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Abstract: This paper addresses a long-standing conjecture that order 1/T bias

mappings arising from Yule–Walker estimation of autoregressive coefficients are

contractions, and that iteration of the order 1/T bias mapping gives convergence

to a unique set of fixed-point process coefficients. The conjecture is easily proved

for processes of order 1. We provide a proof and resolve this conjecture for order

2 processes. Although it is well-known that the Yule–Walker estimator can have

substantial bias, the nature of the bias has often been only partially understood,

and sometimes even misunderstood, in the literature. We argue that Yule–Walker

fixed-point processes are key to understanding the nature of the bias. These pro-

cesses provide essentially maximal separation of spectral peaks, and bias pulls Yule–

Walker estimated coefficients toward those of the fixed-point process for the given

order of autoregression and degree of polynomial trend for the process mean. In

addition, we illustrate with a simulation that, in addition to unacceptable bias, the

distribution of the Yule–Walker estimator can exhibit strong skewness and excessive

kurtosis. This departure from normality can occur for very large sample sizes.

Key words and phrases: Autoregressive process, bias mapping, contraction, fixed-

point process, Yule–Walker estimation.

1. Introduction

Numerous estimators of the parameters of an autoregressive process have

been proposed and used. These include the Yule–Walker estimator, least-squares,

maximum likelihood, Burg’s estimator, and an estimator proposed by Kay (1983).

Yule–Walker estimation traces back to at least Yule (1927) and Walker (1931).

See Katz (2002) for an interesting discussion of the contributions of Sir Gilbert

Thomas Walker.

For many years, the Yule–Walker method was widely used and was perhaps

the most common technique employed for estimation of autoregressive parame-

ters. The estimating equations are simple, the Levinson–Durbin algorithm for

their solution is fast and easy to program, and the resulting estimation produces
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a causal autoregressive process. At present, maximum likelihood (under Gaus-

sian assumptions), Burg’s estimator, and least-squares are more commonly used.

As Katz (2002) observes, computational advances over the years have led to an

increase in the use of maximum likelihood estimation. Among the methods cited

here, only least-squares is not guaranteed to provide estimation of a causal pro-

cess. The appeal of least-squares, though, is its ease of implementation. And, if

one uses least-squares and determines that it does not produce a causal estima-

tor, then one can apply one of the other methods.

The Yule–Walker estimator is defined at (2.2) and (2.3). Despite its draw-

backs, though, the Yule–Walker estimator continues to be recommended for use

in time series texts, with many giving it prominent attention. They describe

it as a method of moments estimator, and many mention that, despite some

substandard results, Yule–Walker estimation is fully efficient and has the same

asymptotic properties as maximum likelihood and the other methods. Moreover,

several texts cite Yule–Walker estimation with the Levinson–Durbin algorithm

as a method for calculation of the sample partial autocorrelations. Some rec-

ommend that Yule–Walker estimates be employed as initial values for maximum

likelihood estimation. When caution in the use of Yule–Walker estimation is

recommended, the authors tend to cite sensitivity to rounding errors, especially

when the zeros of the autoregressive polynomial have moduli close to 1.

In this paper we assume that the underlying time series model is an autore-

gressive process of known order with a polynomial time trend for the mean. We

assume the mean parameters are estimated initially by least-squares and that

deviations from the mean estimation are used to estimate the autoregressive

parameters.

There have been many studies of the properties of autoregressive parameter

estimators, beginning with Mann and Wald (1943), who proved that the least-

squares estimator is consistent and asymptotically normal. All of the estimators

cited here are consistent, and all have the same asymptotic normal distribution.

Bias of the estimators has been investigated extensively, and there have been

two threads for this research. One is the development of analytic expressions for

the order 1/T bias, where T is the sample size. For the least-squares estimator

and a first-order process with known mean, the order 1/T bias was given by

Marriott and Pope (1954), White (1961), and Shenton and Johnson (1965), and,

for an unknown mean, it is in Marriott and Pope (1954), Kendall (1954), and

White (1961). For a second-order process, Tanaka (1984) and Yamamoto and

Kunitomo (1984) gave the order 1/T bias for both known and unknown mean
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cases. Bhansali (1981) developed a general expression for the least-squares order

1/T bias, and Tanaka (1984) and Yamamoto and Kunitomo (1984) also derived

general order 1/T bias representations. Tjøstheim and Paulsen (1983) developed

an order 1/T bias expression for least-squares estimation for any order process,

and for Yule–Walker estimation for first- and second-order processes. Shaman

and Stine (1988) and Stine and Shaman (1989) gave general expressions for the

order 1/T bias of least-squares and Yule–Walker estimators. Pham (1993) also

derived general order 1/T bias expressions, and showed that the least-squares,

maximum likelihood, Burg, and Kay estimators all have the same order 1/T bias.

The Yule–Walker estimator stands apart from the others, in that its order 1/T

bias includes an extra additive term, and this term can greatly increase the bias.

In addition, there have been studies of the order 1/T bias of maximum likelihood

estimation for autoregressive moving average parameters. See Cordeiro and Klein

(1994) and Cheang and Reinsel (2000).

The second thread of bias research has involved the use of simulation.

Tjøstheim and Paulsen (1983) used both simulation and analytical results to

argue that the Yule–Walker estimator can exhibit considerable bias, and that

the Burg and least-squares estimators are preferable. Shaman and Stine (1988)

noted that simulations confirm reasonable accuracy for the least-squares estima-

tor. de Hoon et al. (1996) stated that the Yule–Walker estimator should not

be employed, and advocated the use of Burg’s method. The authors argued

that the Yule–Walker estimator performs poorly when the autocovariance ma-

trix in the Yule–Walker equations is ill-conditioned. This occurs when the zeros

of the autoregressive polynomial are close to the unit circle. Broersen (2009)

further explored the Yule–Walker bias problem and advocated the use of Burg’s

method, and was careful to provide evidence, however, that not all autoregressive

processes with polynomial zeros near the unit circle produce large Yule–Walker

estimation bias.

One should note that, in addition to estimation of autoregressive parame-

ters, the procedures are used to estimate the partial autocorrelation coefficients,

usually as an aid to the fitting of autoregressive moving average models. There

can be considerable bias in estimation of these coefficients if one is using the

Yule–Walker estimator.

Understanding of properties of the bias in autoregressive estimation requires

consideration of the autoregressive fixed-point processes. These are processes for

which the order 1/T bias of the parameter estimator vanishes. Their existence

follows from the result that the order 1/T bias mappings for all of the estimation
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methods under discussion are contractions. That is, in each case, the distance

between the order 1/T bias vectors for two distinct parameter vectors is less

than or equal to a constant k, 0 ≤ k < 1, times the distance between the two

parameter vectors. This implies that the order 1/T bias mappings have unique

parameter values defining mapping fixed points, that is, parameter vector values

for which application of the mapping reproduces the value of the vector. More

discussion is in Section 3. There are two sets of such fixed-point processes, those

for Yule–Walker estimation, and those for least-squares and the other estima-

tion methods. In Stine and Shaman (1989), the least-squares fixed-point pro-

cesses were introduced and described, and the authors also noted that numerical

calculations indicate the existence of unique Yule–Walker fixed-point processes.

Shaman (2010) gave coefficient vectors for least-squares and Yule–Walker fixed-

point processes for autoregressive process orders 1 to 6 and polynomial trend

degrees 1 and 2 for the mean. All of the coefficients of fixed-point processes are

positive, and the processes are causal.

The importance of the fixed-point processes is that bias pulls the estimated

autoregressive coefficients toward those of a fixed-point process, regardless of the

values of the coefficients of the process generating the data. The zeros of the

autoregressive polynomials for both sets of fixed-point processes are all complex

in pairs, except for one negative real zero when the order is odd, and the pro-

cesses have spectral peaks which are spread out on the frequency axis. That is,

estimation bias moves the spectral peaks of the process being estimated, sepa-

rating them, regardless of their actual positions in the observed process. Bias

also alters the moduli of the autoregressive polynomial zeroes. Processes with

real polynomial zeros, and those with spectral peaks that are very close together,

for example, can exhibit substantial estimation bias, especially such processes

with polynomial zeros close to the unit circle. Moreover, if the process structure

being estimated has a relatively flat spectrum, estimation bias tends to introduce

separated spectral peaks.

Stine and Shaman (1989) proved that, for least-squares estimation, the order

1/T bias mapping is a contraction, and observed that convergence to a fixed-

point process can be achieved by iterating the order 1/T mapping. For least-

squares estimation, the order 1/T bias is a linear function of the autoregressive

parameters, and a fixed-point process can also be determined simply by setting

the order 1/T bias equal to zero. Results in Pham (1993) extend these conclusions

to the other autoregressive estimation methods cited above, except for Yule–

Walker.



THE BIAS MAPPING OF THE YULE–WALKER ESTIMATOR 1835

The first and foremost purpose of this work is to solve a conjecture from

Stine and Shaman (1989) (p.1283), which states that order 1/T bias mappings

with Yule–Walker estimation are contractions, and that iteration of the order 1/T

bias mapping can be used to find a unique set of fixed-point process coefficients.

The conjecture is easily proved for order 1 autoregressive processes. Stine and

Shaman (1989) did not prove it for order 2 processes. In the current work, we

successfully close this long-standing conjecture for order 2 processes. The proof is

nontraditional and involves detailed calculations. After much effort, we maintain

that proof of the conjecture for orders greater than 2 is analytically intractable—

induction arguments fail. That is, order 2 appears to be the only nontrivial case

that can be solved analytically.

The second purpose of this paper is to describe clearly the bias of the Yule–

Walker estimator of the process parameters. Although it is well-known that the

Yule–Walker estimator can have substantial bias, the nature of the bias has often

been only partially understood, and at times misunderstood, in the literature over

the past many decades.

The third purpose of this paper is to stress that, in additional to unacceptable

bias, the Yule–Walker estimator can be very poorly described by its asymptotic

normal distribution. In particular, the large-sample distribution of the estimator

can exhibit strong skewness and excessive kurtosis. This can occur for sample

sizes typically encountered in practice and, even in some cases, for very large

samples. This final point is illustrated with a simulated example.

The remainder of this paper is structured as follows. Section 2 provides

explicit order 1/T bias mapping expressions for the Yule–Walker estimator for

orders 1 and 2. Section 3 constructs a fixed-point characterization for the Yule–

Walker order 1/T bias mapping and contains the proof that this mapping is a

contraction for process order 1. Section 4 has a detailed discussion of fixed-point

processes. The supplement contains the proof that the Yule–Walker order 1/T

bias mapping is a contraction for order 2 processes, as well as the proofs of

Propositions 2 and 3.

2. Yule–Walker

2.1. The Yule–Walker estimator

Let {yt} be an autoregressive process of order p, henceforth denoted as
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AR(p), given by
p∑

j=0

aj(yt−j − µt) = εt, a0 = 1,

where µt = E(yt) and the error terms
{
εt
}

are independently and identically

distributed (i.i.d.) with mean 0 and variance σ2. The mean is assumed to be a

polynomial time trend,

µt =

k−1∑
j=0

βjt
j , k ≥ 0. (2.1)

We include k = 0 for the case of a known mean (without loss of generality, a

known mean may be taken to be 0).

Observations from this process are denoted by y = (y1, . . . , yT )′, and the

vector of p coefficients to be estimated is denoted by a = (a1, . . . , ap)
′. We assume

that the zeros of the polynomial Ap(z) =
∑p

j=0 ajz
p−j lie strictly inside the unit

circle |z| = 1 so that the process is causal. The covariances of the process are

given by

γk = E[(yt − µt)(yt−k − µt−k)], k = 0,±1,±2, . . . ,

and the covariance matrix of (yt, . . . , yt−p+1)
′ is Γ ≡ (Γij), where Γij = γi−j . The

Yule–Walker estimator of a is given by

â = −Γ̂−1γ̂, (2.2)

where Γ̂ = (γ̂|i−j|) and γ̂ = (γ̂1, . . . , γ̂p)
′, with

γ̂k =
1

T

T∑
t=k+1

(yt − µ̂t)(yt−k − µ̂t−k), k = 0, 1, . . . , p, (2.3)

and the parameters {βj} defining the mean function in (2.1) are estimated ini-

tially by least-squares. To ensure the validity of the approximations for the bias,

we assume that the errors {εt} have finite moments of order 16 and that

E[|Γ̂−1 − Γ−1|8] = O(1), as T →∞,

where |A| denotes the largest absolute eigenvalue of the matrix A.

2.2. Bias mapping expressions for the Yule–Walker estimator for p = 1

and p = 2

Following the notation of Stine and Shaman (1989), we define a (p+1)×(p+1)

matrix B,

B , B1 +B2 + kB3.
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See also page 1177 of Cheang and Reinsel (2000). The matrices for p = 1 and

p = 2 are B1 = diag(0, 1, . . . , p),

B2 =

(
0 0

0 1

)
, p = 1

=

 0 0 0

0 0 0

−1 0 1

 , p = 2

and

B3 =

(
0 0

−1 1

)
, p = 1

=

 0 0 0

−1 0 1

−1 0 1

 , p = 2.

Then

B =

(
0 0

−k 2 + k

)
, p = 1,

=

 0 0 0

−k 1 k

−1− k 0 3 + k

 , p = 2.

For p ≥ 3, the matrices Bj , j = 1, 2, 3, are described in Stine and Shaman (1989).

Also, define the p× 1 vector c with elements

cj =

p∑
r=0

|j − r|γj−rar, j = 1, . . . , p.

Then from Stine and Shaman (1989) the bias mapping for the Yule–Walker esti-

mator is given by(
1

E(â)

)
=

(
I − 1

T
B

)(
1

a

)
+

 0
1

T
Γ−1c

+ o

(
1

T

)
. (2.4)

For p = 1, c1 = γ1 and, for p = 2, c′ = (γ1(1 + a2), 2γ2 + γ1a1).

Proposition 1. The bias mapping of the Yule–Walker estimator for p = 1 is

given by (
1

E(â1)

)
=

 1
γ1
Tγ0

+
k

T
+ a1

(
1− 2 + k

T

)+ o

(
1

T

)
. (2.5)
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Proof. This follows directly from (2.4) and the above details.

Proposition 2. The bias mapping of the Yule–Walker estimator for p = 2 is

given by(
1

E(â)

)
=

1

γ0γ1 − 2γ1γ2
T (γ20 − γ21)

+
k

T
+a1

(
1− γ21

T (γ20−γ21)
− 1

T

)
+a2

(
γ0γ1

T (γ20 − γ21)
− k

T

)
2γ0γ2 − γ21
T (γ20 − γ21)

+
1 + k

T
+a1

(
γ0γ1

T (γ20−γ21)

)
+a2

(
1− γ21

T (γ20−γ21)
− 3 + k

T

)


+ o

(
1

T

)
.

(2.6)

For proof, see the supplement.

2.3. Covariances and coefficients

The covariances and the coefficients of the model are related through the

well-known Yule–Walker equations (see Brockwell and Davis (2009)) given as
p∑

i=0

aiγj−i = δ(j)σ2, j = 0, 1, . . . , p,

where δ(j) = 1 if j = 0 and is equal to 0 otherwise. If p = 1 and j = 1,

γ1 = −a1γ0. Substituting this into (2.5), we can rewrite the vector on the right-

hand side as

h(ã) =

 1
k

T
+ a1

(
1− 3 + k

T

) ,

[
1

g(a1)

]
, (2.7)

where ã = (1, a1)
′. For p = 2 and j = 1,

γ1 + a1γ0 + a2γ1 = 0 ⇔ γ1 = − a1γ0
1 + a2

, a2 6= −1, (2.8)

and for j = 2,

γ2 + a1γ1 + a2γ0 = 0. (2.9)

Equations (2.8) and (2.9) yield

γ2 = −
(
a2 + a22 − a21

)
γ0

1 + a2
, a2 6= −1. (2.10)

Using (2.8) and (2.10), we can rewrite the vector on the right-hand side of (2.6)
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as a function of ã = (1, a1, a2)
′
,

h(ã) =



1

a1 +
1

T
[k(1− a2)− a1] +

a31 − 4a1a2 − 3a1a
2
2 − a1

T
[
(1 + a2)2 − a21

]
a2 +

1

T
[k(1− a2) + (1− 3a2)]−

2a2(1 + a2)
2

T
[
(1 + a2)2 − a21

]


,

[
1

g(a)

]
,

(2.11)

with (1 +a2)
2−a21 6= 0. Note that the vector (2.11) is a nonlinear function of the

autoregressive coefficients.

3. A Fixed-Point Characterization for the Yule–Walker Bias Mapping

We now provide a fixed-point characterization for the terms up to order 1/T

in the bias mappings (2.5) and (2.6). The expression for a general autoregressive

order p is given in (2.4). See Stine and Shaman (1989) for details. The terms

up to order 1/T of the mappings for autoregressive orders 1 and 2 are denoted

by h(a) and are shown in (2.7) and (2.11), respectively. We argue that each of

these functions forms a contraction mapping, thereby providing a unique fixed

point. And numerical calculations confirm that the order 1/T bias mapping

of the Yule–Walker estimator is a contraction for autoregressive orders greater

than 2.

The function h(a) is a contraction mapping if, for a metric distance d and

some constant 0 ≤ k < 1, d(h(a1),h(a2)) ≤ kd(a1,a2), for any pair of param-

eter values (a1,a2). The Banach fixed-point theorem states that a contraction

mapping has a unique fixed point and that iteration of the mapping provides

convergence to this fixed point. The implication of this in the present context is

that for each autoregressive order and degree of the polynomial time trend for the

process mean, there is a unique Yule–Walker fixed point parameter value, and

the order 1/T bias at this fixed point is 0. As we have noted, such a fixed-point

process has separation of spectral peaks.

Simulation studies show that the order 1/T bias term accurately represents

the bias of Yule–Walker estimation for parameter values close to a fixed point,

but it can be very inaccurate for parameter values distant from a fixed point.

Simulation 1 in Section 4 is for a process very close to the fixed point. The

empirical estimation bias for it is very small, and the order 1/T bias is extremely

close to the empirical bias. In Simulation 2 in Section 4, the parameter values are
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far from the fixed point. The spectrum has two peaks which are close together

and the zeroes of the autoregressive polynomial have amplitude 0.9, close to the

unit circle. In the simulation the empirical estimation bias is substantial, and

the order 1/T bias is grossly inaccurate. The significance of the order 1/T bias,

though, is that it leads to calculation of a fixed point process, thereby clarifying

the nature of the bias in Yule–Walker autoregressive estimation.

We specify a condition under which the order 1/T bias mappings have a

fixed point ã with first coordinate equal to 1 satisfying h(ã) = ã. By Theorem

2.11 of Olver (2015), this holds if, for p = 1, the mapping g(a1) is a contraction

at the fixed point a∗1, and if, for p = 2, the mapping g(a) is a contraction at

the fixed point a∗ = (a∗1, a
∗
2). By Theorem 2.12 of Olver (2015), this reduces to

showing that |g′(a∗1)| < 1 for p = 1, and, for p = 2, it involves showing that the

Jacobian g′(a∗) satisfies |g′(a∗)| < 1. As in Olver (2015), we shall show that the

eigenvalues of g′(a∗) are less than one in absolute value.

3.1. The first-order process

It is easy to show that the bias mapping is a contraction for p = 1. The

fixed points are obtained by solving g(a∗1) = a∗1, which yields a∗1 = k/(3 + k).

The derivative g′(a∗1) is 1 − (3 + k)/T , and this is less than 1 in magnitude if

T > (3 + k)/2.

3.2. The second-order process

The fixed points of g are obtained by solving the equation g(a∗) = a∗, which

gives the system

a∗1 +
1

T
[k(1− a∗2)− a∗1] +

(a∗1)
3 − 4a∗1a

∗
2 − 3a∗1(a

∗
2)

2 − a∗1
T [(1 + a∗2)

2 − (a∗1)
2]

= a∗1,

a∗2 +
1

T
[k(1− a∗2) + (1− 3a∗2)]−

2a∗2(1 + a∗2)
2

T [(1 + a∗2)
2 − (a∗1)

2]
= a∗2.

The second equation of the system gives the relationship

(a∗1)
2 =

k + 1− (k + 5)a∗2
k + 1− (k + 3)a∗2

(1 + a∗2)
2, a∗2 6=

k + 1

k + 3
. (3.1)

Substituting (a∗1)
2 into the first equation of the system, we obtain:

a∗1 =
k(1− a∗2)(1 + a∗2)

(k + 1)(1− a∗2) + 2
, a∗2 6=

k + 3

k + 1
. (3.2)

Finally, since from (2.11), (1 + a2)
2 6= a21, the points a∗1 = ±1, a∗2 = 0 and
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a∗1 = 0, a∗2 = −1 cannot be fixed points.

Proposition 3. The matrix g′(a1, a2) is given by

g′(a1, a2) =1− 4

T
+

2(1+a2−a21)
T [(1+a2)2−a21]

− 4a21a2(1+a2)

T [(1+a2)2−a21]2
− k
T
− 2a1
T [(1+a2)2−a21]

+
4a31a2

T [(1+a2)2−a21]2

− 4a1a2(1+a2)
2

T [(1+a2)2−a21]2
1− k+3

T
− 2(1+a2)

2

T [(1+a2)2−a21]
+

4a21a2(1+a2)

T [(1+a2)2−a21]2

.
(3.3)

For proof, see the supplement.

The proof for p = 2 that the order 1/T bias mapping is a contraction is given

in the supplement.

4. Fixed-Point Processes and Discussion

We have noted that there are two sets of fixed-point processes associated with

autoregressive parameter estimation, those arising from Yule–Walker estimation

and those arising from estimation via least-squares and the other methods. The

fixed-point processes exist for each autoregressive order p and each order k of the

polynomial trend modeling the mean.

There are similarities and differences between the two sets of fixed-point

processes. The least-squares fixed-point process coefficients can be determined

analytically and are rational functions of p and k. The Yule–Walker fixed-point

process coefficients are determined numerically by iterating the order 1/T bias

mapping. For each k, as p varies, the least-squares fixed-point processes form

a Levinson–Durbin sequence (see Shaman (2010)), but the Yule–Walker fixed-

point processes do not have this property. Given this Levinson–Durbin property,

the least-squares fixed-point processes are finite order projections of an infinite-

dimensional parent process. The correlation function and spectral density for

this infinite-dimensional process are given in Stine and Shaman (1989) for k =

0 and 1, and they can also be determined for k > 1.

It is instructive to compare the two types of fixed-point processes by compar-

ing the zeros of the autoregressive polynomials which the processes determine.

Figure 1 compares the Yule–Walker and least-squares zeros for p = 4 and 20, and

for k = 0 and 1. The arguments of the Yule–Walker and least-squares zeros have

similar values, and the least-squares zeros have somewhat larger magnitudes.

In addition, the least-squares fixed-point process parameter values are larger in

value than the corresponding Yule–Walker parameter values. For both sets of
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k = 0 (known mean) k = 1 (unknown constant mean)
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Figure 1. Zeros of polynomials for least-squares and Yule–Walker fixed point processes:
green +, p = 4, least-squares; orange ×, p = 4, Yule–Walker; red ◦, p = 20, least-squares;
blue �, p = 20, Yule–Walker.

fixed-point processes, the zeros are approximately uniformly spread around the

unit circle when k = 0, and the angles all the zeros make with the positive hor-

izontal axis move slowly toward 180 degrees as k increases. In addition, as p

increases, the zeros move toward the circumference of the unit circle.

All of the estimation methods experience some finite sample bias. Bias works

to separate spectral peaks and introduce complex-valued autoregressive polyno-

mial zeros which do not exist in the data generating process. In doing so, bias

moves the estimators toward the fixed-point model for the method of estimation,

the order of the autoregression, and the degree of polynomial in time for the

mean. If one iterates the order 1/T bias mapping, convergence to a fixed-point

model will occur, but the number of iterations required can be large, and the

path taken can be circuitous. In addition, as noted in the Introduction, for sam-

ple sizes typically encountered in practice, the distribution of the estimator can

deviate substantially from the asymptotic normal distribution. These features

occur when the data generating process deviates substantially from a fixed-point

process. We explore these issues with several simulations.

In the first two simulations, Yule–Walker estimation is considered with 10,000

samples of length T = 150 for an AR(4) process with k = 1 (unknown con-

stant mean). The fixed-point process coefficient vector is (0.2386, 0.3474, 0.1350,

0.1888), and the fixed-point process polynomial zeros are (0.6755exp(±i1.0995),

0.6432exp(±i2.2947)). The empirical bias vector is taken to be the average of

the 10,000 coefficient vector estimates minus the simulated process parameter



THE BIAS MAPPING OF THE YULE–WALKER ESTIMATOR 1843

0.55
0.5

0.45
0.4

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

-0.05
-0.1

-0.15

(a) Histogram for estimate of a1. Skew-
ness = −0.00541. Kurtosis = 0.02458.

0.35
0.3

0.25
0.2

0.15
0.1

0.05
0

-0.05
-0.1

-0.15
-0.2

-0.25

(b) Histogram for estimate of a3. Skew-
ness = −0.03796. Kurtosis = 0.03667.

Figure 2. Histograms and summary statistics for two coefficient estimates from simula-
tion 1.

vector. The process disturbance variance is taken to be 1.

Simulation 1. The simulated process has zeros (0.5exp(±i 1.1), 0.5exp(±i 2.3)),

with separated and nonprominent spectral peaks. Thus, the zeros of the simu-

lated process have arguments essentially equal to the arguments of the fixed-point

process zeros, but have smaller amplitudes. The coefficient vector is (0.2127,

0.1978, 0.0532, 0.0625). The empirical bias vector is (0.0044, 0.0078, 0.0058,

0.0091), and the order 1/T bias vector is (0.0027, 0.0077, 0.0059, 0.0090). The

average of the 10,000 estimates gives a process for which the zeroes are (0.5180exp

(±i 1.0937), 0.5166exp(±i 2.3058)). The bias adjustment shows very small move-

ment toward the fixed-point process.

The bias is very modest, and the empirical distribution of the parameter

vector from this simulation approximates very well the theoretical asymptotic

normal distribution for the estimation. The 4×4 inverse covariance matrix for

the simulated process, multiplied by 1/150, is

1

150
Γ−1 =


0.00664 0.00140 0.00124 0.00027

0.00140 0.00692 0.00161 0.00124

0.00124 0.00161 0.00692 0.00140

0.00027 0.00124 0.00140 0.00664
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Figure 3. Histograms and summary statistics for two coefficient estimates from simula-
tion 2.

and the corresponding inverse sample matrix from the simulations is

1

150
Γ̂−1 =


0.00676 0.00152 0.00138 0.00032

0.00152 0.00696 0.00158 0.00120

0.00138 0.00158 0.00679 0.00131

0.00032 0.00120 0.00131 0.00629

 .
Figure 2 shows the empirical distribution of the 10,000 parameter estimates

for the first and third coefficients. There is good agreement with normality.

Simulation 2. The zeros of the simulated process are (0.9exp(±i 0.1), 0.9exp

(±i 0.3)), with prominent spectral peaks that are close together, and far removed

from the peaks of the fixed-point process. Moreover, the amplitudes of the zeros

are much closer to 1 than are those for the fixed-point process. The coeffi-

cient vector is (−3.5106, 4.6998, −2.8436, 0.6561). The empirical bias vector is

(2.0759, −4.4620, 3.0112, −0.5826), but the order 1/T bias vector is (1,175.905,

−3,441.679, 3,426.500, −1,160.420). The average of the 10,000 estimates yields

a process for which the zeroes are (0.9209exp(±i 0.1608), 0.2944exp(±i 2.2799)).

There is substantial bias, especially in separation of the spectral peaks.

The empirical distribution of the parameter vector from this simulation is
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very poorly approximated by the theoretical asymptotic normal distribution. The

4×4 inverse covariance matrix of the simulated process, multiplied by 1/150, is

1

150
Γ−1 =


0.00380 −0.01097 0.01078 −0.00360

−0.01097 0.03205 −0.03186 0.01078

0.01078 −0.03186 0.03205 −0.01097

−0.00360 0.01078 −0.01097 0.00380


and the corresponding inverse sample matrix from the simulations is

1

150
Γ̂−1 =


0.06126 −0.06584 −0.02200 0.02979

−0.06584 0.07761 0.01568 −0.03055

−0.02200 0.01568 0.02079 −0.01582

0.02979 −0.03055 −0.01582 0.01820

 .
Figure 3 gives the empirical distribution of the 10,000 parameter estimates

for the first and third coefficients. The distributions are heavily skewed and there

is substantial excess kurtosis. The estimation is so bad that all 10,000 estimates

exceed the target values for each coefficient.

Simulation 3. This is the same as simulation 2, except that the sample length

T is taken to be 1,000. The empirical bias vector is (1.8074, −4.2561, 3.2320,

−0.7617), and the order 1/T bias vector is (176.386, −516.252, 513.975, −174.063).

The average of the 10,000 estimates gives a process with zeros (0.2600, −0.4459,

0.9544exp(±i 0.1437)), notably including two real values. There continues to be

enormous bias, and the empirical distribution of the parameter vector is still

very poorly approximated by the asymptotic normal distribution. The empir-

ical distributions of the 10,000 estimates for the first and third coefficients are

very outlier prone, with skewness values −33.14 and 21.20 and excessive kurtosis

values 1,305.0 and 631.2.

Simulation 4. This is the same as simulation 2, except that least-squares esti-

mation is employed. The empirical bias vector is (0.00306, −0.00413, −0.00035,

0.00174), and the order 1/T bias vector is (0.02570, −0.06253, 0.05027, 0.01291).

The average of the 10,000 estimates gives a process with zeros (0.9081exp(±i
0.1213), 0.8931exp(±i 0.3035)). Despite the relatively modest bias from this sim-

ulation, the empirical distribution of the parameter vector is poorly approximated

by the asymptotic normal distribution. The empirical distributions of the esti-

mates of the first and third coefficients have skewness values 32.43 and 36.79 and

excess kurtosis values 1,469.1 and 1,773.2. When the sample size T is increased

to 1,000, the corresponding skewness and excess kurtosis values are 7.30, 7.39

and 64.69, 64.96.
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Figure 4. Log spectral densities for simulations 2 and 3: solid black line, generating
process; dashed red line, process for average of 10,000 estimates, T = 150; dotted blue
line, process for average of 10,000 estimates, T = 1,000.

Figure 4 shows the log spectral densities for the generating process in simula-

tion 2 and for the processes corresponding to the average of the 10,000 YuleWalker

estimates for T = 150 and 1,000 in simulations 2 and 3.

In summary, when the process structure being estimated is far removed from

the fixed-point process, many problems ensue for Yule–Walker estimation. There

is substantial estimation bias, and the theoretical asymptotic distribution does

not accurately describe the distribution of the estimate for the range of sample

sizes usually encountered in practice. The positions of the arguments of the zeros

of the process being estimated usually play a greater role in the behavior of the

estimates than do the amplitudes of the zeros. Difficulties with estimation can

occur when the amplitudes of the zeros are close to 1. All of these problems are

mitigated if the sample size is increased, but unreasonably large sample size can

be required to obtain reliable results.

One can lessen the problems with Yule–Walker estimation by applying a data

taper at the outset (see, e.g., (Zhang (1991))). Alternatively, one can employ

other methods of estimation, such as Burg, maximum likelihood, Kay, or even

least-squares.

In describing the theoretical bias and determining fixed-point processes for

Yule–Walker estimation, we have used only the order 1/T component of the bias,
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and we have argued that this component is a contraction mapping. Simulation

indicates clearly that for some generating processes this component does not

accurately capture the true bias, and that in fact it can be extremely inaccurate,

as simulation 2 illustrates. The purpose of the focus on the order 1/T component

of the bias is to develop the fixed-point processes and to emphasize that these

processes give guidance on how bias operates and which types of generating

processes are subject to severe bias.

A key aim of this paper has been to expose and clearly describe the severe

bias and distributional problems which can result from use of the Yule–Walker

estimator. In addition to its use for autoregressive process parameter estimation,

the Yule–Walker procedure is often employed to calculate estimates of the partial

autocorrelations to aid in ARIMA model fitting. It is advisable to avoid such

usage.

Additional work is needed to consider vector autoregressive process estima-

tion bias via Yule–Walker. Also, the modified Yule–Walker procedure described

by Tjøstheim and Paulsen (1983) can be studied.

Supplementary Materials

In the online supplement we provide proofs for Propositions 2 and 3. We

then provide the proof that the Yule–Walker bias mapping is a contraction for

p = 2.
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