The bias mapping of the Yule-Walker estimator

is a contraction

Rice University and The Wharton School of the University of Pennsylvania

Supplementary Material

S1. Proof of Proposition 2

Proof. We first simplify the matrix $\frac{1}{T} \Gamma^{-1} \mathbf{c}$ as follows:
$\frac{1}{T} \Gamma^{-1} \mathbf{c}=\frac{1}{T\left(\gamma_{0}^{2}-\gamma_{1}^{2}\right)}\left(\begin{array}{cc}\gamma_{0} & -\gamma_{1} \\ -\gamma_{1} & \gamma_{0}\end{array}\right)\binom{\gamma_{1}\left(1+a_{2}\right)}{2 \gamma_{2}+\gamma_{1} a_{1}}=\frac{1}{T\left(\gamma_{0}^{2}-\gamma_{1}^{2}\right)}\binom{\gamma_{0} \gamma_{1}-2 \gamma_{1} \gamma_{2}-\gamma_{1}^{2} a_{1}+\gamma_{0} \gamma_{1} a_{2}}{2 \gamma_{0} \gamma_{2}-\gamma_{1}^{2}+\gamma_{0} \gamma_{1} a_{1}-\gamma_{1}^{2} a_{2}}$
Thus

$$
\binom{0}{\frac{1}{T} \Gamma^{-1} \mathbf{c}}=\frac{1}{T\left(\gamma_{0}^{2}-\gamma_{1}^{2}\right)}\left(\begin{array}{ccc}
0 & 0 & 0 \\
\gamma_{0} \gamma_{1}-2 \gamma_{1} \gamma_{2} & -\gamma_{1}^{2} & \gamma_{0} \gamma_{1} \\
\\
2 \gamma_{0} \gamma_{2}-\gamma_{1}^{2} & \gamma_{0} \gamma_{1} & -\gamma_{1}^{2}
\end{array}\right)\binom{1}{\mathbf{a}}
$$

Plugging the above expressions into equation (2.4) of the main file, we end up with the formula for the Yule-Walker bias mapping,

$\binom{1}{E(\hat{\mathbf{a}})}=\left[\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)-\frac{1}{T}\left(\begin{array}{ccc}0 & 0 & 0 \\ -k & 1 & k \\ -(1+k) & 0 & 3+k\end{array}\right)+\frac{1}{T\left(\gamma_{0}^{2}-\gamma_{1}^{2}\right)}\left(\begin{array}{cc}0 & 0 \\ \gamma_{0} \gamma_{1}-2 \gamma_{1} \gamma_{2} & -\gamma_{1}^{2} \\ \gamma_{0} \gamma_{1} \\ 2 \gamma_{0} \gamma_{2}-\gamma_{1}^{2} & \gamma_{0} \gamma_{1} \\ -\gamma_{1}^{2}\end{array}\right)\right]\left(\begin{array}{c} \\ 1 \\ \mathbf{a}\end{array}\right)$ $+o\left(\frac{1}{T}\right)$.

Using elementary matrix algebra, the above equation reduces to the expression given in equation (2.6) in the main file. This completes the proof.

S2. Proof of Proposition 3

Proof. Denote $\mathbf{g}(\mathbf{a})=\left(g_{1}(\mathbf{a}), g_{2}(\mathbf{a})\right)^{\prime}$, as defined in (2.11) in the main file. Then

$$
\begin{aligned}
\frac{\partial g_{1}(\mathbf{a})}{\partial a_{1}} & =1-\frac{1}{T}+\frac{\left[3 a_{1}^{2}-4 a_{2}-3 a_{2}^{2}-1\right]\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]+2 a_{1}^{2}\left(a_{1}^{2}-4 a_{2}-3 a_{2}^{2}-1\right)}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} \\
& =1-\frac{1}{T}+\frac{\left[-3\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]+2\left(1+a_{2}\right)\right]\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]+2 a_{1}^{2}\left[a_{1}^{2}-\left(1+a_{2}\right)\left(1+3 a_{2}\right)\right]}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} \\
& =1-\frac{4}{T}+\frac{2\left(1+a_{2}-a_{1}^{2}\right)}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}-\frac{4 a_{1}^{2} a_{2}\left(1+a_{2}\right)}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial g_{1}(\mathbf{a})}{\partial a_{2}} & =-\frac{k}{T}+\frac{-2 a_{1}\left[2+3 a_{2}\right]\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]-2 a_{1}\left(1+a_{2}\right)\left(a_{1}^{2}-4 a_{2}-3 a_{2}^{2}-1\right)}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} \\
& =-\frac{k}{T}-\frac{2 a_{1}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\left(1+2 a_{2}\right)\right]}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} \\
& =-\frac{k}{T}-\frac{2 a_{1}}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}+\frac{4 a_{1}^{3} a_{2}}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} .
\end{aligned}
$$

For the second coordinate of the vector \mathbf{g} we obtain

$$
\frac{\partial g_{2}(\mathbf{a})}{\partial a_{1}}=-\frac{4 a_{1} a_{2}\left(1+a_{2}\right)^{2}}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}}
$$

and

$$
\begin{aligned}
\frac{\partial g_{2}(\mathbf{a})}{\partial a_{2}} & =1-\frac{k+3}{T}+\frac{\left[-2\left(1+a_{2}\right)^{2}-4 a_{2}\left(1+a_{2}\right)\right]\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]+4 a_{2}\left(1+a_{2}\right)^{3}}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} \\
& =1-\frac{k+3}{T}-\frac{2\left(1+a_{2}\right)^{2}}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}+\frac{4 a_{1}^{2} a_{2}\left(1+a_{2}\right)}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} .
\end{aligned}
$$

This completes the proof.

S3. For $p=2$, the bias mapping is a contraction

In the remainder of the Appendix, we prove that for $p=2$, the bias mapping is a contraction.
We begin below by working with the eigenvalues of (3.3) in the main file.

S3.1 The characteristic polynomial and its discriminant

The eigenvalues of (3.3) in the main file are determined by solving

$$
\left|\mathbf{g}^{\prime}\left(a_{1}, a_{2}\right)-\lambda I_{2}\right|=0
$$

which is equivalent to

$$
\begin{align*}
& \lambda^{2}-2 \lambda\left[1-\frac{a_{2}\left(1+a_{2}\right)}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}-\frac{a_{1}^{2}}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}-\frac{k+7}{2 T}\right] \\
& +1-\frac{k+7}{T}-\frac{2 a_{2}\left(1+a_{2}\right)}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}-\frac{2 a_{1}^{2}}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}+\frac{4(k+3)}{T^{2}}+\frac{2\left(1+a_{2}\right)\left(1+4 a_{2}\right)}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]} \\
& \\
& \quad+\frac{6 a_{1}^{2}}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}-\frac{2 k\left(1+a_{2}\right)}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}+\frac{2 k a_{1}^{2}}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}+\frac{4 a_{1}^{2} a_{2}\left(1+a_{2}\right)}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} \\
& \tag{S3.1}\\
& \quad-\frac{4\left(1+a_{2}\right)^{3}}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}}+\frac{4 a_{1}^{2}\left(1+a_{2}\right)^{2}}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}}+\frac{4 k a_{1}^{2} a_{2}\left(1+a_{2}\right)}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} \\
& \quad-\frac{4 k a_{1} a_{2}\left(1+a_{2}\right)^{2}}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}}=0 .
\end{align*}
$$

The discriminant of S3.1, after some algebraic manipulation, is given by

$$
\begin{align*}
& \Delta=\left[\frac{k-1}{T}+\frac{2\left[a_{2}\left(1+a_{2}\right)-a_{1}^{2}\right]}{T\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]}\right]^{2}-\frac{8(k-1) a_{1}^{2}\left(1+a_{2}\right)}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}}+\frac{8(k+1)\left(1+a_{2}\right)^{3}}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} \\
&-\frac{16 a_{1}^{2}\left(1+a_{2}\right)\left[1+a_{2}+k a_{2}\right]}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}}+\frac{16 k a_{1} a_{2}\left(1+a_{2}\right)^{2}}{T^{2}\left[\left(1+a_{2}\right)^{2}-a_{1}^{2}\right]^{2}} . \tag{S3.2}
\end{align*}
$$

We proceed to calculate the discriminant S3.2 at the fixed points $\left(a_{1}^{*}, a_{2}^{*}\right)$ and investigate its sign. We first consider a simpler expression for a_{1}^{*} from (3.2) in the main
file. We set

$$
\begin{align*}
& A \triangleq(k+1)\left(1-a_{2}^{*}\right)+2 \tag{S3.3}\\
& B \triangleq\left(a_{2}^{*}-3\right)\left[(2 k+1) a_{2}^{*}-(2 k+3)\right]=\left(a_{2}^{*}\right)^{2}(2 k+1)-2 a_{2}^{*}(4 k+3)+3(2 k+3)
\end{align*}
$$

and we notice that

$$
\begin{equation*}
A^{2}=k^{2}\left(1-a_{2}^{*}\right)^{2}+B \tag{S3.4}
\end{equation*}
$$

holds. After some algebra the discriminant Δ is given by the following expression:

$$
\begin{equation*}
\Delta=\left[\frac{k+1}{T}+\frac{2 A^{2}}{T B\left(1+a_{2}^{*}\right)}\right]^{2}+\frac{32 A^{2} k^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{T^{2} B^{2}\left(1+a_{2}^{*}\right)} \tag{S3.5}
\end{equation*}
$$

According to S3.1, if the discriminant given by 53.5 is positive, then the eigenvalues are given by

$$
\begin{equation*}
\lambda_{1,2}=1-\frac{A^{2}}{T B\left(1+a_{2}^{*}\right)}\left(1+2 a_{2}^{*}\right)-\frac{k+5}{2 T} \pm \frac{1}{2} \sqrt{\Delta} \tag{S3.6}
\end{equation*}
$$

If the discriminant given by S3.5 is negative, then the eigenvalues are given by

$$
\begin{equation*}
\lambda_{1,2}=1-\frac{A^{2}}{T B\left(1+a_{2}^{*}\right)}\left(1+2 a_{2}^{*}\right)-\frac{k+5}{2 T} \pm \frac{1}{2} i \sqrt{-\Delta} . \tag{S3.7}
\end{equation*}
$$

S3.2 Analysis of Δ

For the fixed points determined by solving the system of equations (3.1) and (3.2) in the main file, the inequality

$$
\begin{equation*}
\frac{k+1-(k+5) a_{2}^{*}}{k+1-(k+3) a_{2}^{*}} \geq 0 \tag{S3.8}
\end{equation*}
$$

must hold. For $k \geq 1$, we proceed to investigate the following two cases arising from S3.8.

Case 1: $k+1-(k+5) a_{2}^{*} \geq 0$ and $k+1-(k+3) a_{2}^{*}>0$

This region for the values of a_{2}^{*} is displayed below in Figure 1 .

Figure 1: Values of a_{2}^{*} for Case 1.

The figure shows that the inequalities in Case 1 hold simultaneously if $a_{2}^{*} \leq(k+1) /(k+5)$.

Case 2: $k+1-(k+5) a_{2}^{*} \leq 0$ and $k+1-(k+3) a_{2}^{*}<0$. This region for the values of a_{2}^{*} is depicted below in Figure 2 .

Figure 2: Values of a_{2}^{*} for Case 2.

Thus the inequalities in Case 2 hold simultaneously if $a_{2}^{*}>(k+1) /(k+3)$.

Equation s3.5 shows that the sign of Δ directly depends on the sign of the fraction $a_{2}^{*}\left(1-a_{2}^{*}\right) /\left(1+a_{2}^{*}\right)$. Combining the results from Cases 1-2, we consider the following table of signs for the discriminant Δ.

-1		k							$k+1 / k+5$			$k+1 / k+3$	1
a_{2}	-	-	+	+	+	+							
$1-a_{2}$	+	+	+	+	+	-							
$1+a_{2}$	-	+	+	+	+	+							
$a_{2}\left(1-a_{2}\right) /\left(1+a_{2}\right)$	+	-	+	+	+	-							

Table 1: Sign of Δ.

Table 1 shows that the discriminant Δ is positive if $a_{2}^{*}\left(1-a_{2}^{*}\right) /\left(1+a_{2}^{*}\right)$ is positive, but if this fraction is negative we shall need to investigate further its sign. We proceed with our analysis by considering subcases of Cases 1-2.

Subcases of Case 1
Figure 1 shows that the inequalities in Case 1 hold simultaneously if $a_{2}^{*} \leq(k+1) /(k+5)$.
We now consider the following subcases of Case 1 :
(a) $a_{2}^{*} \in(-\infty,-1)$
(b) $a_{2}^{*} \in(-1,0)$
(c) $a_{2}^{*} \in\left[0, \frac{k+1}{k+5}\right]$.

Subcase (a) of Case 1.

Proposition 1. Let $a_{2}^{*} \in(-\infty,-1)$. In this range, there is a contraction if and only if the following inequality holds:

$$
\begin{equation*}
T>\frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}+\frac{1}{4} \sqrt{\left[k+1+\frac{2 A^{2}}{B\left(1+a_{2}^{*}\right)}\right]^{2}+\frac{32 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)} .} \tag{S3.9}
\end{equation*}
$$

Proof. From Table 1 we see that, for $a_{2}^{*} \in(-\infty,-1), \Delta \geq 0$. To prove a contraction result we must prove that the eigenvalues $\lambda_{1,2}$, given by S3.6, are less than 1 in absolute value. We find:

$$
\begin{aligned}
& \left|\lambda_{1,2}\right|<1 \\
& \Leftrightarrow T>\frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4} \mp \frac{1}{4} \sqrt{\left[k+1+\frac{2 A^{2}}{B\left(1+a_{2}^{*}\right)}\right]^{2}+\frac{32 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)}>0 .}
\end{aligned}
$$

Hence the following two inequalities must be valid simultaneously:

$$
\begin{align*}
& T>\frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}+\frac{1}{4} \sqrt{\left[k+1+\frac{2 A^{2}}{B\left(1+a_{2}^{*}\right)}\right]^{2}+\frac{32 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)},} \\
& \frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}-\frac{1}{4} \sqrt{\left[k+1+\frac{2 A^{2}}{B\left(1+a_{2}^{*}\right)}\right]^{2}+\frac{32 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)}}>0 . \tag{S3.10}
\end{align*}
$$

We now further analyze the second inequality in S3.10). For $A^{2}\left(1+2 a_{2}^{*}\right) /(2 B(1+$ $\left.\left.a_{2}^{*}\right)\right)+(k+5) / 4>0$, we must show that

$$
\begin{aligned}
& \frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}>\frac{1}{4} \sqrt{\left[k+1+\frac{2 A^{2}}{B\left(1+a_{2}^{*}\right)}\right]^{2}+\frac{32 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)}} \\
\Leftrightarrow & \frac{k+3}{2}+\frac{A^{2}\left(A^{2}-k^{2}\left(1-a_{2}^{*}\right)\right)}{B^{2}}+\frac{A^{2}(k+5) a_{2}^{*}}{2 B\left(1+a_{2}^{*}\right)}>0 .
\end{aligned}
$$

The last inequality indeed holds for $a_{2}^{*} \in(-\infty,-1)$. Indeed, the sign of the last fraction depends on B and on $a_{2}^{*} /\left(1+a_{2}^{*}\right)$, both of which are positive in this case. The sign of B is provided in Figure 3 below, where the axis gives values of a_{2}^{*}.

Figure 3: Sign of B.

It remains to prove that the polynomial $A^{2}-k^{2}\left(1-a_{2}^{*}\right)$ is positive. To do so, we compute

$$
\begin{gather*}
\Pi_{1}=A^{2}-k^{2}\left(1-a_{2}^{*}\right) \stackrel{\sqrt{S 3.3}}{=}(k+1)^{2}\left(1-a_{2}^{*}\right)^{2}+4+4(k+1)\left(1-a_{2}^{*}\right)-k^{2}\left(1-a_{2}^{*}\right) \\
=(k+1)^{2}\left(a_{2}^{*}\right)^{2}-\left[k^{2}+8 k+6\right] a_{2}^{*}+3[2 k+3] \tag{S3.11}
\end{gather*}
$$

The discriminant of the above quadratic polynomial in terms of a_{2}^{*} is given by

$$
\begin{aligned}
\Delta_{1} & =\left[k^{2}+8 k+6\right]^{2}-12(k+1)^{2}(2 k+3) \\
& =k^{4}-8 k^{3}-8 k^{2}=k^{2}\left(k^{2}-8 k-8\right), \quad \forall k>0
\end{aligned}
$$

Thus the sign of the polynomial S 3.11 depends on the sign of the polynomial $k^{2}-8 k-8$.

The discriminant of the latter is given by

$$
\Delta_{11}=8^{2}-4(-8)=96>0
$$

The two corresponding real roots are

$$
k_{1}=\frac{8-\sqrt{96}}{2} \simeq-0.899, \quad k_{2}=\frac{8+\sqrt{96}}{2}=8.899 \quad \stackrel{k=1,2, \ldots}{\equiv}
$$

9.

The sign of Δ_{1} is presented below:

Figure 4: Sign of Δ_{1}.

Figure 4 shows that for $1 \leq k \leq 8, \Delta_{1}<0$. For $k \geq 9, \Delta_{1}>0$, and thus the polynomial (S3.11) has the two real roots

$$
\begin{equation*}
r_{1}=\frac{k^{2}+8 k+6-k \sqrt{k^{2}-8 k-8}}{2(k+1)^{2}}, \quad r_{2}=\frac{k^{2}+8 k+6+k \sqrt{k^{2}-8 k-8}}{2(k+1)^{2}} . \tag{S3.12}
\end{equation*}
$$

Simple algebra shows that $-1<r_{1}$. The sign of the polynomial given in S3.11) for $k \geq 9$ is presented below.

Figure 5: Sign of Π_{1}.

In the case $a_{2}^{*} \in(-\infty,-1)$ and for every $k>0$, we have shown the polynomial S3.11) is positive, and thus the second inequality of S3.10 holds. Thus, for $a_{2}^{*} \in(-\infty,-1)$ we have a contraction subject to the first inequality of S3.10. This finishes the proof.

Subcase (b) of Case 1: Let $a_{2}^{*} \in(-1,0)$.

Proposition 2. If $k=1,2$ and $a_{2}^{*} \in(-1 / 2,0)$, then there is a contraction if and only if the following inequalities hold:

$$
\begin{align*}
& T>\frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}+\frac{1}{4} \sqrt{\left[k+1+\frac{2 A^{2}}{B\left(1+a_{2}^{*}\right)}\right]^{2}+\frac{32 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)}} \\
& \frac{k+3}{2}+\frac{A^{2}\left(A^{2}-k^{2}\left(1-a_{2}^{*}\right)\right)}{B^{2}}+\frac{A^{2}(k+5) a_{2}^{*}}{2 B\left(1+a_{2}^{*}\right)}>0 \tag{S3.13}
\end{align*}
$$

Proof. We rewrite S3.5 as

$$
\begin{aligned}
\Delta & =\frac{(k+1)^{2}}{T^{2}}+\frac{4 A^{4}}{T^{2} B^{2}\left(1+a_{2}^{*}\right)^{2}}+\frac{4 A^{2}(k+1)}{T^{2} B\left(1+a_{2}^{*}\right)}+\frac{32 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{T^{2} B^{2}\left(1+a_{2}^{*}\right)} \\
& =\frac{(k+1)^{2}}{T^{2}}+\frac{4 A^{2}\left[A^{2}+8 k^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)\left(1+a_{2}^{*}\right)\right]}{T^{2} B^{2}\left(1+a_{2}^{*}\right)^{2}}+\frac{4 A^{2}(k+1)}{T^{2} B\left(1+a_{2}^{*}\right)}
\end{aligned}
$$

Here the sign of the discriminant Δ depends on the polynomial $A^{2}+8 k^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)\left(1+a_{2}^{*}\right)$.
This follows since $B>0$ and $1+a_{2}^{*}>0$ for $a_{2}^{*} \in(-1,0)$. Then

$$
\begin{aligned}
A^{2}+8 k^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)\left(1+a_{2}^{*}\right) & \stackrel{\text { S3.3 }}{\underline{S}}(k+1)^{2}\left(1-a_{2}^{*}\right)^{2}+4+4(k+1)\left(1-a_{2}^{*}\right)+8 k^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)\left(1+a_{2}^{*}\right) \\
& =(k+1)^{2}\left(1-a_{2}^{*}\right)^{2}+4+4\left(1-a_{2}^{*}\right)\left[2 k^{2}\left(a_{2}^{*}\right)^{2}+2 k^{2} a_{2}^{*}+k+1\right]
\end{aligned}
$$

We investigate the sign of the polynomial $2 k^{2}\left(a_{2}^{*}\right)^{2}+2 k^{2} a_{2}^{*}+k+1$, which has discriminant $\Delta_{2}=4 k^{4}-8 k^{2}(k+1)=4 k^{2}\left[k^{2}-2 k-2\right]$. This discriminant is negative for $k=1,2$ and thus the polynomial is positive for $k=1,2$. For $k \geq 3, \Delta>0$. Furthermore, for $a_{2}^{*} \in(-1 / 2,0)$, the constraint

$$
\begin{equation*}
\frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}>0 \tag{S3.14}
\end{equation*}
$$

for the contraction holds since both $B>0$ and $\frac{1+2 a_{2}^{*}}{1+a_{2}^{*}}>0$. The second inequality in S3.10 holds if and only if the second inequality of S3.13 holds. Thus, for $k=1,2$ and $a_{2}^{*} \in(-1 / 2,0)$, there is a contraction mapping if and only if the inequalities in S3.13) hold. This finishes the proof.

Proposition 3. If $k=1,2$ and $a_{2}^{*} \in(-1,-1 / 2]$, then there is a contraction if and only if the following inequalities hold:

$$
\begin{align*}
& T>\frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}+\frac{1}{4} \sqrt{\left[k+1+\frac{2 A^{2}}{B\left(1+a_{2}^{*}\right)}\right]^{2}+\frac{32 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)}} \\
& \frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}>0 \tag{S3.15}\\
& \frac{k+3}{2}+\frac{A^{2}\left(A^{2}-k^{2}\left(1-a_{2}^{*}\right)\right)}{B^{2}}+\frac{A^{2}(k+5) a_{2}^{*}}{2 B\left(1+a_{2}^{*}\right)}>0
\end{align*}
$$

Proof. The proof is the same as that of Proposition 2.

We now present results for $k \geq 3$.

Proposition 4. If $k \geq 3, a_{2}^{*} \in(-1 / 2,0)$ and $\Delta>0$, then there is a contraction if and only if the inequalities in S3.13) hold.

Proof. Using the hypothesis that $\Delta>0$, the proof is nearly identical to that of Proposition 2

Proposition 5. If $k \geq 3, a_{2}^{*} \in(-1,-1 / 2]$ and $\Delta>0$, then there is a contraction if and only if the inequalities of S3.15 hold.

Proof. Using the hypothesis that $\Delta>0$, the proof is nearly identical to that of Proposition 3 .

Proposition 6. If $k \geq 3, a_{2}^{*} \in(-1,0)$ and $\Delta<0$, then there is a contraction if and only if the following inequality holds

$$
\begin{equation*}
\frac{4 A^{4} a_{2}^{*}\left(1+a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)^{2}}+2 k+6+\frac{2 A^{2}\left(k a_{2}^{*}+5 a_{2}^{*}+2\right)}{B\left(1+a_{2}^{*}\right)}-\frac{8 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)}<T\left[\frac{2 A^{2}\left(1+2 a_{2}^{*}\right)}{B\left(1+a_{2}^{*}\right)}+k+5\right] . \tag{S3.16}
\end{equation*}
$$

Proof. To obtain a contraction result for $\Delta<0$, one must prove that the complex eigenvalues $\lambda_{1,2}$ given by $S 3.7$ have modulus less than 1 . We find:

$$
\begin{aligned}
& \left|\lambda_{1,2}\right|<1 \\
\Leftrightarrow & \frac{A^{4}\left(1+2 a_{2}^{*}\right)^{2}}{T^{2} B^{2}\left(1+a_{2}^{*}\right)^{2}}+\frac{(k+5)^{2}}{4 T^{2}}-\frac{2 A^{2}\left(1+2 a_{2}^{*}\right)}{T B\left(1+a_{2}^{*}\right)}-\frac{k+5}{T}+\frac{A^{2}(k+5)\left(1+2 a_{2}^{*}\right)}{T^{2} B\left(1+a_{2}^{*}\right)} \\
& -\frac{(k+1)^{2}}{4 T^{2}}-\frac{A^{4}}{T^{2} B^{2}\left(1+a_{2}^{*}\right)^{2}}-\frac{A^{2}(k+1)}{T^{2} B\left(1+a_{2}^{*}\right)}-\frac{8 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{T^{2} B^{2}\left(1+a_{2}^{*}\right)}<0, \\
\Leftrightarrow & \frac{4 A^{4} a_{2}^{*}\left(1+a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)^{2}}+2 k+6+\frac{2 A^{2}\left(k a_{2}^{*}+5 a_{2}^{*}+2\right)}{B\left(1+a_{2}^{*}\right)}-\frac{8 k^{2} A^{2} a_{2}^{*}\left(1-a_{2}^{*}\right)}{B^{2}\left(1+a_{2}^{*}\right)}<T\left[\frac{2 A^{2}\left(1+2 a_{2}^{*}\right)}{B\left(1+a_{2}^{*}\right)}+k+5\right]
\end{aligned}
$$

which is S3.16. This finishes the proof.

Subcase (c) of Case 1: Let $a_{2}^{*} \in\left[0, \frac{k+1}{k+5}\right]$.

Proposition 7. If $1 \leq k \leq 9$ and $a_{2}^{*} \in[0,(k+1) /(k+5)]$, then there is a contraction if and only if the first inequality of S3.10 holds.

Proof. For $a_{2}^{*} \in[0,(k+1) /(k+5)]$, Table 1 shows that $\Delta>0$. The proof of Proposition 1 tells us that there is a contraction if and only if the inequalities of S3.10 hold. For $a_{2}^{*} \in[0,(k+1) /(k+5)]$, the constraint

$$
\begin{equation*}
\frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}>0 \tag{S3.17}
\end{equation*}
$$

holds since both $B>0$ and $\frac{1+2 a_{2}^{*}}{1+a_{2}^{*}}>0$. For $1 \leq k \leq 8, \Delta_{1}<0$, and thus $\Pi_{1}>0$. Further, $\frac{a_{2}^{*}}{1+a_{2}^{*}}>0$. Thus, the second inequality of S 3.10 holds. For $k=9, \Delta_{1}=$ $81>0$, and thus the polynomial Π_{1} has the two real roots r_{1} and r_{2} of 53.12 with $(k+1) /(k+5)<r_{1}<r_{2}$. Figure 5 shows that the polynomial Π_{1} remains positive. This finishes the proof.

For $k \geq 10$, simple algebra shows that $0<r_{1}<\frac{k+1}{k+5}<r_{2}$, where r_{1} and r_{2} are given by (S3.12). This leads us to the following two propositions.

Proposition 8. If $k \geq 10$ and $a_{2}^{*} \in\left[0, r_{1}\right]$, where r_{1} is given by S3.12), then there is a contraction if and only if the first inequality of S3.10) holds.

Proof. By the hypothesis and Figure 5, we see that the polynomial Π_{1} remains positive. The proof is thus the same as that of Proposition 7

Proposition 9. If $k \geq 10$ and $a_{2}^{*} \in\left[r_{1},(k+1) /(k+5)\right]$, where r_{1} is given by (S3.12), then there is a contraction if and only if the inequalities of (S3.13) hold.

Proof. By the hypothesis and Figure 5, the polynomial $\Pi_{1}<0$. For a contraction result, the second inequality of S3.10 necessitates the second inequality of S3.13. The proof
is now the same as that of Proposition 7.

Subcases of Case 2
We now consider the following subcases of Case 2:
(a) $a_{2}^{*} \in\left(\frac{k+1}{k+3}, 1\right)$
(b) $a_{2}^{*} \in\left(1, \frac{3+2 k}{1+2 k}\right) \cup\left(\frac{3+2 k}{1+2 k}, \frac{k+3}{k+1}\right) \cup\left(\frac{k+3}{k+1}, 3\right) \cup(3, \infty)$.

Subcase (a) of Case 2:

Proposition 10. If $1 \leq k \leq 8$ and $a_{2}^{*} \in\left(\frac{k+1}{k+3}, 1\right)$, then there is a contraction if and only if the first inequality of S3.10) holds.

Proof. From the conditions of the hypothesis, we obtain $\Delta>0$. We also have that $\frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}>0$ since $B>0$. Now the proof is the same as that of Proposition 7.

For $k \geq 9$, simple algebra shows that $r_{1}<\frac{k+1}{k+3}<r_{2}<1$, where r_{1} and r_{2} are given by S3.12. This gives the following results.

Proposition 11. If $k \geq 9$ and $a_{2}^{*} \in\left(r_{2}, 1\right)$, where r_{2} is given by S3.12), then there is a contraction if and only if the first inequality of $(S 3.10)$ holds.

Proof. The proof is the same as that of Proposition 8 .
Proposition 12. If $k \geq 9$ and $a_{2}^{*} \in\left(\frac{k+1}{k+3}, r_{2}\right]$, where r_{2} is given by $\langle S 3.12$, then there is a contraction if and only if the inequalities of S3.13) hold.

Proof. The proof is the same as that of Proposition 9.

Subcase (b) of Case 2:

Proposition 13. If $a_{2}^{*} \in\left(1, \frac{3+2 k}{1+2 k}\right) \cup(3, \infty)$ and $\Delta>0$, then there is a contraction if and only if the first inequality of S3.10 holds.

Proof. By hypothesis, $\Delta>0$. Recall that the proof of Proposition 1 shows that there is a contraction if and only if the inequalities of S3.10 hold.

We have that $\frac{A^{2}\left(1+2 a_{2}^{*}\right)}{2 B\left(1+a_{2}^{*}\right)}+\frac{k+5}{4}>0$, since both $B>0$ and $\frac{1+2 a_{2}^{*}}{1+a_{2}^{*}}>0$. For $1 \leq k \leq 8$, $\Delta_{1}<0$, which gives $\Pi_{1}>0$. Further, $\frac{a_{2}^{*}}{1+a_{2}^{*}}>0$. We thus obtain that the second inequality of S3.10 holds. If $k \geq 9, \Delta_{1}>0$, and thus the polynomial Π_{1} has two real roots $r_{1}<r_{2}<1$. The conditions of the hypothesis in conjunction with Figure 5 ensure that Π_{1} remains positive. This finishes the proof.

Proposition 14. If $a_{2}^{*} \in\left(\frac{3+2 k}{1+2 k}, \frac{k+3}{k+1}\right) \cup\left(\frac{k+3}{k+1}, 3\right)$ and $\Delta>0$, then there is a contraction if and only if the inequalities in S3.15 hold.

Proof. By hypothesis, $\Delta>0$. The proof of Proposition 1 shows that there is a contraction if and only if the inequalities of S 3.10 hold. However, since $a_{2}^{*} \in\left(\frac{3+2 k}{1+2 k}, \frac{k+3}{k+1}\right) \cup$ $\left(\frac{k+3}{k+1}, 3\right)$, we have from Figure 3 that $B<0$. According to the analysis of Proposition 1 , the second inequality of S3.10 necessitates the second and third inequalities of S3.15). This finishes the proof.

Proposition 15. If $a_{2}^{*} \in\left(1, \frac{3+2 k}{1+2 k}\right) \cup\left(\frac{3+2 k}{1+2 k}, \frac{k+3}{k+1}\right) \cup\left(\frac{k+3}{k+1}, 3\right) \cup(3, \infty)$ and $\Delta<0$, then there is a contraction if and only if the inequality S3.16 holds.

Proof. The proof is the same as that of Proposition 6.

