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S1. Proof of Proposition 2

Proof. We first simplify the matrix 1
T

Γ−1c as follows:

1

T
Γ−1c =

1

T (γ2
0 − γ2

1)

 γ0 −γ1

−γ1 γ0


 γ1(1 + a2)

2γ2 + γ1a1

 =
1

T (γ2
0 − γ2

1)


γ0γ1 − 2γ1γ2 − γ2

1a1 + γ0γ1a2

2γ0γ2 − γ2
1 + γ0γ1a1 − γ2

1a2

 .

Thus

 0

1
T Γ−1c

 =
1

T (γ20 − γ21)



0 0 0

γ0γ1 − 2γ1γ2 −γ21 γ0γ1

2γ0γ2 − γ21 γ0γ1 −γ21



 1

a

 .

Plugging the above expressions into equation (2.4) of the main file, we end up with the

formula for the Yule–Walker bias mapping,
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 1

E(â)

 =




1 0 0

0 1 0

0 0 1

−
1

T



0 0 0

−k 1 k

−(1 + k) 0 3 + k


+

1

T (γ20 − γ21)



0 0 0

γ0γ1 − 2γ1γ2 −γ21 γ0γ1

2γ0γ2 − γ21 γ0γ1 −γ21





 1

a



+ o

(
1

T

)
.

(S1.1)

Using elementary matrix algebra, the above equation reduces to the expression given in

equation (2.6) in the main file. This completes the proof.

S2. Proof of Proposition 3

Proof. Denote g(a) = (g1(a), g2(a))
′
, as defined in (2.11) in the main file. Then

∂g1(a)

∂a1
= 1− 1

T
+

[3a21 − 4a2 − 3a22 − 1][(1 + a2)2 − a21] + 2a21(a21 − 4a2 − 3a22 − 1)

T [(1 + a2)2 − a21]2

= 1− 1

T
+

[−3[(1 + a2)2 − a21] + 2(1 + a2)][(1 + a2)2 − a21] + 2a21[a21 − (1 + a2)(1 + 3a2)]

T [(1 + a2)2 − a21]2

= 1− 4

T
+

2(1 + a2 − a21)

T [(1 + a2)2 − a21]
− 4a21a2(1 + a2)

T [(1 + a2)2 − a21]2
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and

∂g1(a)

∂a2
= − k

T
+
−2a1[2 + 3a2][(1 + a2)2 − a21]− 2a1(1 + a2)(a21 − 4a2 − 3a22 − 1)

T [(1 + a2)2 − a21]2

= − k
T
− 2a1[(1 + a2)2 − a21(1 + 2a2)]

T [(1 + a2)2 − a21]2

= − k
T
− 2a1
T [(1 + a2)2 − a21]

+
4a31a2

T [(1 + a2)2 − a21]2
.

For the second coordinate of the vector g we obtain

∂g2(a)

∂a1
= − 4a1a2(1 + a2)2

T [(1 + a2)2 − a21]2

and

∂g2(a)

∂a2
= 1− k + 3

T
+

[−2(1 + a2)2 − 4a2(1 + a2)][(1 + a2)2 − a21] + 4a2(1 + a2)3

T [(1 + a2)2 − a21]2

= 1− k + 3

T
− 2(1 + a2)2

T [(1 + a2)2 − a21]
+

4a21a2(1 + a2)

T [(1 + a2)2 − a21]2
.

This completes the proof.

S3. For p = 2, the bias mapping is a contraction

In the remainder of the Appendix, we prove that for p = 2, the bias mapping is a contraction.

We begin below by working with the eigenvalues of (3.3) in the main file.



Philip A. Ernst and Paul Shaman

S3.1 The characteristic polynomial and its discriminant

The eigenvalues of (3.3) in the main file are determined by solving

|g′(a1, a2)− λI2| = 0,

which is equivalent to

λ2 − 2λ

[
1− a2(1 + a2)

T [(1 + a2)2 − a21]
− a21
T [(1 + a2)2 − a21]

− k + 7

2T

]

+ 1− k + 7

T
− 2a2(1 + a2)

T [(1 + a2)2 − a21]
− 2a21
T [(1 + a2)2 − a21]

+
4(k + 3)

T 2
+

2(1 + a2)(1 + 4a2)

T 2 [(1 + a2)2 − a21]

+
6a21

T 2 [(1 + a2)2 − a21]
− 2k(1 + a2)

T 2 [(1 + a2)2 − a21]
+

2ka21
T 2 [(1 + a2)2 − a21]

+
4a21a2(1 + a2)

T 2 [(1 + a2)2 − a21]2

− 4(1 + a2)3

T 2 [(1 + a2)2 − a21]2
+

4a21(1 + a2)2

T 2 [(1 + a2)2 − a21]2
+

4ka21a2(1 + a2)

T 2 [(1 + a2)2 − a21]2

− 4ka1a2(1 + a2)2

T 2 [(1 + a2)2 − a21]2
= 0. (S3.1)

The discriminant of (S3.1), after some algebraic manipulation, is given by

∆ =

[
k − 1

T
+

2[a2(1 + a2) − a21]

T
[
(1 + a2)2 − a21

]]2 −
8(k − 1)a21(1 + a2)

T 2
[
(1 + a2)2 − a21

]2 +
8(k + 1)(1 + a2)3

T 2
[
(1 + a2)2 − a21

]2

−
16a21(1 + a2)[1 + a2 + ka2]

T 2
[
(1 + a2)2 − a21

]2 +
16ka1a2(1 + a2)2

T 2
[
(1 + a2)2 − a21

]2 . (S3.2)

We proceed to calculate the discriminant (S3.2) at the fixed points (a∗1, a
∗
2) and

investigate its sign. We first consider a simpler expression for a∗1 from (3.2) in the main
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file. We set

A , (k + 1)(1− a∗2) + 2

B , (a∗2 − 3) [(2k + 1)a∗2 − (2k + 3)] = (a∗2)2(2k + 1)− 2a∗2(4k + 3) + 3(2k + 3)

(S3.3)

and we notice that

A2 = k2(1− a∗2)2 +B (S3.4)

holds. After some algebra the discriminant ∆ is given by the following expression:

∆ =

[
k + 1

T
+

2A2

TB(1 + a∗2)

]2
+

32A2k2a∗2(1− a∗2)

T 2B2(1 + a∗2)
. (S3.5)

According to (S3.1), if the discriminant given by (S3.5) is positive, then the eigenvalues

are given by

λ1,2 = 1− A2

TB(1 + a∗2)
(1 + 2a∗2)− k + 5

2T
± 1

2

√
∆ . (S3.6)

If the discriminant given by (S3.5) is negative, then the eigenvalues are given by

λ1,2 = 1− A2

TB(1 + a∗2)
(1 + 2a∗2)− k + 5

2T
± 1

2
i
√
−∆ . (S3.7)

S3.2 Analysis of ∆

For the fixed points determined by solving the system of equations (3.1) and (3.2) in the

main file, the inequality

k + 1− (k + 5)a∗2
k + 1− (k + 3)a∗2

≥ 0 (S3.8)

must hold. For k ≥ 1, we proceed to investigate the following two cases arising from

(S3.8).
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Case 1 : k + 1− (k + 5)a∗2 ≥ 0 and k + 1− (k + 3)a∗2 > 0

This region for the values of a∗2 is displayed below in Figure 1.

Figure 1: Values of a∗2 for Case 1.

The figure shows that the inequalities in Case 1 hold simultaneously if a∗2 ≤ (k+1)/(k+5).

Case 2 : k + 1− (k + 5)a∗2 ≤ 0 and k + 1− (k + 3)a∗2 < 0. This region for the values of

a∗2 is depicted below in Figure 2.

Figure 2: Values of a∗2 for Case 2.

Thus the inequalities in Case 2 hold simultaneously if a∗2 > (k + 1)/(k + 3).

Equation (S3.5) shows that the sign of ∆ directly depends on the sign of the fraction

a∗2(1 − a∗2)/(1 + a∗2). Combining the results from Cases 1-2, we consider the following

table of signs for the discriminant ∆.
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Table 1: Sign of ∆.

Table 1 shows that the discriminant ∆ is positive if a∗2(1− a∗2)/(1 + a∗2) is positive, but

if this fraction is negative we shall need to investigate further its sign. We proceed with

our analysis by considering subcases of Cases 1-2.

Subcases of Case 1

Figure 1 shows that the inequalities in Case 1 hold simultaneously if a∗2 ≤ (k+1)/(k+5).

We now consider the following subcases of Case 1:

(a) a∗2 ∈ (−∞,−1)

(b) a∗2 ∈ (−1, 0)

(c) a∗2 ∈ [0, k+1
k+5 ].
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Subcase (a) of Case 1.

Proposition 1. Let a∗2 ∈ (−∞,−1). In this range, there is a contraction if and only if

the following inequality holds:

T >
A2(1 + 2a∗2)

2B(1 + a∗2)
+
k + 5

4
+

1

4

√[
k + 1 +

2A2

B(1 + a∗2)

]2
+

32k2A2a∗2(1− a∗2)

B2(1 + a∗2)
. (S3.9)

Proof. From Table 1 we see that, for a∗2 ∈ (−∞,−1),∆ ≥ 0. To prove a contraction

result we must prove that the eigenvalues λ1,2, given by (S3.6), are less than 1 in absolute

value. We find:

|λ1,2| < 1

⇔ T >
A2(1 + 2a∗2)

2B(1 + a∗2)
+
k + 5

4
∓ 1

4

√[
k + 1 +

2A2

B(1 + a∗2)

]2
+

32k2A2a∗2(1− a∗2)

B2(1 + a∗2)
> 0.

Hence the following two inequalities must be valid simultaneously:

T >
A2(1 + 2a∗2)

2B(1 + a∗2)
+
k + 5

4
+

1

4

√[
k + 1 +

2A2

B(1 + a∗2)

]2
+

32k2A2a∗2(1− a∗2)

B2(1 + a∗2)
,

(S3.10)

A2(1 + 2a∗2)

2B(1 + a∗2)
+
k + 5

4
− 1

4

√[
k + 1 +

2A2

B(1 + a∗2)

]2
+

32k2A2a∗2(1− a∗2)

B2(1 + a∗2)
> 0.

We now further analyze the second inequality in (S3.10). For A2(1 + 2a∗2)/(2B(1 +

a∗2)) + (k + 5)/4 > 0, we must show that



S3. FOR P = 2, THE BIAS MAPPING IS A CONTRACTION

A2(1 + 2a∗2)

2B(1 + a∗2)
+
k + 5

4
>

1

4

√[
k + 1 +

2A2

B(1 + a∗2)

]2
+

32k2A2a∗2(1− a∗2)

B2(1 + a∗2)

⇔ k + 3

2
+
A2
(
A2 − k2(1− a∗2)

)
B2

+
A2(k + 5)a∗2
2B(1 + a∗2)

> 0.

The last inequality indeed holds for a∗2 ∈ (−∞,−1). Indeed, the sign of the last fraction

depends on B and on a∗2/(1 + a∗2), both of which are positive in this case. The sign of B

is provided in Figure 3 below, where the axis gives values of a∗2.

Figure 3: Sign of B.

It remains to prove that the polynomial A2−k2(1−a∗2) is positive. To do so, we compute

Π1 = A2 − k2(1− a∗2)(S3.3)
= (k + 1)2(1− a∗2)2 + 4 + 4(k + 1)(1− a∗2)− k2(1− a∗2)

= (k + 1)2 (a∗2)
2 − [k2 + 8k + 6]a∗2 + 3[2k + 3]. (S3.11)

The discriminant of the above quadratic polynomial in terms of a∗2 is given by

∆1 = [k2 + 8k + 6]2 − 12(k + 1)2(2k + 3)

= k4 − 8k3 − 8k2 = k2(k2 − 8k − 8), ∀ k > 0.
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Thus the sign of the polynomial (S3.11) depends on the sign of the polynomial k2−8k−8.

The discriminant of the latter is given by

∆11 = 82 − 4(−8) = 96 > 0.

The two corresponding real roots are

k1 =
8−
√

96

2
' −0.899, k2 =

8 +
√

96

2
= 8.899 k=1,2,...

≡ 9.

The sign of ∆1 is presented below:

Figure 4: Sign of ∆1.

Figure 4 shows that for 1 ≤ k ≤ 8, ∆1 < 0. For k ≥ 9, ∆1 > 0, and thus the polynomial

(S3.11) has the two real roots

r1 =
k2 + 8k + 6− k

√
k2 − 8k − 8

2(k + 1)2
, r2 =

k2 + 8k + 6 + k
√
k2 − 8k − 8

2(k + 1)2
. (S3.12)

Simple algebra shows that −1 < r1. The sign of the polynomial given in (S3.11) for

k ≥ 9 is presented below.

Figure 5: Sign of Π1 .
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In the case a∗2 ∈ (−∞,−1) and for every k > 0, we have shown the polynomial (S3.11)

is positive, and thus the second inequality of (S3.10) holds. Thus, for a∗2 ∈ (−∞,−1) we

have a contraction subject to the first inequality of (S3.10). This finishes the proof.

Subcase (b) of Case 1 : Let a∗2 ∈ (−1, 0).

Proposition 2. If k = 1, 2 and a∗2 ∈ (−1/2, 0), then there is a contraction if and only

if the following inequalities hold:

T >
A2(1 + 2a∗2)

2B(1 + a∗2)
+
k + 5

4
+

1

4

√[
k + 1 +

2A2

B(1 + a∗2)

]2
+

32k2A2a∗2(1− a∗2)

B2(1 + a∗2)
,

k + 3

2
+
A2
(
A2 − k2(1− a∗2)

)
B2

+
A2(k + 5)a∗2
2B(1 + a∗2)

> 0.

(S3.13)

Proof. We rewrite (S3.5) as

∆ =
(k + 1)2

T 2
+

4A4

T 2B2(1 + a∗2)2
+

4A2(k + 1)

T 2B(1 + a∗2)
+

32k2A2a∗2(1− a∗2)

T 2B2(1 + a∗2)

=
(k + 1)2

T 2
+

4A2
[
A2 + 8k2a∗2(1− a∗2)(1 + a∗2)

]
T 2B2(1 + a∗2)2

+
4A2(k + 1)

T 2B(1 + a∗2)
.

Here the sign of the discriminant ∆ depends on the polynomial A2+8k2a∗2(1−a∗2)(1+a∗2).

This follows since B > 0 and 1 + a∗2 > 0 for a∗2 ∈ (−1, 0). Then

A2 + 8k2a∗2(1− a∗2)(1 + a∗2)(S3.3)
= (k + 1)2(1− a∗2)2 + 4 + 4(k + 1)(1− a∗2) + 8k2a∗2(1− a∗2)(1 + a∗2)

= (k + 1)2(1− a∗2)2 + 4 + 4(1− a∗2)[2k2(a∗2)2 + 2k2a∗2 + k + 1].
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We investigate the sign of the polynomial 2k2(a∗2)2+2k2a∗2+k+1, which has discriminant

∆2 = 4k4 − 8k2(k + 1) = 4k2[k2 − 2k − 2]. This discriminant is negative for k = 1, 2

and thus the polynomial is positive for k = 1, 2. For k ≥ 3,∆ > 0. Furthermore, for

a∗2 ∈ (−1/2, 0), the constraint

A2(1 + 2a∗2)

2B(1 + a∗2)
+
k + 5

4
> 0 (S3.14)

for the contraction holds since both B > 0 and
1+2a∗2
1+a∗2

> 0. The second inequality in

(S3.10) holds if and only if the second inequality of (S3.13) holds. Thus, for k = 1, 2 and

a∗2 ∈ (−1/2, 0), there is a contraction mapping if and only if the inequalities in (S3.13)

hold. This finishes the proof. �

Proposition 3. If k = 1, 2 and a∗2 ∈ (−1,−1/2], then there is a contraction if and only

if the following inequalities hold:

T >
A2(1 + 2a∗2)

2B(1 + a∗2)
+
k + 5

4
+

1

4

√[
k + 1 +

2A2

B(1 + a∗2)

]2
+

32k2A2a∗2(1− a∗2)

B2(1 + a∗2)
,

A2(1 + 2a∗2)

2B(1 + a∗2)
+
k + 5

4
> 0,

k + 3

2
+
A2
(
A2 − k2(1− a∗2)

)
B2

+
A2(k + 5)a∗2
2B(1 + a∗2)

> 0.

(S3.15)

Proof. The proof is the same as that of Proposition 2.

We now present results for k ≥ 3.

Proposition 4. If k ≥ 3, a∗2 ∈ (−1/2, 0) and ∆ > 0, then there is a contraction if and

only if the inequalities in (S3.13) hold.
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Proof. Using the hypothesis that ∆ > 0, the proof is nearly identical to that of Propo-

sition 2.

Proposition 5. If k ≥ 3, a∗2 ∈ (−1,−1/2] and ∆ > 0, then there is a contraction if and

only if the inequalities of (S3.15) hold.

Proof. Using the hypothesis that ∆ > 0, the proof is nearly identical to that of Propo-

sition 3.

Proposition 6. If k ≥ 3, a∗2 ∈ (−1, 0) and ∆ < 0, then there is a contraction if and

only if the following inequality holds

4A4a∗2(1 + a∗2)

B2(1 + a∗2)2
+ 2k + 6 +

2A2(ka∗2 + 5a∗2 + 2)

B(1 + a∗2)
− 8k2A2a∗2(1− a∗2)

B2(1 + a∗2)
< T

[
2A2(1 + 2a∗2)

B(1 + a∗2)
+ k + 5

]
.

(S3.16)

Proof. To obtain a contraction result for ∆ < 0, one must prove that the complex

eigenvalues λ1,2 given by (S3.7) have modulus less than 1. We find:

|λ1,2| < 1

⇔ A4(1 + 2a∗2)2

T 2B2(1 + a∗2)2
+

(k + 5)2

4T 2
− 2A2(1 + 2a∗2)

TB(1 + a∗2)
− k + 5

T
+
A2(k + 5)(1 + 2a∗2)

T 2B(1 + a∗2)

− (k + 1)2

4T 2
− A4

T 2B2(1 + a∗2)2
− A2(k + 1)

T 2B(1 + a∗2)
− 8k2A2a∗2(1− a∗2)

T 2B2(1 + a∗2)
< 0,

⇔ 4A4a∗2(1 + a∗2)

B2(1 + a∗2)2
+ 2k + 6 +

2A2(ka∗2 + 5a∗2 + 2)

B(1 + a∗2)
− 8k2A2a∗2(1− a∗2)

B2(1 + a∗2)
< T

[
2A2(1 + 2a∗2)

B(1 + a∗2)
+ k + 5

]
,

which is (S3.16). This finishes the proof.
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Subcase (c) of Case 1 : Let a∗2 ∈ [0, k+1
k+5 ].

Proposition 7. If 1 ≤ k ≤ 9 and a∗2 ∈ [0, (k + 1)/(k + 5)], then there is a contraction

if and only if the first inequality of (S3.10) holds.

Proof. For a∗2 ∈ [0, (k+ 1)/(k+ 5)], Table 1 shows that ∆ > 0. The proof of Proposition

1 tells us that there is a contraction if and only if the inequalities of (S3.10) hold. For

a∗2 ∈ [0, (k + 1)/(k + 5)], the constraint

A2(1 + 2a∗2)

2B(1 + a∗2)
+
k + 5

4
> 0 (S3.17)

holds since both B > 0 and
1+2a∗2
1+a∗2

> 0. For 1 ≤ k ≤ 8, ∆1 < 0, and thus Π1 > 0.

Further,
a∗2

1+a∗2
> 0. Thus, the second inequality of (S3.10) holds. For k = 9, ∆1 =

81 > 0, and thus the polynomial Π1 has the two real roots r1 and r2 of (S3.12) with

(k+1)/(k+5) < r1 < r2. Figure 5 shows that the polynomial Π1 remains positive. This

finishes the proof.

For k ≥ 10, simple algebra shows that 0 < r1 <
k+1
k+5 < r2, where r1 and r2 are given

by (S3.12). This leads us to the following two propositions.

Proposition 8. If k ≥ 10 and a∗2 ∈ [0, r1], where r1 is given by (S3.12), then there is a

contraction if and only if the first inequality of (S3.10) holds.

Proof. By the hypothesis and Figure 5, we see that the polynomial Π1 remains positive.

The proof is thus the same as that of Proposition 7.

Proposition 9. If k ≥ 10 and a∗2 ∈ [r1, (k + 1)/(k + 5)], where r1 is given by (S3.12),

then there is a contraction if and only if the inequalities of (S3.13) hold.

Proof. By the hypothesis and Figure 5, the polynomial Π1 < 0. For a contraction result,

the second inequality of (S3.10) necessitates the second inequality of (S3.13). The proof
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is now the same as that of Proposition 7.

Subcases of Case 2

We now consider the following subcases of Case 2:

(a) a∗2 ∈ (k+1
k+3 , 1)

(b) a∗2 ∈ (1, 3+2k
1+2k ) ∪ ( 3+2k

1+2k ,
k+3
k+1 ) ∪ (k+3

k+1 , 3) ∪ (3,∞).

Subcase (a) of Case 2 :

Proposition 10. If 1 ≤ k ≤ 8 and a∗2 ∈
(

k+1
k+3 , 1

)
, then there is a contraction if and

only if the first inequality of (S3.10) holds.

Proof. From the conditions of the hypothesis, we obtain ∆ > 0. We also have that

A2(1+2a∗2)
2B(1+a∗2)

+ k+5
4 > 0 since B > 0. Now the proof is the same as that of Proposition

7.

For k ≥ 9, simple algebra shows that r1 <
k+1
k+3 < r2 < 1, where r1 and r2 are given

by (S3.12). This gives the following results.

Proposition 11. If k ≥ 9 and a∗2 ∈ (r2, 1), where r2 is given by (S3.12), then there is

a contraction if and only if the first inequality of (S3.10) holds.

Proof. The proof is the same as that of Proposition 8.

Proposition 12. If k ≥ 9 and a∗2 ∈
(

k+1
k+3 , r2

]
, where r2 is given by (S3.12), then there

is a contraction if and only if the inequalities of (S3.13) hold.

Proof. The proof is the same as that of Proposition 9.
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Subcase (b) of Case 2 :

Proposition 13. If a∗2 ∈ (1, 3+2k
1+2k ) ∪ (3,∞) and ∆ > 0, then there is a contraction if

and only if the first inequality of (S3.10) holds.

Proof. By hypothesis, ∆ > 0. Recall that the proof of Proposition 1 shows that there is

a contraction if and only if the inequalities of (S3.10) hold.

We have that
A2(1+2a∗2)
2B(1+a∗2)

+ k+5
4 > 0, since both B > 0 and

1+2a∗2
1+a∗2

> 0. For 1 ≤ k ≤ 8,

∆1 < 0, which gives Π1 > 0. Further,
a∗2

1+a∗2
> 0. We thus obtain that the second

inequality of (S3.10) holds. If k ≥ 9, ∆1 > 0, and thus the polynomial Π1 has two real

roots r1 < r2 < 1. The conditions of the hypothesis in conjunction with Figure 5 ensure

that Π1 remains positive. This finishes the proof.

Proposition 14. If a∗2 ∈ ( 3+2k
1+2k ,

k+3
k+1 ) ∪ (k+3

k+1 , 3) and ∆ > 0, then there is a contraction

if and only if the inequalities in (S3.15) hold.

Proof. By hypothesis, ∆ > 0. The proof of Proposition 1 shows that there is a contrac-

tion if and only if the inequalities of (S3.10) hold. However, since a∗2 ∈ ( 3+2k
1+2k ,

k+3
k+1 ) ∪

(k+3
k+1 , 3), we have from Figure 3 that B < 0. According to the analysis of Proposition 1,

the second inequality of (S3.10) necessitates the second and third inequalities of (S3.15).

This finishes the proof.

Proposition 15. If a∗2 ∈ (1, 3+2k
1+2k ) ∪ ( 3+2k

1+2k ,
k+3
k+1 ) ∪ (k+3

k+1 , 3) ∪ (3,∞) and ∆ < 0, then

there is a contraction if and only if the inequality (S3.16) holds.

Proof. The proof is the same as that of Proposition 6.
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