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Supplementary Material

In this supplementary material, we provide all the proofs of the main article

in Sections S1-S3. The effect of the initial values is discussed in Section S4. A

further analysis of the real data example is given in Section S5. Some tables

and figures of the simulation study and the real data analysis of the main

article are also presented in this supplement.

Throughout this paper, ‖ · ‖ denotes the Euclidean norm of a matrix or

vector. Op(1) (or op(1)) denotes a series of random variables that are bounded

(or converge to zero) in probability, =⇒ denotes the weak convergence for

sequences of (measurable) random elements of a space of bounded Euclidean-

valued càdlàg functions on a compact set, , means “ is defined as”, and −→L

denotes convergence in distribution.

S1 A Strong Law of Large Numbers

The SLLN plays an important role in statistics. The existing theorems for the

forward sums of dependent random sequences, such as those in Stout (1974) (
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e.g. Theorem 3.7.6) and Hall and Heyde (2014) (e.g. Theorem 2.20), require

at least a finite second moment or do not have a rate of convergence. Shao

(1995) established a maximal inequality of partial sums of ρ−mixing sequences

under a finite second moment, which can be applied for the SLLN. Wu (2007)

established the strong invariance principles for stationary and ergodic Markov

chains, in which the SLLN requires a finite (1 + ε)th moment with other

conditions. These conditions essentially are the NED in Ling (2007). It is not

clear if the process from the TAR model is NED yet and additional conditions

may be needed even if it is. In the proof of Theorem 3.1, it involves the

convergence of the following partial sum:

1

n

−1∑
t=−n

[`t(θ, r)− E`t(θ, r)],

But the usual ergodic theorem cannot apply to this, since very few time series

have been known to be time-reversible, see Cheng (1999). On the other hand,

the weakest moment condition is given in the ergodic theorem, but it does not

have a rate of convergence. Furthermore, since the TAR model may not be

the near-epoch dependence (NED) sequences without more restrictions, the

strong law of large numbers (SLLN) for backward-sum in Ling (2007) cannot

be applied either. It demands a new SLLN for the backward-sum of a strong

mixing random sequence. In view of the moment condition in Assumption

3.1, we establish a SLLN for the forward and backward sums of α−mixing

sequences under a finite (1 + ε)th moment.
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S1. A STRONG LAW OF LARGE NUMBERS

Theorem 1. Let {Xt : t = 0,±1,±2, · · ·} be a stationary process with zero

mean and E|Xt|p < ∞ for some 1 < p < 2. If it is a strong mixing sequence

with α(n) ≤ Kan for some a ∈ (0, 1) and a constant K > 0, then there exists

a constant δ ∈ (0, 1) such that

(a)
1

n1−δ

n∑
t=1

Xt −→ 0 a.s.,

(b)
1

n1−δ

−1∑
t=−n

Xt −→ 0 a.s.,

as n→∞.

PROOF. We only prove it for (a) since (b) is similar. We choose p̃ with

1 < p̃ < p and a constant c > 0 which will be determined later. Denote

ξt = XtI(|Xt| ≤ tc) and ηt = XtI(|Xt| > tc). By Minkowski’s inequality, it

follows that

E|
n∑
t=1

Xt|p̃ = E|
n∑
t=1

(ξt − Eξt) +
n∑
t=1

(ηt − Eηt)|p̃

≤ O(1)E|
n∑
t=1

(ξt − Eξt)|p̃ +O(1)E|
n∑
t=1

(ηt − Eηt)|p̃

:= I + II,

where O(1) holds uniformly in n.

We note that |ξi| ≤ ic and |ξj| ≤ jc, 1 ≤ i < j ≤ n. By Lemma 1.2 in

Ibragimov (1962) and the strong mixing condition, we have

|Eξiξj − EξiEξj| ≤ 4icjcα(j − i). (S1.1)
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By Hölder’s inequality, Minkowski’s inequality and (S1.1), we have

I ≤ O(1)

[
E|

n∑
t=1

(ξt − Eξt)|2
] p̃

2

≤ O(1)

[
n∑
t=1

E(ξt − Eξt)2 + 2
∑
i<j

(Eξiξj − EξiEξj)

] p̃
2

≤ O(1)

[
n∑
t=1

Eξ2
t + 2

∑
i<j

|Eξiξj − EξiEξj|

] p̃
2

≤ O(1)

[
n∑
t=1

t2c + 8
∑
i<j

icjcα(j − i)

] p̃
2

≤ O(n
p̃
2

+p̃c). (S1.2)

By Hölder’s inequality and Markov’s inequality, we have

E|ηt|p̃ ≤ (E|Xt|p)p̃/p[P (|Xt| > tc)](p−p̃)/p ≤ E|Xt|p

tc(p−p̃)
. (S1.3)

By Minkowski’s inequality, Hölder’s inequality and (S1.3), we have

II = O(1)E|
n∑
t=1

(ηt − Eηt)|p̃

≤ O(1)

[
n∑
t=1

(E|ηt|p̃)1/p̃ +
n∑
t=1

|Eηt|

]p̃

≤ O(1)

[
n∑
t=1

(E|ηt|p̃)1/p̃

]p̃

≤ O(1)

[
n∑
t=1

(
E|Xt|p

tc(p−p̃)
)1/p̃

]p̃

≤ O(1)

[
n∑
t=1

t1+ε−c(p−p̃)/p̃

t1+ε

]p̃

≤ O(np̃+p̃(ε−c(p−p̃)/p̃)), (S1.4)
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S2. PROOF OF THEOREMS 3.1-3.2 AND 4.1

where we choose ε such that 0 < ε < c(p− p̃)/p̃.

Let 0 < c < 1/2 and 0 < ε < c(p − p̃)/p̃. By (S1.2) and (S1.4), there

exists a constant ρ ∈ (0, 1) such that

E|
n∑
t=1

Xt|p̃ ≤ O(np̃ρ). (S1.5)

Let Sn =
∑n

t=1Xt. By Proposition 1 in Wu (2007) and (S1.5), we have

[
E

∣∣∣∣ max
1≤t≤2k

|St|
∣∣∣∣p̃
]1/p̃

≤
k∑
r=0

2k−r∑
i=1

E|S2ri − S2r(i−1)|p̃
1/p̃

≤
k∑
r=0

2k−r∑
i=1

E|
2r∑
t=1

Xt|p̃
1/p̃

(by stationarity)

≤ O(1)
k∑
r=0

2k−r∑
i=1

2rp̃ρ

1/p̃

≤ O(2kρ). (S1.6)

Let Tn = Sn
n1−δ . Using (S1.6), Borel-Cantelli Lemma and Lemma 2.3.1 in

Stout (1974), it follows that Tn −→ 0 a.s. as n→∞, which proves (a). This

completes the proof of Theorem 1. �

S2 Proof of Theorems 3.1-3.2 and 4.1

We first give several useful lemmas. The proofs are given in Section S3.

Lemma 1. If Assumptions 1-4 hold, then E supθi∈Θ,ri∈Γ |`t(θi, ri)| < ∞ and
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E`t(θi, ri) has a unique minimizer at θi = θi0 and ri = ri0, where i = 1 when

1 ≤ t ≤ k0 and i = 2 when k0 + 1 ≤ t ≤ n.

Lemma 2. If Assumptions 1-4 hold, we have

(a)
1

n
max
Θ×Γ

∣∣∣∣∣
n∑
t=1

[`t(θ, r)− E`t(θ, r)]

∣∣∣∣∣ −→ 0 a.s.,

(b)
1

n
max
Θ×Γ

∣∣∣∣∣
−1∑
t=−n

[`t(θ, r)− E`t(θ, r)]

∣∣∣∣∣ −→ 0 a.s.,

as n→∞.

The following Lemma is from Li et al. (2013).

Lemma 3. (i). If the density fε(x) of εt is continuous and bounded, then

the density fi(x) of {yt} ∈ Y (θi0, ri0) is continuous and bounded for i = 1, 2.

(ii). Under Assumption 2, there exist constants 0 < m0 < M0 <∞ such that

m0u ≤ P (r < qt ≤ r + u) ≤M0u for fixed r ∈ R and any u ∈ [0, 1], i = 1, 2.

Proof of Theorem 3.1. (a). By Lemmas 1-2, and a similar proof to

that of Lemma 9.1 in Ling (2016), we can show that τ̂n = τ0 + op(1). So

we can assume that k̂n, k ∈ [kL, n − kL], where kL = [nτ̃ ], τ̃ ∈ (0, 1/2) and

τ0 ∈ (τ̃ , 1 − τ̃). We prove only the case when k ≤ k0, r1 ≥ r10 and r2 ≥ r20,

as the other cases are similar. Denote

∆n(θ1, θ2, r1, r2, k) = Sn(θ1, θ2, r1, r2, k)− Sn(θ10, θ20, r10, r20, k0).
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S2. PROOF OF THEOREMS 3.1-3.2 AND 4.1

We use the convention
∑k0

k0+1Xt = 0 for any series Xt. When k ≤ k0, we have

∆n(θ1, θ2, r1, r2, k) =
k∑
t=1

{`t(θ1, r1)− `t(θ10, r10)}+
n∑

k0+1

{`t(θ2, r2)− `t(θ20, r20)}

+

k0∑
k+1

{`t(θ2, r2)− `t(θ10, r10)}. (S2.1)

Let Θ1δ = {(θ′1, r1)′, ‖θ1 − θ10‖ + |r1 − r10| ≥ δ}. By Lemma 1, C =

minΘ1δ
[E`t(θ1, r1) − E`t(θ10, r10)] > 0 when t ≤ k0. Thus, by Lemma 2 and

Lemma 1 in Chow (1978) (pp. 66), we have

1

n
min

kL≤k≤k0

min
Θ1δ

[
k∑
t=1

{`t(θ1, r1)− `t(θ10, r10)}

]

≥− 2

n
max

kL≤k≤k0

max
Θ1δ

∣∣∣∣∣
k∑
t=1

[`t(θ1, r1)− E`t(θ1, r1)]

∣∣∣∣∣
+ τ̃ min

Θ1δ

[E`t(θ1, r1)− E`t(θ10, r10)]

=τ̃C + op(1). (S2.2)

Since minθ2∈Θ,r2∈Γ[E`t(θ2, r2) − E`t(θ20, r20)] = 0 when t > k0, by Lemma 2,

it follows that

1

n
min

θ2∈Θ,r2∈Γ

[
n∑

t=k0+1

{`t(θ2, r2)− `t(θ20, r20)}

]

≥− 2

n
max

kL≤k≤k0

max
θ2∈Θ,r2∈Γ

∣∣∣∣∣
n∑

t=k0+1

[`t(θ2, r2)− E`t(θ2, r2)]

∣∣∣∣∣
+
n− k0

n
min

θ2∈Θ,r2∈Γ
[E`t(θ2, r2)− E`t(θ20, r20)]

=op(1). (S2.3)
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Note that minθ∈Θ,r∈Γ[E`t(θ, r)− E`t(θ10, r10)] = 0 when t ≤ k0. We have

1

n
min

k−k0≤−M
inf

θ2∈Θ,r2∈Γ

[
k0∑

t=k+1

{`t(θ2, r2)− `t(θ10, r10)}

]

≥− 2

n
max

k−k0≤−M
sup

θ∈Θ,r∈Γ

∣∣∣∣∣
k0∑

t=k+1

{`t(θ, r)− E`t(θ, r)}

∣∣∣∣∣
+
k0 − k
n

min
θ∈Θ,r∈Γ

[E`t(θ, r)− E`t(θ10, r10)]

≥ −2 max
k−k0≤−M

sup
θ∈Θ,r∈Γ

1

k0 − k

∣∣∣∣∣
k0∑

t=k+1

{`t(θ, r)− E`t(θ, r)}

∣∣∣∣∣
=d − 2 max

u≥M
sup

θ∈Θ,r∈Γ

1

u

∣∣∣∣∣
−1∑
t=−u

{`t(θ, r)− E`t(θ, r)}

∣∣∣∣∣
=opM(1), (S2.4)

where opM(1) → 0 in probability when M → ∞ and it holds uniformly in n,

where the last step holds by Lemma 2, and Lemma 1 in Chow (1978) (pp.

66), and “ =d ” denotes “ = ” in distribution. On the event {‖θ̂1n − θ10‖ +

|r̂1n − r10| ≥ δ, |k̂n − k0| > M}, by (S2.2)-(S2.4), we have

P (‖θ̂1n − θ10‖+ |r̂1n − r10| ≥ δ, |k̂n − k0| > M)

≤ P (
1

n
min

|k0−k|>M
min

(θ′1,r1)′∈Θ1δ
(θ′2,r2)′∈Θ×Γ

∆n(θ1, θ2, r1, r2, k) ≤ 0)

≤ P (τ̃C + opM(1) + op(1) ≤ 0)→ 0, (S2.5)

as M,n→∞. When |k0 − k| ≤M , the third term of (S2.1) is larger than

−2

k0∑
k+1

max
θ1∈Θ,r1∈Γ

|`t(θ1, r1)| = op(n). (S2.6)
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S2. PROOF OF THEOREMS 3.1-3.2 AND 4.1

On the event {‖θ̂1n − θ10‖ + |r̂1n − r10| ≥ δ, |k̂n − k0| ≤ M}, by (S2.2)-(S2.3)

and (S2.6), we have

P (‖θ̂1n − θ10‖+ |r̂1n − r10| ≥ δ, |k̂n − k0| ≤M)

≤ P (
1

n
min

|k0−k|≤M
min

(θ′1,r1)′∈Θ1δ
(θ′2,r2)′∈Θ×Γ

∆n(θ1, θ2, r1, r2, k) ≤ 0)

≤ P (τ̃C + op(1) ≤ 0)→ 0, (S2.7)

as n→∞ for any given M .

By (S2.5) and (S2.7), we can see that P (‖θ̂1n− θ10‖+ |r̂1n− r10| ≥ δ)→ 0

as n → ∞, which implies θ̂1n − θ10 = op(1) and r̂1n − r10 = op(1). Similarly,

we can show that θ̂2n − θ20 = op(1) and r̂2n − r20 = op(1). Thus, (a) holds.

(b). We only consider the case with k̂n ≤ k0. We note that

k̂n∑
t=1

`t(θ̂1n, r̂1n) +
n∑

t=k̂n

`t(θ̂2n, r̂2n) ≤
k0∑
t=1

`t(θ̂1n, r̂1n) +
n∑

t=k0

`t(θ̂2n, r̂2n). (S2.8)

Thus,

−
k0∑

t=k̂n+1

`t(θ̂1n, r̂1n) +

k0∑
t=k̂n+1

`t(θ̂2n, r̂2n) ≤ 0. (S2.9)

Let dθi,ri = ‖θi− θi0‖+ |ri− ri0|. By (a) of Theorem 3.1, Assumptions 3.1-3.4

and dominated convergence theorem, we have

lim
n→∞

|E`t(θ̂in, r̂in)− E`t(θi0, ri0)|

≤ lim
δ→0

[E sup
dθi,ri<δ

|`t(θi, ri)− `t(θi0, ri0)|+ lim
n→∞

EξtI(dθi,ri ≥ δ)] = 0, i = 1, 2,
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where ξt = 2 maxθ∈Θ,r∈Γ |`t(θ, r)|. Then, there exists a constant C > 0 such

that, for k̂n + 1 ≤ t ≤ k0,

lim
n→∞
{E`t(θ̂2n, r̂1n)− E`t(θ̂1n, r̂2n)} =E`t(θ20, r20)− E`t(θ10, r10) (S2.10)

=C > 0,

since (θ10, r10) is the only minimizer of E`t(θ, r) if t ≤ k0. When |k̂n−k0| > M ,

by (S2.9)-(S2.10),

2

k0 − k̂n
sup

θ∈Θ,r∈Γ

∣∣∣∣∣∣
k0∑

t=k̂n+1

[`t(θ, r)− E`t(θ, r)]

∣∣∣∣∣∣
≥ 1

k0 − k̂n


k0∑

t=k̂n+1

[`t(θ̂1n, r̂1n)− E`t(θ̂1n, r̂1n)]

−
k0∑

t=k̂n+1

[`t(θ̂2n, r̂2n)− E`t(θ̂2n, r̂2n)]


≥ 1

k0 − k̂n

k0∑
t=k̂n+1

[E`t(θ̂2n, r̂2n)− E`t(θ̂1n, r̂1n)]

=C + o(1),

as n→∞. By the previous inequality, the stationarity and Lemma 2, for any
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S2. PROOF OF THEOREMS 3.1-3.2 AND 4.1

ε > 0, we have

P (k0 − k̂n > M)

= P (k0 − k̂n > M,
2

k0 − k̂n
sup

θ∈Θ,r∈Γ
|

k0∑
t=k̂n+1

[`t(θ, r)− E`t(θ, r)]| ≥ C + o(1))

≤ P (max
u>M

2

u
sup

θ∈Θ,r∈Γ
|
−1∑
t=−u

[`t(θ, r)− E`t(θ, r)]| ≥ C + o(1))

= P (op(1) ≥ C

2
+ o(1))

< ε,

as M > 0 is large enough. Thus, k0 − k̂n = Op(1). This completes the proof.

�

Proof of Theorem 3.2. (a). We only prove the case when i = 1.

Since θ̂1n and r̂1n are strongly consistent and k̂n− k0 = Op(1), we restrict the

parameter space to a neighborhood of θ10 :

V1δ = {θ1 ∈ Θ : ‖θ1 − θ10‖ < δ, |r1 − r10| < δ, |k − k0| ≤M},

for some δ ∈ (0, 1) and M > 0. By definition of (θ̂1n, r̂1n, k̂n), we have

S1n(θ̂1n, r̂1n, k̂n) ≤ S1n(θ̂1n, r10, k̂n). (S2.11)
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By Theorem 3.1 and (S2.11), we have

P (k0|r̂1n − r10| > B)

≤P ( inf
B/k0<|r1−r10|<δ

θ1∈V1δ

S1n(θ1, r1, k)− S1n(θ1, r10, k)

k0G(|r1 − r10|)
≤ 0)

≤1− P ( inf
B/k0<|r1−r10|<δ

θ1∈V1δ

S1n(θ1, r1, k)− S1n(θ1, r10, k)

k0G(|r1 − r10|)
> γ),

where γ > 0 is a constant and G(x) = EI(r10 < qt ≤ r10 + x) for 1 ≤ t ≤ k0.

Now, it suffices to show that, for any ε > 0, there exists a constant γ > 0, a

small δ and a large B such that, as n is large enough,

P ( inf
B/k0<|r1−r10|<δ

θ1∈V1δ

S1n(θ1, r1, k)− S1n(θ1, r10, k)

k0G(|r1 − r10|)
> γ) > 1− ε. (S2.12)

Here, we only treat the case when r1 > r10 and k < k0. The other cases are

similar. For simplicity, write r1 = r10 + v for some v < δ. Then

1

k0

[S1n(θ1, r10 + v, k)− S1n(θ1, r10, k)]

=− 1

k0

{[S1n(θ1, r10 + v, k0)− S1n(θ1, r10 + v, k)]−

[S1n(θ1, r10, k0)− S1n(θ1, r10, k)]}

+
1

k0

[S1n(θ1, r10 + v, k0)− S1n(θ1, r10, k0)]

:=A1n + A2n.

By Lemma 3, we have

m0v ≤ G(v) = P (r10 < qt ≤ r10 + v) ≤M0v. (S2.13)
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S2. PROOF OF THEOREMS 3.1-3.2 AND 4.1

By Lemma 1, on the event {|k̂n − k0| ≤ M}, there exists a constant C > 0

such that

E sup
B/k0<v<δ

V1δ

|A1n| =E sup
B/k0<v<δ

V1δ

1

k0

∣∣∣∣∣
k0∑

t=k+1

[`t(θ1, r10 + v)− `t(θ1, r10)]

∣∣∣∣∣
≤2E(

M

k0

sup
B/k0<v<δ

V1δ

|`t(θ1, r10 + v)|)

≤CM
k0

. (S2.14)

Then by (S2.13)-(S2.14), for any ε > 0 and η > 0, we have

P ( sup
B/k0<v<δ

V1δ

|A1n|
G(v)

< η) ≥ 1− P ( sup
B/k0<v<δ

V1δ

|A1n|
m0B/k0

≥ η)

≥ 1− CM/k0

ηBm0/k0

≥ 1− ε, (S2.15)

where we choose B > CM
ηm0ε

.

By the proof of Proposition 1 in Chan (1993) or Theorem 2 in Qian (1998)

with yt−d replaced by qt−1, we can show that there is a constant γ > 0 such

that

P ( inf
B/k0<v<δ
θ1∈V1δ

A2n

G(v)
> 2γ) > 1− ε. (S2.16)
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By (S2.15) and (S2.16), we have

P ( inf
B/k0<v<δ
θ1∈V1δ

S1n(θ1, r1, k)− S1n(θ1, r10, k)

k0G(v)
> γ)

=P ( inf
B/k0<v<δ
θ1∈V1δ

A1n + A2n

G(v)
> γ)

≥1− P ( inf
B/n<v<δ

A2n(v)

G(v)
≤ 2γ)− P ( sup

B/n<v<δ

|A1n(v)

G(v)
| ≥ γ)

≥1− 2ε.

This proves (S2.12) and hence n(r̂1n − r10) = Op(1). Similarly, we can prove

n(r̂2n − r20) = Op(1). Thus, (a) holds.

(b). We consider the case with k̂n ≤ k0 and r̂1n ≥ r10. By the definition

of the LSE, we can show that

Φ̂1n =[
k̂n∑
t=1

Zt−1Z
′
t−1(r̂+

1n)]−1

k̂n∑
t=1

Zt−1(r̂+
1n)yt

=Φ10 + [
1

n

k̂n∑
t=1

Zt−1Z
′
t−1(r̂+

1n)]−1 1

n

k̂n∑
t=1

Zt−1(r̂+
1n)εt, (S2.17)

By Theorem 1, we have k̂n− k0 = Op(1) and r̂1n− r10 = Op(
1
n
). Thus, we can

show that

√
n(Φ̂1n − Φ10) = [

1

n

k0∑
t=1

Zt−1Z
′
t−1(r+

10)]−1[
1√
n

k0∑
t=1

Zt−1(r+
10)εt] + op(1)

−→L N(0,
σ2

τ0

M−1
1 (r+

10)), (S2.18)

as n → ∞. The proof is similar for Ψ̂1n and the other cases. This completes

the proof of Theorem 3.2. �
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S2. PROOF OF THEOREMS 3.1-3.2 AND 4.1

Lemma 4. If Assumptions 3.1-3.5 hold, then, for any B, M ∈ (0,∞), it

follows that

sup
|z|≤B

|k̂n−k0|≤M

|S̃in(z, k̂n)− S̃in(k0, θi0, ri0, ri0 +
z

n
)| = op(1), i = 1, 2.

where S̃in(z, k̂n) and S̃in(k0, θi0, ri0, ri0+ z
n
) are defined in (4.1) and (4.3)-(4.4).

Proof of Theorem 4.1. By Theorem 3.2, we can reparameterize r̂1n

and r̂2n as r10 + z1/n and r20 + z2/n, respectively, for some z1, z2 ∈ R. Thus,

Sn

(
θ̂1n(r10 +

z1

n
, k̂n), θ̂2n(r20 +

z2

n
, k̂n), r10 +

z1

n
, r20 +

z2

n
, k̂n

)
− Sn

(
θ̂1n(r10, k0), θ̂2n(r20, k0), r10, r20, k0

)
(S2.19)

=S̃1n(z1, k̂n) + S̃2n(z2, k̂n) + S3n(k̂n, k0),

where S̃1n(z1, k̂n), S̃2n(z2, k̂n) are defined in (4.1) and

S3n(k̂n, k0) ={I(k̂n ≤ k0)

k0∑
k̂n+1

[`t(θ̂2n(r20, k0), r20)− `t(θ̂1n(r10, k0), r10)]

+ I(k̂n > k0)
k̂n∑
k0+1

[`t(θ̂1n(r10, k0), r10)− `t(θ̂2n(r20, k0), r20)]}.

By Lemma 4, it follows that

Sn

(
θ̂1n(r10 +

z1

n
, k̂n), θ̂2n(r20 +

z2

n
, k̂n), r10 +

z1

n
, r20 +

z2

n
, k̂n

)
− Sn

(
θ̂1n(r10, k0), θ̂2n(r20, k0), r10, r20, k0

)
=S̃1n(k0, θ10, r10, r10 +

z1

n
) + S̃2n(k0, θ20, r20, r20 +

z2

n
) (S2.20)

+ S3n(k̂n, k0) + op(1),

15
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where op(1) holds uniformly on {|z1| ≤ B, |z2| ≤ B, |k̂n − k0| ≤ M}. On the

event {|k̂n − k0| ≤M}, by (S2.17) and (S2.18), we can show that
k0∑

k̂n+1

[`t(θ̂in(ri0, k0), ri0)− `t(θi0, ri0)]

 = op(1), i = 1, 2.

It follows that

S3n(k̂n, k0) =

I(k̂n ≤ k0)

k0∑
k̂n+1

[`t(θ20, r20)− `t(θ10, r10)]

+ I(k̂n > k0)
k̂n∑
k0+1

[`t(θ10, r10)− `t(θ20, r20)]

+ op(1). (S2.21)

By Lemma 4 and (4.2), we have

n(r̂in − ri0) = arg min
z∈R

[
S̃in(k0, θi0, ri0, ri0 +

z

n
) + op(1)

]
, i = 1, 2. (S2.22)

Thus, for i = 1, by a similar proof to Theorem 3.3 in Li and Ling (2012) with

z
n

in (S2.22) rewritten as k0z/n
k0

and noting that k0 = [nτ0], we have

n(r̂1n − r10) = arg min
z∈R

[
S̃1n(k0, θi0, ri0, ri0 +

z

n
) + op(1)

]
=⇒ arg min

z∈R
P1(τ0z)

=
1

τ0

arg min
z∈R

P1(z). (S2.23)

The proof is similar for the case of i = 2. Thus, (a) holds.

Since S̃1n and S̃2n do not depend on k̂n, we replace k̂n with k in (S2.20). By

16



S3. PROOFS OF LEMMAS 1-2 AND 4

(S2.21), it follows that

k̂n = arg min
1≤k<n

S3n(k, k0)

= arg min
1≤k<n

{
I(k < k0)

k0∑
t=k+1

[`t(θ20, r20)− `t(θ10, r10)]

+ I(k ≥ k0)
k∑

t=k0+1

[`t(θ10, r10)− `t(θ20, r20)] + op(1)

}
, (S2.24)

By the stationarity of Y (θ10, r10) and Y (θ20, r20),

k̂n − k0 −→L arg min
k

W (k, θ10, θ20, r10, r20). (S2.25)

This completes the proof of Theorem 4.1. �

S3 Proofs of Lemmas 1-2 and 4

Proof of Lemma 1. By Assumptions 3.1-3.4, E supθi∈Θ,ri∈Γ |`t(θi, ri)| < ∞

for i = 1, 2. The rest of the proof is similar to that of Lemma 6.4 in Li et al.

(2013). �

Proof of Lemma 2. We only prove it for (a) since (b) is similar. We first

prove that, for each (θ′, r)′ ∈ Θ× Γ and any η > 0,

lim
`→∞

P (max
n≥`

1

n
|

n∑
t=1

[`t(θ, r)− E`t(θ, r)]| > η) = 0. (S3.1)

Taking Xt = `t(θ, r)−E`t(θ, r) and p = 1 + ι/2, by Assumptions 3.1 and 3.4,

{Xt} is a strong mixing sequence with geometric rate and E|Xt|p < ∞. By

17
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Theorem 1 in section S1, it follows that, for each (θ′, r)′ ∈ Θ× Γ,

1

n1−δ

n∑
t=1

[`t(θ, r)− E`t(θ, r)] −→ 0 a.s.. (S3.2)

By (S3.2) and Lemma 1 in Chow (1978) (pp. 66), we can see that (S3.1)

holds. By the standard piece-wise argument, we can show that

lim
l→∞

P (max
n≥l

1

n
max
Θ×Γ
|

n∑
t=1

[`t(θ, r)− E`t(θ, r)]| > η) = 0. (S3.3)

Thus, by Lemma 1 in Chow (1978) (pp. 66), (a) holds. This completes the

proof. �

Proof of Lemma 4. We only prove it for i = 1 and k̂n ≤ k0. On the event

{|z| ≤ B, |k̂n − k0| ≤M}, by (S2.17)-(S2.18), it follows that

√
n sup

|z|≤B
|k−k0|≤M

‖θ̂in(r10 +
z

n
, k)− θ̂in(r10, k0)‖ = op(1), i = 1, 2, (S3.4)

where op(1) uniformly goes to zero in probability as n → ∞ for any fixed

B,M ∈ (0,∞). By (S3.4), it is not hard to show that

Sin(θ̂in(ri0, k̂n), ri0, k̂n) = Sin(θ̂in(ri0, k0), ri0, k̂n) + op(1).

Thus, (4.1) becomes

S̃1n(z, k̂n) =Sin(θ̂in(ri0 +
z

n
, k̂n), ri0 +

z

n
, k̂n)− Sin(θ̂in(ri0, k0), ri0, k̂n) + op(1)

=

{
k0∑
t=1

`t(θ̂1n(r10 +
z

n
, k̂n), r10 +

z

n
)−

k0∑
t=1

`t(θ̂1n(r10, k0), r10)

}

−


k0∑

t=k̂n+1

[`t(θ̂1n(r10 +
z

n
, k̂n), r10 +

z

n
)− `t(θ̂1n(r10, k0), r10)]


:=R1n(z, k̂n)−R2n(z, k̂n).

18



S3. PROOFS OF LEMMAS 1-2 AND 4

Then it is easy to obtain

sup
|z|≤B

|k̂n−k0|≤M

|R2n(z, k̂n)| = op(1). (S3.5)

For notational simplicity, by Theorem 3.2, we can replace θ̂1n(r10 + z
n
, k̂n)

and r10 + z
n

with θ̂1n and r̂1n, respectively, without affecting the asymptotic

properties of R1n(z, k̂n). We only consider the case when r̂1n ≥ r10. Then

k0∑
t=1

`t(θ̂1n, r̂1n) =

k0∑
t=1

[εt − (Φ̂1n − Φ10)′Zt−1]2I(qt−1 > r̂1n)

+

k0∑
t=1

[εt − (Ψ̂1n − Φ10)′Zt−1]2I(r10 < qt−1 ≤ r̂1n)

+

k0∑
t=1

[εt − (Ψ̂1n −Ψ10)′Zt−1]2I(qt−1 ≤ r10)

:=B1n +B2n +B3n. (S3.6)

On the event {k0 − k̂n ≤ M} ∩ {r10 < r̂1n ≤ r10 + B
n
}, by Theorem 3.2 and

(S2.17)-(S2.18), we have

1√
n

k0∑
t=1

Zt−1εtI(qt−1 > r̂1n) =
√
n(Φ̂1n − Φ10)′τ0M1(r+

10) + op(1). (S3.7)

Thus,

B1n =

k0∑
t=1

ε2
t I(qt−1 > r̂1n)− 2(Φ̂1n − Φ10)′

k0∑
t=1

Zt−1εtI(qt−1 > r̂1n)

+ (Φ̂1n − Φ10)′
k0∑
t=1

Zt−1Z
′
t−1(r̂+

1n)(Φ̂1n − Φ10)

=

k0∑
t=1

ε2
t I(qt−1 > r̂1n)−

√
n(Φ̂1n − φ10)′τ0M1(r+

10)
√
n(Φ̂1n − Φ10) (S3.8)

+ op(1).
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Similarly we have

B3n =

k0∑
t=1

ε2
t I(qt−1 ≤ r10) (S3.9)

−
√
n(Ψ̂1n −Ψ10)′τ0M1(r−10)

√
n(Ψ̂1n −Ψ10) + op(1).

We note that

B2n =

k0∑
t=1

ε2
t I(r10 < qt−1 ≤ r̂1n)− 2(Ψ̂1n − Φ10)′

k0∑
t=1

Zt−1(r10, r̂1n)εt

+ (Ψ̂1n − Φ10)′
k0∑
t=1

Zt−1Z
′
t−1(r10, r̂1n)(Ψ̂1n − Φ10)

:=C1n + C2n + C3n. (S3.10)

We continue to calculate each term of B2n. On the event {k0 − k̂n ≤ M} ∩

{r10 < r̂1n ≤ r10 + B
n
},

C2n =− 2(Ψ̂1n −Ψ10 + Ψ10 − Φ10)′
k0∑
t=1

Zt−1(r10, r̂1n)εt

=− 2(Ψ10 − Φ10)′
k0∑
t=1

Zt−1(r10, r̂1n)εt + op(1), (S3.11)

where the last equality holds by Markov’s inequality and Theorem 3.2.

C3n =(Ψ10 − Φ10)′
k0∑
t=1

Z ′t−1Zt−1(r10, r̂1n)(Ψ10 − Φ10)

+ 2(Ψ̂1n −Ψ10)′
k0∑
t=1

Z ′t−1Zt−1(r10, r̂1n)(Ψ10 − Φ10)

+ (Ψ̂1n −Ψ10)′
k0∑
t=1

Z ′t−1Zt−1(r10, r̂1n)(Ψ̂1n −Ψ10)

=(Ψ10 − Φ10)′
k0∑
t=1

Z ′t−1Zt−1(r10, r̂1n)(Ψ10 − Φ10) + op(1), (S3.12)
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where the last equality holds by Markov’s inequality and Theorem 3.2.

Then by (S3.6) and (S3.8)-(S3.12),

k0∑
t=1

`t(θ̂1n, r̂1n) =

k0∑
t=1

ε2
t −
√
n(Φ̂1n − Φ10)′τ0M1(r+

10)
√
n(Φ̂1n − Φ10)

−
√
n(Ψ̂1n −Ψ10)′τ0M1(r−10)

√
n(Ψ̂1n −Ψ10)

+ (Ψ10 − Φ10)′
k0∑
t=1

Z ′t−1Zt−1(r10, r̂1n)(Ψ10 − Φ10)

− 2(Ψ10 − Φ10)′
k0∑
t=1

Zt−1(r10, r̂1n)εt + op(1). (S3.13)

Now, we replace θ̂in and r̂1n in (S3.13) with θ̂1n(r10 + z
n
, k̂n) and r10 + z

n
,

respectively. Then we have

k0∑
t=1

`t

(
θ̂1n(r10 +

z

n
, k̂n), r10 +

z

n

)
=−
√
n
(

Φ̂1n(r10 +
z

n
, k̂n)− Φ10

)′
τ0M1(r+

10)

×
√
n
(

Φ̂1n(r10 +
z

n
, k̂n)− Φ10

)
−
√
n
(

Ψ̂1n(r10 +
z

n
, k̂n)−Ψ10

)′
τ0M1(r−10)

×
√
n
(

Ψ̂1n(r10 +
z

n
, k̂n)−Ψ10

)
+ I(z ≥ 0)S̃1n(k0, θ10, r10, r10 +

z

n
) +

k0∑
t=1

ε2
t + op(1). (S3.14)
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Similarly we can show that

k0∑
t=1

`t(θ̂1n(r10, k0), r10)

=−
√
n(Φ̂1n(r10, k0)− Φ10)′τ0M1(r+

10)
√
n(Φ̂1n(r10, k0)− Φ10)

−
√
n(Ψ̂1n(r10, k0)−Ψ10)′τ0M1(r−10)

√
n(Ψ̂1n(r10, k0)−Ψ10) (S3.15)

+

k0∑
t=1

ε2
t + op(1).

By (S3.4) and (S3.14)-(S3.15), for any |z| < B, we have

R1n(z, k̂n) =

k0∑
t=1

`t

(
θ̂1n(r10 +

z

n
, k̂n), r10 +

z

n

)
−

k0∑
t=1

`t

(
θ̂1n(r10, k0), r10

)
= S̃1n(k0, θ10, r10, r10 +

z

n
) + op(1). (S3.16)

By (S3.5) and (S3.16), it follows that

sup
|z|≤B

|k̂n−k0|≤M

|S̃1n(z, k̂n)− S̃1n(k0, θ10, r10, r10 +
z

n
)| = op(1). (S3.17)

This completes the proof. �

S4 The Effect of the Initial Values

Now, we discuss the effect of the initial values Z10 and Z2k0 on the results

obtained in Sections 3-5. Since we only have one data set {y1, ..., yn}, we

use this and replace Z10 by some constant Z̃10 to calculate `t(θ, r). Although

we do not know k0, this calculation has implied that we replace Z2k0 by
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S4. THE EFFECT OF THE INITIAL VALUES

Z̃2k0 = {yk0 , ..., y1,Z10} when t > k0. That is, we first choose some constant

Z10 to generate the data and the initial value of the second period are from

the data of the first period, as implied by the model presentation. With these

initial values, the results of Ling and Tong (2005) and Li et al. (2011) show that

they do not affect the asymptotic properties of θ̂in and r̂in. To see their effect

on the estimated change-point k0, we denote ˜̀
t(θ1, r1) = `(θ1, r1, yt, ...y1, Z̃10)

when t ≤ k0 and ˜̀
t(θ2, r2) = `(θ2, r2, yt, ...yk0+1, Z̃2k0) when t > k0. From the

proof of Theorem 3.3, we can see that

k̃n − k0 −→L arg min
k

W̃ (k, θ10, θ20, r10, r20),

where k̃n is the estimator given these initial values and W̃ (·) is defined as (4.8)

with replacing `t(θi0, ri0) by ˜̀
t(θi0, ri0). Since the distribution of W (·) and

W̃ (·) are different, the initial values always affect the asymptotic distribution

of the estimated k0 in Theorem 3.3. However, under Assumption 4.2, if Φ20−

Φ10 ≈ κ1n, Ψ20 −Ψ10 ≈ κ2n and Φ10 −Ψ20 ≈ κ3n, it is not hard to show that

W (k, θ10, θ20, r10, r20)− W̃ (k, θ10, θ20, r10, r20) = op(1),

as n→∞. Thus, we can see that the approximating distribution in Theorem

4.2 and the likelihood-ratio based distribution in (5.10) are still valid in this

case.
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S5 Further Analysis of the Real Data Exam-

ple

In this section, we re-examine some steps in Section 7 of the main article.

In Step 1, we have applied the threshold nonlinearity test to the data and

found significant threshold effect on the data {yt}. After we fitted a TAR(8)

model with threshold variable yt−8 to the data, we further applied the Sup-

likelihood-ratio test for the existence of a change-point in the TAR model and

found an estimated change-point k̂n = 578.

Now, we change the order of the tests in Step 1 and Step 3, i.e. we

first fit the data using an AR(8) model, where we adopt the order 8 of the

TAR model in the main article for the purpose of comparison. Then we will

perform the threshold nonlinearity test on the two segments, respectively. In

this experiment, when we apply the Sup-likelihood-ratio test to the AR(8)

model, we find that supτ∈[0.05,0.95] LR(τ) = 85.78, which is larger than the

critical value 31.61 at the 0.01 significance level, see Table 1 in Andrews (1993)

with degrees of freedom 9(= p + 1). The estimated change-point k̂n = 560,

which is different from the one (k̂n = 578) obtained in the main article. This

is understandable since the structural change in AR model may be different

from the TAR one. On the other hand, according to our Theorem 3.1(b), the

k̂n is not a consistent estimator and only τ̂n is consistent to τ0. Therefore, we
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allow some discrepancy when it comes to the estimator for the change-point,

as long as k̂n/n is consistent to the true one. In this case, the estimator

k̂n = 560 does not contradict with the one k̂n = 578 in the main article.

Next, we apply the threshold nonlinearity test to the two segments of the

AR models, respectively. For the first segment, under the null hypothesis that

there is no threshold effect, and the alternative is the threshold model with

threshold variable yt−8, the p − value is 0.3088 > 0.05, which suggests that

there is no threshold effect in the direction of yt−8 as the threshold variable,

and the p−value of the second segment is 1.45×10−9 which suggests that there

is threshold effect. But this does not mean the first segment does not have

threshold effect since the p− values for other alternative threshold variables

may significantly small. For example, when the threshold variable is yt−4

in the alternative, the p − value is 0.014 < 0.05. However, when we set

k̂n = 578 as the main article and apply the threshold nonlinearity test to the

two segments, the p − values in the direction of the threshold variable yt−8

are 0.00043 and 0.00024, respectively, which suggests that there is significant

threshold effect along the two segments and the two fitted sub-models are

more reasonable than pure AR models.

Finally, we examine the performance of the fitted model (7.3) in the main

article by computing the average of the mean squared forecasting errors. We

first choose the forecasting period from t = 579 to t = 608, which contains 30
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data points after the estimated change-point. We denote the models in (7.3)

for t ≤ 578, t > 578 and model (7.2) by Models I, II, and III, respectively. The

averages of mean squared errors of the forecasting values based on theses three

models are reported in Table S11. From this table, we can see that the mean

squared error produced by Model II is the smallest one and the performance

of Model I is the worst one. Therefore, the performance of model (7.3) with

a change-point is better than the model (7.2) which is fitted to the whole

dataset, and the TAR model fitted to the second segment can characterize the

second segment of the data in a better way. We then examine the performance

of the out-of-sample forecastings by choosing the last 30 points (from t = 901

to t = 930) as the testing sample. We denote the fitted TAR models for the

period t = 1 to t = 930 and the period t = 579 to t = 900 by Model IV and

Model V, respectively. The mean squared errors based on Models IV and V are

reported in Table S11. As we can see that with a change-point k̂n = 578, the

fitted model using the period from t = 579 to t = 900 outperforms the model

fitted to the whole series (from t = 1 to t = 900), which means that our model

with a change-point in (7.3) improves the performance of the forecastings.
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Table S1: Simulation studies for model (6.1) with true parameters (θ′10, r10) =

(−1,−0.6, 1, 0.4, 0.8) and (θ′20, r20) = (−0.8,−0.9, 0.7, 0.6, 0.5), εt ∼ N(0, 1),

k0 = n/2.

n µ10 φ10 ν10 ψ10 r10 µ20 φ20 ν20 ψ20 r20

400 Bias -.0070 .0026 .0100 .0029 -.0198 .0125 -.0133 .0123 .0014 -.0217

ESD .3753 .2191 .1142 .0717 .0289 .3439 .2433 .1241 .0748 .0366

ASD .3631 .2102 .1076 .0678 .0286 .3274 .2340 .1173 .0732 .0365

EASD .3559 .2068 .1053 .0699 .0282 .3205 .2281 .1156 .0722 .0373

800 Bias -.0079 .0059 .0035 .0024 -.009 -.0066 .0022 .0048 -.0008 -.0083

ESD .2657 .1526 .0786 .0479 .0133 .2324 .1634 .0852 .0526 .0180

ASD .2537 .1469 .0758 .0479 .0145 .2289 .1630 .0826 .0516 .0180

EASD .2505 .1448 .0751 .0475 .0141 .2260 .1603 .0817 .0511 .0186

1200 Bias .0011 .0005 .0056 .0026 -.0064 -.0033 .0002 .0045 .0017 -.0054

ESD .2119 .1213 .0617 .0394 .0089 .1894 .1361 .0650 .0427 .0112

ASD .2058 .1188 .0618 .0390 .0096 .1864 .1321 .0673 .0420 .0118

EASD .2048 .1181 .0614 .0388 .0094 .1841 .1306 .0670 .0418 .0124

? ESD: empirical standard deviation; ASD: asymptotic standard deviation; EASD:

estimated asymptotic standard deviation.
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Table S2: Coverage probabilities of ri0 by the simulation method of Li and

Ling (2012), the approximation method in Section 4 and the likelihood-ratio

method in Section 5.

γ ‖δ1n‖ ‖δ2n‖ n α̃ CM1 CB1 CLR1 CM2 CB2 CLR2

10% 0.901 0.598 0.969 0.874 0.692 0.946

400 5% 0.953 0.736 0.980 0.933 0.809 0.966

1% 0.988 0.906 0.997 0.983 0.935 0.988

10% 0.906 0.600 0.967 0.902 0.710 0.959

0 2.236 2.121 800 5% 0.947 0.728 0.983 0.946 0.823 0.979

1% 0.991 0.904 0.995 0.989 0.950 0.997

10% 0.907 0.600 0.975 0.901 0.699 0.960

1200 5% 0.955 0.735 0.984 0.952 0.817 0.982

1% 0.991 0.909 0.996 0.989 0.939 0.998

10% 0.887 0.746 0.947 0.892 0.817 0.941

400 5% 0.935 0.848 0.969 0.929 0.896 0.962

1% 0.983 0.948 0.988 0.975 0.961 0.991

10% 0.901 0.736 0.955 0.889 0.810 0.944

0.2 1.709 1.56 800 5% 0.950 0.859 0.975 0.935 0.895 0.968

1% 0.991 0.963 0.990 0.986 0.971 0.993

10% 0.890 0.730 0.962 0.901 0.830 0.958

1200 5% 0.944 0.841 0.981 0.953 0.911 0.979

1% 0.988 0.952 0.994 0.989 0.981 0.993

10% 0.852 0.807 0.917 0.810 0.801 0.888

400 5% 0.915 0.878 0.955 0.848 0.847 0.944

1% 0.959 0.952 0.986 0.881 0.908 0.974

10% 0.885 0.832 0.946 0.841 0.833 0.909

0.4 1.217 0.99 800 5% 0.934 0.900 0.975 0.892 0.897 0.959

1% 0.975 0.967 0.992 0.933 0.949 0.988

10% 0.907 0.864 0.945 0.876 0.861 0.924

1200 5% 0.959 0.932 0.976 0.925 0.927 0.960

1% 0.993 0.990 0.997 0.963 0.983 0.993

? CMi, CBi and CLRi represent the coverage probability of ri0 by M
(i)
− , T and

LRin in Sections 3, 4 and 5, respectively; i = 1, 2.
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Figure S1: (a) The original tree ring width data; (b) the growth rate by taking

the log difference.
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Figure S2: (a) Autocorrelation functions of yt; (b) Partial autocorrelation
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Figure S4: Model diagnostics of model (7.3)— (a) when t ≤ 578 and (b) when

t > 578.
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Table S3: The mean, ESD, ASD and the estimators of di0, φ and ξ for (6.2).

γ̃1 κn n k0 Mean ESD ASD d̂1n d̂2n φ̂n ≈ ξ̂n

400 200 199 1.464 0.559 6.684 17.196 2.573

0 4.69 800 400 400 1.342 0.560 6.669 17.259 2.588

1200 600 599 1.291 0.560 6.676 17.107 2.563

400 200 199 1.419 0.741 5.711 8.902 1.559

0.1 4.36 800 400 399 1.534 0.743 5.712 8.853 1.550

1200 600 599 1.446 0.743 5.714 8.818 1.543

400 200 199 1.780 0.980 4.882 5.528 1.132

0.2 4.15 800 400 399 1.852 0.974 4.878 5.623 1.153

1200 600 600 1.775 0.974 4.884 5.614 1.149

400 200 199 2.338 1.551 3.523 3.041 0.863

0.4 3.88 800 400 399 2.393 1.553 3.524 3.034 0.861

1200 600 599 2.288 1.550 3.523 3.043 0.864

? ESD: empirical standard deviation; ASD: asymptotic stan-

dard deviation; For one instance of 1000 replications, (d̂10, d̂20) =

(6.515, 17.447), (5.770, 8.905), (4.846, 5.618), (3.458, 2.996) for γ̃1 = 0, 0.1, 0.2, 0.4,

respectively, where (d̂10, d̂20) are obtained by (4.13) using the true parameters and

sample estimates of Mi(r
±
i0) when the sample size n = 1200.
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Table S4: The coverage probabilities of the estimated k0 for (6.2).

γ̃1 n T
φ̂n,ξ̂n

LRn

10% 5% 1% 10% 5% 1%

400 0.690 0.690 0.876 0.975 0.985 0.992

0 800 0.735 0.735 0.896 0.976 0.986 0.995

1200 0.731 0.736 0.899 0.982 0.990 0.999

400 0.630 0.790 0.943 0.969 0.984 0.995

0.1 800 0.633 0.812 0.925 0.966 0.987 0.995

1200 0.637 0.797 0.947 0.972 0.984 0.995

400 0.733 0.799 0.945 0.957 0.976 0.993

0.2 800 0.753 0.810 0.960 0.968 0.979 0.997

1200 0.760 0.810 0.960 0.964 0.982 0.998

400 0.783 0.884 0.971 0.930 0.971 0.993

0.4 800 0.792 0.885 0.971 0.942 0.963 0.991

1200 0.799 0.880 0.977 0.937 0.970 0.992

? Tφ̂n,ξ̂n is the approximative distribution in Section 4 and LRin represents the

likelihood-ratio based distribution in Section 5.
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Table S5: The mean, ESD, ASD and the estimators of di0, φ and ξ for (6.3).

γ̃2 κn n k0 Mean ESD ASD d̂1n d̂2n φ̂n ≈ ξ̂n

400 200 202 41.770 25.186 0.198 0.205 1.036

0.1 2.385 800 400 402 41.830 25.443 0.196 0.203 1.036

1200 600 601 41.780 25.190 0.201 0.204 1.014

400 200 199 20.599 12.407 0.404 0.414 1.023

0.2 2.535 800 400 398 20.600 12.454 0.405 0.410 1.014

1200 600 599 19.398 12.521 0.403 0.411 1.007

400 200 199 12.733 8.144 0.632 0.613 0.971

0.3 2.687 800 400 399 11.590 8.132 0.631 0.613 0.973

1200 600 599 11.100 8.129 0.630 0.618 0.982

400 200 199 6.621 4.694 1.148 1.078 0.887

0.5 2.995 800 400 399 6.205 4.693 1.147 1.109 0.889

1200 600 599 6.380 4.670 1.147 1.020 0.889

? ESD: empirical standard deviation; ASD: asymptotic stan-

dard deviation; For one instance of 1000 replications, (d̂10, d̂20) =

(0.204, 0.201), (0.408, 0.415), (0.641, 0.623), (1.152, 1.050) for γ̃2 = 0.1, 0.2, 0.3, 0.5,

respectively, where (d̂10, d̂20) are obtained by (4.13) using the true parameters and

sample estimates of Mi(r
±
i0) when the sample size n = 1200.
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Table S6: The coverage probabilities of the estimated k0 for (6.3).

γ̃2 n T
φ̂n,ξ̂n

LRn

10% 5% 1% 10% 5% 1%

400 0.710 0.820 0.941 0.550 0.670 0.835

0.1 800 0.719 0.826 0.949 0.591 0.705 0.881

1200 0.738 0.846 0.949 0.621 0.729 0.915

400 0.771 0.858 0.955 0.739 0.816 0.926

0.2 800 0.781 0.868 0.960 0.735 0.828 0.958

1200 0.799 0.881 0.962 0.762 0.848 0.957

400 0.805 0.879 0.960 0.777 0.851 0.945

0.3 800 0.826 0.895 0.974 0.820 0.891 0.960

1200 0.839 0.905 0.977 0.829 0.902 0.977

400 0.826 0.904 0.970 0.866 0.930 0.982

0.5 800 0.836 0.907 0.981 0.878 0.931 0.981

1200 0.837 0.905 0.976 0.874 0.935 0.979

? Tφ̂n,ξ̂n is the approximative distribution in Section 4 and LRin represents the

likelihood-ratio based distribution in Section 5.
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Table S7: p−values when testing for threshold nonlinearity, the null model is

AR(p) for 5 ≤ p ≤ 9.

d = 1 2 3 4 5 6 7 8 9

AR(5) 0.013 0.093 0.015 0.000 0.003

AR(6) 0.036 0.122 0.028 0.000 0.015 0.000

AR(7) 0.001 0.056 0.013 0.000 0.019 0.000 0.000

AR(8) 0.000 0.062 0.002 0.000 0.027 0.000 0.000 0.000

AR(9) 0.000 0.007 0.003 0.000 0.004 0.000 0.000 0.000 0.000

? d denotes the delay lag of the threshold variable yt−d in the alternative hypothesis.
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Table S8: The AICs and BICs of TAR(p) models based on (7.1) for 1 ≤ p ≤ 12.

d 1 2 3 4 5 6 7 8 9 10 11 12

TAR(1) AIC −2392.27

BIC −2382.6

TAR(2) AIC −2456.36 −2450.52

BIC −2441.84 −2436.02

TAR(3) AIC −2491.12 −2480.9 −2485.91

BIC −2471.78 −2461.56 −2466.57

TAR(4) AIC −2493.51 −2488.4 −2496.56 −2527.82

BIC −2469.33 −2464.22 −2472.39 −2503.64

TAR(5) AIC −2511.57 −2503.17 −2511.45 −2539.21 −2516.78

BIC −2482.56 −2474.16 −2482.44 −2510.2 −2487.77

TAR(6) AIC −2526.35 −2520.19 −2529.66 −2555.3 −2527 −2544.93

BIC −2492.5 −2486.34 −2495.81 −2521.46 −2493.15 −2511.08

TAR(7) AIC −2537.59 −2528.99 −2537 −2556.02 −2528.55 −2552.95 −2541.77

BIC −2498.91 −2490.31 −2498.32 −2517.34 −2489.87 −2514.27 −2503.09

TAR(8) AIC −2545.8 −2533.07 −2548.22 −2561.1 −2532.29 −2558.35 −2549.36 −2584.92

BIC −2502.28 −2489.56 −2504.7 −2517.58 −2488.77 −2514.84 −2505.84 -2541.4

TAR(9) AIC −2552.35 −2540.81 −2551.7 −2571.71 −2549.79 −2570.42 −2552.2 −2586.79 −2555.68

BIC −2504 −2492.46 −2503.35 −2523.36 −2501.44 −2522.07 −2503.85 −2538.44 −2507.32

TAR(10) AIC −2550.97 −2559.02 −2550.33 −2573.27 −2552.75 −2573.15 −2552 −2585.35 −2555.94 −2590.06

BIC −2497.78 −2505.83 −2497.14 −2520.09 −2499.56 −2519.97 −2498.81 −2532.16 −2502.75 −2536.87

TAR(11) AIC −2554.45 −2558.34 −2551.88 −2574.83 −2554.98 −2573.36 −2550.31 −2586.24 −2558.59 −2590.91 −2587.25

BIC −2496.43 −2500.31 −2493.86 −2516.81 −2496.96 −2515.34 −2492.28 −2528.22 −2500.57 −2532.88 −2529.23

TAR(12) AIC −2566.71 −2568.93 −2562.71 −2580.2 −2561.69 −2579.22 −2559.51 −2586.48 −2564.03 -2595.3 −2590.1 −2591.1

BIC −2503.85 −2506.08 −2499.85 −2517.34 −2498.83 −2516.36 −2496.66 −2523.62 −2501.18 −2532.44 −2527.24 −2528.24

? For each 1 ≤ p ≤ 12, the AICs and BICs are calculated for TAR(p) models with

the threshold variable yt−d, where 1 ≤ d ≤ p.
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Table S9: Estimated coefficients of model (7.2).

µ φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

−0.0920 −0.8766 −0.7905 −0.6514 −0.4799 −0.4184 −0.3661 −0.3173 0.2004

(0.0267) (0.0638) (0.0702) (0.0676) (0.064) (0.0634) (0.0683) (0696) (0.0701)

ν ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8

−0.0075 −0.5176 −0.244 −0.0893 −0.0022 −0.0695 −0.0718 0.0919 0.0605

(0.0115) (0.0375) (0.0446) (0.0494) (0.0525) (0.0516) (0.0489) (0.0445) (0.0509)

? Standard deviations are given in the parentheses.
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Table S10: Estimated coefficients of model (7.3). (∗ not significant at 5% level

)

µ∗1 φ11 φ12 φ∗13 φ14 φ15 φ16 φ∗17 φ∗18

−0.0089 −0.3828 −0.2246 −0.0934 −0.2101 −0.2518 −0.2296 −0.067 −0.0529

(0.0131) (0.048) (0.053) (0.0521) (0.0557) (0.0545) (0.0623) (0.0618) (0.0661)

ν∗1 ψ11 ψ12 ψ∗13 ψ∗14 ψ∗15 ψ∗16 ψ17 ψ∗18

−0.0468 −0.2874 −0.4187 −0.1766 0.1702 0.0656 −0.0528 0.2138 −0.0253

(0.0452) (0.0988) (0.1038) (0.1391) (0.1113) (0.1195) (0.0836) (0.0825) (0.1151)

µ2 φ21 φ22 φ23 φ24 φ25 φ26 φ27 φ∗28

−0.099 −1.1219 −1.0419 −0.9784 −0.7289 −0.6346 −0.698 −0.6104 0.1481

(0.0399) (0.0854) (0.0997) (0.1063) (0.1236) (0.1469) (0.1329) (0.1172) (0.0961)

ν∗2 ψ21 ψ22 ψ23 ψ∗24 ψ25 ψ26 ψ∗27 ψ∗28

0.0085 −0.6389 −0.3462 −0.2101 −0.1731 −0.186 −0.1033 −0.0519 0.0355

(0.018) (0.0589) (0.0811) (0.0939) (0.0968) (0.0847 (0.0807) (0.073) (0.0806)

? Standard deviations are given in the parentheses.

Table S11: The forecasting errors for the period 579-608 using the Models I,

II and III, and 901-930 using Models IV and V. MSE denotes the average of

the mean squared errors of the 30 forecasting values.

I II III IV V

MSE 0.4961 0.1238 0.1868 0.0747 0.0601
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