −0.062 0.430 0.452 95.6 —— —— —— ——
β 0.50 0.013 0.227 0.229 95.8 −0.049 0.201 0.192 92.0
γ −0.50 0.007 0.113 0.107 93.4 0.100 0.085 0.082 73.6

Λ(τ/4) 0.75 0.003 0.136 0.134 93.4 −0.006 0.117 0.112 91.6
Λ(τ/2) 1.50 −0.015 0.294 0.280 92.0 −0.231 0.197 0.184 68.8

500 σ2
b 0.25 0.004 0.102 0.104 92.0 0.129 0.065 0.063 28.6
σ2
r 1.00 −0.017 0.357 0.369 94.4 —— —— —— ——
β 0.50 −0.020 0.181 0.178 95.2 −0.076 0.157 0.149 90.8
γ −0.50 0.006 0.082 0.083 95.2 0.105 0.062 0.063 62.8

Λ(τ/4) 0.75 0.013 0.108 0.106 95.4 0.001 0.090 0.087 94.4
Λ(τ/2) 1.50 0.027 0.236 0.224 94.4 −0.216 0.150 0.144 61.2

α = 1 0.5 300 σ2
b 0.25 −0.004 0.163 0.192 89.1 0.118 0.137 0.126 68.9
σ2
r 0.50 0.047 0.372 0.566 93.1 —— —— —— ——
β 0.50 0.002 0.268 0.269 95.0 −0.027 0.254 0.252 94.5
γ −0.50 0.001 0.132 0.130 95.0 0.050 0.121 0.116 93.0

Λ(τ/4) 0.75 0.002 0.165 0.159 93.5 0.001 0.157 0.151 93.4
Λ(τ/2) 1.50 0.012 0.328 0.325 93.7 −0.140 0.294 0.286 90.9

500 σ2
b 0.25 −0.008 0.124 0.149 93.9 0.120 0.102 0.097 58.1
σ2
r 0.50 0.081 0.317 0.446 93.9 —— —— —— ——
β 0.50 −0.015 0.209 0.208 94.8 −0.035 0.198 0.195 93.5
γ −0.50 −0.001 0.095 0.101 96.0 0.052 0.088 0.090 92.8

Λ(τ/4) 0.75 0.011 0.125 0.125 94.1 0.021 0.120 0.118 94.5
Λ(τ/2) 1.50 0.024 0.253 0.254 94.1 −0.023 0.228 0.224 92.5

1.0 300 σ2
b 0.25 0.033 0.190 0.206 85.4 0.215 0.149 0.137 42.3
σ2
r 1.00 −0.086 0.554 0.672 95.8 —— —— —— ——
β 0.50 0.019 0.287 0.288 95.4 −0.029 0.274 0.261 94.2
γ −0.50 0.011 0.140 0.136 94.9 0.057 0.116 0.117 93.7

Λ(τ/4) 0.75 0.009 0.176 0.171 93.7 0.027 0.168 0.159 92.0
Λ(τ/2) 1.50 −0.007 0.347 0.342 92.4 −0.076 0.293 0.290 89.3

500 σ2
b 0.25 0.021 0.145 0.164 88.1 0.216 0.110 0.106 26.5
σ2
r 1.00 −0.028 0.468 0.533 94.3 —— —— —— ——
β 0.50 −0.021 0.225 0.222 95.3 −0.052 0.209 0.202 92.9
γ −0.50 0.006 0.101 0.106 95.8 0.058 0.090 0.091 91.0

Λ(τ/4) 0.75 0.019 0.136 0.134 94.9 0.029 0.126 0.123 94.7
Λ(τ/2) 1.50 0.025 0.273 0.270 94.7 −0.066 0.229 0.225 90.0
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Table 3. Results of the mean of the square root of the integrated squared error (×10−2)
for the estimated cumulative distribution functions of the carrier and non-carrier groups.

Proposed Model Misspecified Model Ratio

Case H(x) σ2
r n Carrier Non-Carr Carrier Non-Carr Carrier Non-Carr

I α = 0 0.5 300 6.472 13.276 6.736 14.715 1.041 1.109

500 5.092 10.163 5.339 11.665 1.049 1.148

1.0 300 6.583 14.124 7.215 17.378 1.096 1.231

500 5.142 10.619 5.734 13.822 1.115 1.301

α = 1 0.5 300 8.234 17.465 8.975 19.284 1.090 1.104

500 6.587 13.126 7.495 14.561 1.138 1.109

1.0 300 8.361 17.592 9.862 20.181 1.180 1.147

500 6.653 13.138 8.641 15.510 1.299 1.180

II α = 0 0.5 300 5.426 8.713 5.548 9.204 1.022 1.056

500 4.302 6.668 4.416 7.192 1.026 1.079

1.0 300 5.523 8.870 5.758 9.841 1.043 1.109

500 4.488 6.664 4.614 7.540 1.028 1.131

α = 1 0.5 300 6.876 10.980 7.703 11.710 1.120 1.067

500 5.625 8.320 6.274 9.103 1.115 1.094

1.0 300 6.856 10.985 8.736 12.220 1.274 1.113

500 5.618 8.451 7.325 9.792 1.304 1.159

5. Application

The Washington Heights-Inwood Community Aging Project (WHICAP) is a

prospective, community-based cohort study of aging, dementia, and Alzheimer’s

disease (AD) in Northern Manhattan, New York City (Tang et al. (2001)). The

ongoing, decades-long study has collected rich information on neuropsychiatric

measures, environmental exposure, and genetic risk factors from thousands of

participants. The incidence of dementia in proband participants is carefully

monitored. The familial aggregation of dementia and AD is well established.

First-degree relatives of AD patients have approximately twice the expected life-

time risk of dementia compared with persons without an affected first-degree

relative (Devi et al. (2000)). An increase in the relative risk of AD among first-

degree relatives of patients is also observed among African Americans (ranging

from 1.4 in a community-based sample to 2.6 in a clinic-based sample). These

findings suggest a substantial heritable contribution to AD and dementia, as well

as non-genetic pathways due to shared environmental risk factors or lifestyles.

A structured family history interview (Maestre et al. (1995)) is administered

to the probands. The family history interview collects pedigree structure, birth

order, vital status, level of education, family history of cognitive impairment, de-
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Figure 2. The first row presents bar plots of the relative biases of the estimated β
and γ under Case I (left) and Case II (right). The second row shows bar plots of
the relative efficiency improvement in terms of the root mean integrated squared errors
when estimating Λ, where the left panel and right panel correspond to α = 0 and α = 1,
respectively.

mentia, and AAO among first-degree relatives, including the non-WHICAP par-

ent and siblings. We include 1,705 probands and 1,342 relatives from 692 families

in our data analysis. The censoring rates of the probands’ and relatives’ observa-

tions are 89.6% and 91.99%, respectively. Apolipoprotein-E (APOE) genotypes

are also obtained for each proband. Here, we wish to estimate the cumulative in-

cidence of dementia for the APOE-ε4 mutation carrier group and the non-carrier

group, adjusting for two potential confounders, namely, gender and education.

To select the best transformation, we vary α in H(·) from 0 to 4, and choose

the optimal model that gives the largest likelihood function. The optimal value

of α is 2 (see Figure 3), the variance calculated using the negative inverse of the

curvature of the log-profile-likelihood function at the estimated α is 0.249, and the
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Figure 3. The log-profile-likelihood function, along with different values of α calculated
from the combined data of probands and relatives.

Table 4. Estimated log hazard ratios and variance components from combined data on
probands and relatives in the WHICAP study.

Parameters Estimate Standard error p-value
APOE-ε4 0.930 0.193 < 0.0001

gender 0.009 0.180 0.961
education −0.687 0.091 < 0.0001

σ2
b 0.132 0.152 0.383
σ2
r 0.224 0.197 0.254

95% confidence interval is [1.02, 2.98]. The results based on the transformation

model with α = 2 are presented in Table 4. From the table, the estimated log

hazard ratio for the APOE-ε4 is 0.930, with p < 0.0001, indicating a significantly

higher risk of dementia occurring in the APOE-ε4 carrier group. Gender is not

statistically significant in either analysis. The table also shows that a lower level

of education significantly increases the risk of dementia.

In Table 5, we report the estimated cumulative distribution functions for

the carrier and non-carrier groups, with other covariates fixed at the sample

mean level. Furthermore, to demonstrate the usefulness of the family history

data on relatives, we also report the estimates from the best transformation

using the proband data only, in which no random effects are used and the best
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Table 5. Estimated cumulative risk of dementia (×10−2) from combined data on
probands and relatives in the WHICAP study.

Proband and relative data Proband data only
Carrier Non-Carrier Carrier Non-Carrier

Age Est. SE 95% CI Est. SE 95% CI Est. SE 95% CI Est. SE 95% CI
70 0.32 0.14 (0.14, 0.75) 0.13 0.05 (0.05, 0.29) 0.22 0.13 (0.07, 0.70) 0.11 0.07 (0.04, 0.36)
75 1.47 0.37 (0.90, 2.39) 0.58 0.14 (0.36, 0.93) 1.13 0.33 (0.64, 1.98) 0.59 0.17 (0.34, 1.02)
80 6.54 1.13 (4.61, 9.24) 2.63 0.41 (1.94, 3.57) 6.86 1.11 (4.98, 9.41) 3.64 0.53 (2.72, 4.84)
85 15.93 2.37 (11.66, 21.57) 6.62 0.83 (5.15, 8.48) 16.07 2.24 (12.19, 21.03) 8.73 1.05 (6.89, 11.03)
90 32.31 4.20 (24.07, 42.48) 14.26 1.59 (11.33, 17.87) 32.57 4.12 (25.24, 41.37) 18.58 2.03 (14.96, 22.95)

transformation is α = 0.6. Interestingly, for the carrier group, both analyses

give similar results. However, in the non-carrier group, using both proband and

family data gives slightly lower estimates for the cumulative risk of dementia, with

smaller variability (also see Figure 4). This analysis demonstrates the efficiency

gain of including family history data on relatives.

6. Discussion

In this study, we examined a class of transformation models with multilevel

random effects for the correlated disease AAO. The proposed method incorpo-

rated multilevel random effects to explain polygenic heterogeneity and a shared

family environment and accounted for missing genotype information on family

relatives. The NPMLE has been shown to perform well in small sample. Our

application shows that using family history data can increase the accuracy of

estimating the risk of disease in a non-carrier group. It can be conjectured that

adding family history data leads to improved power to detect genetic associations

in genome-wide association studies.

Although the proposed model is described for time-invariant covariates, it

can be easily generalized to incorporate time-varying covariates, where model

(2.1) becomes

Λij(t|Gij , Xij(s), bi, rij ; s ≤ t)

= H

{∫ t

0
I(s ≤ Tij) exp

(
βGij + γTXij(s) + bi + rij

)
dΛ(s)

}
. (6.1)

The approaches dealing with time-varying covariates in (Zeng and Lin (2007))

can be adapted to make inferences for model (6.1). However, if bi or rij is also

time-varying, the estimation would become more complicated. Currently, there

is a lack of efficient methods for handling such scenarios.

When the family size is large, a computational challenge is how to handle
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Figure 4. Estimated cumulative risk of dementia for APOE-4 carriers and non-carriers:
the top two plots are estimates from proband data only, and the bottom two use both
proband and relative data.

multi-dimensional integrals in the proposed method, because the dimension of

the quadratures in the EM algorithm increases as the family size increases. One

alternative is to sample a manageable number of family members from large

families. The proposed method can then be applied to this subset of the data.

This process can be repeated multiple times. Then, a proper combination of the

results, after accounting for sampling weights and data overlapping, can be used

to obtain the final estimates. Moreover, using data on relatives should always
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improve efficiency, in theory, but with a large σ2
b , the efficiency gain may not be

significant. Thus, we also recommend randomly selecting a small pedigree from

each family for analysis, which greatly reduces the computation cost, without

much of an efficiency loss.

In some cases, data on disease prevalence in the non-carrier group are avail-

able on the entire population (e.g., age-specific population risk of dementia).

This information can be used to further increase the efficiency and numeric sta-

bility of analyses of familial data. In future work, we will calibrate the parameter

estimation and prediction using information available on the population.

Supplementary Materials

Proofs of Theorem 1 and Theorem 2 and additional simulation studies mim-

icking the real data are presented in the supplemental file. The simulations show

an adequate performance of selecting transformation parameter based on the

profile likelihood method and little efficiency loss of our method as compared to

the standard frailty model when true σ2
r = 0.
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