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Abstract: In this study, we examine the theory and methodology of statistical in-

ferences of thresholds and change-points in threshold autoregressive models. We

show that least squares estimators (LSEs) of thresholds and change-points are n-

consistent, and that they converge weakly to the minimizer of a compound Poisson

process and the location of minima of a two-sided random walk, respectively. When

the magnitude of the change in the parameters of the state regimes or in the time

horizon is small, we further show that these limiting distributions can be approx-

imated by a class of known distributions. The LSEs of the slope parameters are√
n-consistent and asymptotically normal. Furthermore, a likelihood-ratio based

confidence set is given for the thresholds and change-points, respectively. A Sim-

ulation study is carried out to assess the performance of our procedure, and the

proposed theory and methodology are illustrated using a tree-ring data set.

Key words and phrases: Brownian motion, change-point, compound poisson pro-

cess, least squares estimation, threshold.

1. Introduction

Structural changes have been studied as important problems in economet-

rics, engineering, and statistics for a long time. They are ubiquitous in economic

and financial time series and were widely recognized as early as the 1940s; see

Haavelmo (1944). As a result, many approaches have been developed to detect

whether structural changes exist in a statistical model. For example, see recent

articles by Ling (2007), Aue et al. (2009), and Hidalgo and Seo (2013), as well as

the references therein. Hinkley (1970) was the first to investigate the maximum

likelihood estimator (MLE) of the change-point in a sequence of independent

and identically distributed (i.i.d.) random variables, and showed that the MLE

converges in distribution to the location of the maxima of a double-sided random

walk. Except for the i.i.d. normal or binomial random variables, its limiting dis-

tribution does not have a closed form and is difficult to use in practice. When the

magnitude of change is small, Yao (1987) showed that Hinkley’s limiting distri-

bution can be approximated by a very nice distribution. Picard (1985) studied
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the MLE of change-points in autoregressive (AR) models, obtaining the same

limiting distribution as that in Yao (1987) when the magnitude of the change in

the parameters approaches zero as the sample size tends to ∞. Following this

result, Bai (1994, 1995) and Bai, Lumsdaine and Stock (1998) studied the esti-

mated change-points in a multivariate AR model and a co-integrated time series

model; see also Chong (2001). Saikkonen, Lütkepohl and Trenkler (2006) and

Kejriwal and Perron (2008) used a similar method to estimate the change-points

in vector AR models and co-integrated regression models, respectively. Davis,

Lee and Rodriguez-Yam (2006) proposed a minimum description length principle

to locate the change-points in AR models with multiple structural changes. In

an AR setting, Chan, Yau and Zhang (2014) used the group lasso method to

estimate clusters of parameters with identical values over time, and Qian and

Su (2014) considered estimations in time series with endogenous regressors and

an unknown number of breaks using the group-fused lasso method. Ling (2016)

developed an asymptotic theory for the change-points in linear and nonlinear

time-series models. Other contributions include the monograph of Csörgö and

Horváth (1997) and Shao and Zhang (2012), among others.

Existing change-point problems often refer to statistical models with a struc-

tural change in the time horizon. However, in a dynamic system, structural

changes may occur over state regimes. The threshold autoregressive (TAR)

model proposed by Tong (1978) captures these phenomena, and has been ap-

plied extensively in many areas, including economics, finance, biological, and

environmental sciences, among others; see Chan and Kutoyants (2010) and Tong

(2011) for comprehensive reviews of the TAR models. The asymptotic theory

of the least squares estimator (LSE) for a two-regime TAR model was estab-

lished by Chan (1993) and Chan and Tsay (1998), and then extended by Li and

Ling (2012) and Li, Ling and Li (2013) to include multiple-regime TAR models

and TMA models, respectively. Hansen (2000) studied the LSE for two-regime

TAR/regression models when the threshold effect is vanishingly small. Seo and

Linton (2007) proposed a smoothed LSE for the TAR/regression model, and

showed that the estimated threshold is asymptotically normal with a slower rate

of convergence. Liu, Ling and Shao (2011) and Gao, Tjøstheim and Yin (2013)

studied the LSE for nonstationary first-order TAR models and Chan, Yau and

Zhang (2015) adopted the lasso method to estimate TAR models with multiple

thresholds. Gao, Ling and Tong (2018) proposed a non-nested test for TAR

models versus smooth TAR models. However, existing research on threshold

models is limited to the cases without change-points over the time horizon. The
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main difficulty with a change-point lies in the nonsmooth and nonlinear functions

of the threshold models. The smoothness of the objective function in terms of

the parameters is required in Ling (2016) to establish the asymptotic properties;

hence, his results cannot be applied to threshold models. Recently, Yau, Tang

and Lee (2015) constructed a genetic algorithm to estimate multiple-regime TAR

models with structural breaks. However, they established the consistency results

of the parameters under their setting only, without further studying the limiting

distributions of the slope parameters, thresholds, and change-points. To the best

of our knowledge, no limiting distributions have been obtained when a structural

change occurs over both the time horizon and the state regimes, and no method-

ology is available for statistical inferences of the thresholds and change-points in

this case.

On the other hand, empirical time series often exhibit complex patterns,

which may include nonlinearity and nonstationarity. For example, Tong and Lim

(1980) analyzed the Canadian lynx data using TAR models and found obvious

limit cycles. They also found that the one-step-ahead prediction is better than

using pure AR models in terms of the root mean square error. Today, many long

time-series sequences possess nonstationarities and thus, it is no longer adequate

to characterize data using a single stationary model; see, Shao and Zhang (2012)

for examples of some applications. Therefore, it is important and interesting to

combine thresholds and change-points in order to characterize the nonlinearity

and nonstationarity of a time series.

This study establishes the theory and methodology for statistical inferences

of thresholds and change-points in TAR models. We first study the LSE of a

TAR model with a structural change. Here, we show that both the estimated

threshold and the change-point are n-consistent, and that they converge weakly

to the minimizer of a compound Poisson process and the location of the minima

of a two-sided random walk, respectively. When the magnitude of the change in

the parameters of the state regimes or in the time horizon is small, we further

show that these limiting distributions can be approximated by a class of known

distributions. Furthermore, a likelihood-ratio based confidence set is given for

the thresholds and change-points, respectively. Similarly to Bai (1994) and Bai

(1997), we find that other estimated slope parameters are
√
n-consistent and

asymptotically normal. To illustrate the proposed method, we apply it to study

the growth of tree rings in China, finding evidence of possible climate change

during the period 1641–1663.

This paper proceeds as follows. Section 2 presents the model and the esti-
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mation procedure. The asymptotic properties are presented in Section 3. Sec-

tion 4 presents the approximating distribution of these limiting distributions. A

likelihood-ratio-based inference method is discussed in Section 5. Section 6 re-

ports simulation results. Lastly, Section 7 presents our analysis of the data on

the growth of tree rings. Owing to space constraints, some tables and figures and

all proofs of the theorems in this paper are given in the Supplementary Material.

Throughout this paper, ‖ · ‖ denotes the Euclidean norm of a matrix or

vector, Op(1) (or op(1)) denotes a series of random variables that are bounded

(or converge to zero) in probability, , means “is defined as”, and −→L denotes

convergence in distribution.

2. The Model and Least Squares Estimation

We consider the following TAR model with order p [TAR(p)]:

yt = Φ′Zt−1I(qt−1 > r) + Ψ′Zt−1I(qt−1 ≤ r) + εt, (2.1)

where p is some known positive integer, Φ = (µ, φ1, . . . , φp)
′, Ψ = (ν, ψ1, . . . , ψp)

′,

Zt = (1, yt, . . . , yt−p+1)′, I(·) is an indicator function with a univariate threshold

variable qt = q(yt, yt−1, . . . , yt−p+1), and {εt} are errors. Note that q(x) is a

known function from Rp to R. Previous studies often consider qt−1 = yt−d, for

some integer 1 ≤ d ≤ p. Here we consider only the simple case, as Section 3

of Chan (1993), in which there is no threshold effect on εt, because the general

case is similar. Denote θ = (Φ′,Ψ′)′. We assume that θ ∈ Θ ⊂ R2p+2 and

r ∈ Γ = [r, r̄] ⊂ R, where Θ is a compact set. We denote model (2.1) by Y (θ, r),

with θ ∈ Θ and r ∈ Γ; that is, we write {y1, . . . , ym} ∈ Y (θ, r), for some m > 0,

in the sense that they are generated from model (2.1) with parameters θ and r.

Let {y1, y2, . . . , yn} be a random sample. We assume that the data before

time k are generated from Y (θ1, r1), and those after time k are generated from

Y (θ2, r2); that is,

{y1, . . . , yk} ∈ Y (θ1, r1) and {yk+1, . . . , yn} ∈ Y (θ2, r2),

with (θ′1, r1)′ 6= (θ′2, r2)′ and k ∈ {1, 2, . . . , n− 1}. Here, k is called the unknown

change-point and its true value is k0. The true parameters of (θ′1, r1)′ and (θ′2, r2)′

are (θ′10, r10)′ and (θ′20, r20)′, respectively. We parameterize the unknown change-

point k as k = [nτ ], with τ ∈ (0, 1) and k0 = [nτ0], where [x] is the integer part of

x. For each k, we use the pre-sample to estimate (θ′10, r10)′ and the post-sample

to estimate (θ′20, r20)′ by least squares estimation. Let
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`t(θ, r) = [yt − Φ′Zt−1I(qt−1 > r)−Ψ′Zt−1I(qt−1 ≤ r)]2. (2.2)

Then, the corresponding objective functions are as follows:

S1n(θ1, r1, k) =

k∑
t=1

`t(θ1, r1) and S2n(θ2, r2, k) =

n∑
t=k+1

`t(θ2, r2). (2.3)

The objective function based on the complete sample is

Sn(θ1, θ2, r1, r2, k) = S1n(θ1, r1, k) + S2n(θ2, r2, k). (2.4)

The minimizer (θ̂1n, θ̂2n, r̂1n, r̂2n, k̂n) of Sn(θ1, θ2, r1, r2, k) is called the LSE of the

true parameters, that is,

(θ̂1n, θ̂2n, r̂1n, r̂2n, k̂n) = arg min
θ1,θ2∈Θ,r1,r2∈Γ

1≤k<n

Sn(θ1, θ2, r1, r2, k).

We obtain (θ̂1n, θ̂2n, r̂1n, r̂2n, k̂n) as follows. Using a similar method to that

in Chan (1993), for each 1 ≤ k < n and fixed ri, we first obtain

θ̂in(ri, k) = arg min
θi∈Θ

Sin(θi, ri, k), i = 1, 2,

where θ̂in(r, k) depends on r and k. Specifically, we have

Φ̂1n(r1, k) =

[
k∑
t=1

Zt−1Z
′
t−1I(qt−1 > r1)

]−1 k∑
t=1

Zt−1I(qt−1 > r1)yt. (2.5)

The remaining parameters are derived in a similar way. Then, we can obtain the

minimizers r̂in(k) for the fixed k as follows:

r̂in(k) = arg min
ri∈Γ

Sin

(
θ̂in(ri, k), ri, k

)
, i = 1, 2.

Finally, substituting θ̂in(r̂in(k), k) and r̂in(k) into (2.4) yields

k̂n = arg min
1≤k<n

Sn

(
θ̂1n(r̂1n(k), k), θ̂2n(r̂2n(k), k), r̂1n(k), r̂2n(k), k

)
,

r̂in = r̂in(k̂n) and θ̂in = θ̂in(r̂in, k̂n), i = 1, 2.

The range 1 ≤ k < n can be replaced by p̃ ≤ k ≤ n − p̃, for some integer

p̃, in practice. Let {q(1), q(2), . . . , q(k)} and {q(k+1), . . . , q(n)} be the correspond-

ing order statistics of the subsamples {q1, q2, . . . , qk} and {qk+1, . . . , qn}. Then

S1n(θ̂1n(r1, k), r1, k) and S2n(θ̂2n(r2, k), r2, k) are constants when r1 ∈ [q(i), q(i+1))

and r2 ∈ [q(j), q(j+1)). Thus, for each k, there exist two intervals, say [q(i), q(i+1))

and [q(j), q(j+1)), on which S1n(θ̂1n(r1, k), r1, k) and S2n(θ̂2n(r2, k), r2, k), respec-

tively, achieve their global minima. We take r̂1n(k) = q(i) and r̂2n(k) = q(j). It is

not difficult to show that (θ̂1n, θ̂2n, r̂1n, r̂2n, k̂n) is the LSE of (θ10, θ20, r10, r20, k0).
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We focus on model (2.1) with one change-point. If model (2.1) has m un-

known change-points (k2, k3, . . . , km+1), such that 1 < k2 < k3 < · · · < km+1 < n,

and the corresponding changed parameters are {(θj , rj) : j = 1, 2, . . . ,m + 1},
then the profile objective function becomes

Sn(k2, . . . , km+1) =

m+1∑
j=1

min
θj ,rj

kj+1∑
t=kj+1

`t(θj , rj), (2.6)

where k1 = 0 and km+2 = n. The estimators of the true change-points are

(k̂2, . . . , k̂m+1) = arg min
(k2,...,km+1)∈Λ

Sn(k2, . . . , km+1), (2.7)

where Λ is some appropriate partition set. In this case, the dynamic program-

ming algorithm of Bai and Perron (2003) can be used to search for the thresholds

and change-points. However, determining the number of change-points m and

establishing the asymptotic results remain challenging, and can be achieved by

following the approach of Bai and Perron (1998). Yau, Tang and Lee (2015) pro-

posed an efficient algorithm to estimate the number of change-points together

with all other parameters using a different approach, but their asymptotic dis-

tributions are still unclear.

3. Asymptotic Properties

We first study the rates of convergence of the estimated threshold and

change-point, which are essential in threshold and change-point problems. We

first need to make several assumptions.

Assumption 1. εt = σ10ut for t ≤ k0, and εt = σ20ut for t > k0, where ut is a

sequence of i.i.d. random variables with Eu1 = 0, Eu2
1 = 1 and has an absolutely

continuous distribution with a uniformly continuous and positive density fu(x)

on R. Furthermore, E|ut|2+ι <∞, for some ι ∈ (0, 1).

Assumption 2. qt has an absolutely continuous distribution with a uniformly

continuous and positive density function πi(r) on Γ, where i = 1 when t ≤ k0,

and i = 2 when t > k0.

Assumption 3. (θ′10, r10)′ and (θ′20, r20)′ are interior points in Θ×Γ, and Φ10 6=
Ψ10, Φ20 6= Ψ20, and (θ′10, r10)′ 6= (θ′20, r20)′.

Assumption 1 allows for a variance change on the errors across the change-

point. The conditions of the density function are the same as those in Condition

2 in Chan (1993). This implies Assumption 2 and entails that π(·) is bounded,
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continuous, and positive on Γ if we take qt−1 = yt−d as a special case; see (ii) in

Remark B of Chan (1993). Assumption 3 guarantees the identification of r10, r20,

and k0. In order to obtain the consistency of θ̂in and r̂in, for i = 1, 2, we need an

assumption similar to Condition 1 in Chan (1993). Let Zit = (yt, . . . , yt−p+1) ∈
Y (θi0, ri0), for i = 1, 2. Then, Zit is a Markov chain. Denote its l-step transition

probability by P l(x,A), where x ∈ R and A is a Borel set of R.

Assumption 4. Zit admits a unique invariant measure Πi(·) such that there

exist a K > 0 and ρ ∈ [0, 1), and for any x ∈ R and any positive integer l,

‖P l(x, ·)−Πi(·)‖v ≤ K(1+‖x‖)ρl, where ‖ ·‖v and ‖ ·‖ denote the total variation

norm and the Euclidean norm, respectively.

When t ≤ k0, `t(θ, r) = `(θ, r, yt, . . . , y1,Z10), and when t > k0, `t(θ, r) =

`(θ, r, yt, . . . , yk0+1, Z2k0
), where `(·) is a measurable function of {yt} with pa-

rameters θ and r. That is, there are two processes {y1t} ∈ Y (θ10, r10) and

{y2t} ∈ Y (θ20, r20) and we observe that yt = y1t when t ≤ k0, and yt = y2t when

t > k0. A set of sufficient conditions for Assumption 4 is given by

max
i=1,2


p∑
j=1

|φij |,
p∑
j=1

|ψij |

 < 1

and Assumption 1; see Chan and Tong (1985) and Chan (1989). When p =

1, the above coefficient condition can be weakened to φi1 < 1, ψi1 < 1, and

φi1ψi1 < 1, for i = 1, 2. Under Assumption 4, {Zit} is V -uniformly ergodic with

V (x) = K(1 + ‖x‖); see Meyn and Tweedie (2009). This condition is stronger

than geometric ergodicity and the strong mixing (α-mixing) condition; see the

definition in Rosenblatt (1956) and the discussion in Hansen (2000). If the initial

values Z10 and Z2k0
are from the distributions Π1(·) and Π2(·), respectively, then

Assumption 4 implies that {yt}k0

t=1 and {yt}nk0+1 are two strictly stationary and

ergodic sequences. In practice, the initial values Z10 and Z2k0
are replaced by

some chosen constants. We discuss their effect on the estimators in Section 5.

Our first result is stated as follows.

Theorem 1. If Assumptions 1–4 hold, then

(a) θ̂in = θi0 + op(1) and r̂in = ri0 + op(1), i = 1, 2,

(b) k̂n = k0 +Op(1).

From Theorem 1, we have that the thresholds and the slope parameters

are all consistent. Similar results are obtained in Theorem 2 of Yau, Tang and

Lee (2015). We can write k̂n = [nτ̂n], in which case, τ̂n is an estimator of τ0.
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Theorem 1 implies that the rate of convergence of τ̂n is n, which is the same

as those in Bai and Perron (1998) and Yau, Tang and Lee (2015), but is faster

than those in Picard (1985) and Bai, Lumsdaine and Stock (1998) for AR models

because their convergence rate is essentially nd2
n, where dn is the magnitude of

the change as dn → 0. To obtain the rate of convergence of r̂in, we need two

further assumptions. Define Mi(r) = E(ZtZ
′
t|qt = r), where i = 1 when t ≤ k0,

and i = 2 when t > k0.

Assumption 5. (i) Mi(r) is continuous at r = ri0; (ii) (Ψi0−Φi0)′Mi(ri0)(Ψi0−
Φi0) > 0; i = 1, 2.

We say that model (2.1) has a discontinuous AR function if Assumption 5 is

satisfied. For Assumption 5 to hold, we require the threshold variable to have a

continuous distribution; see Assumption 1.5 of Hansen (2000) or Assumption 2.2

of Gao, Ling and Tong (2018) for further details. Assumption 5 (ii) is natural for

a positive-difinite matrix Mi(ri0). Note that if we choose qt−1 = yt−d, as in Chan

(1993), Assumption 5(ii) implies Condition 4 in Chan (1993) and the threshold

ri0 becomes the jump-point of the AR function. For simplicity, let

Mi(r
+) = EZtZ

′
t(r

+), Mi(r
−) = EZtZ

′
t(r
−) and Mi(r1, r2) = EZtZ

′
t(r1, r2),

where i = 1 when 1 ≤ t ≤ k0, i = 2 when k0 + 1 ≤ t ≤ n, Zt(r
+) = ZtI(qt > r),

Zt(r
−) = ZtI(qt ≤ r), and Zt(r1, r2) = ZtI(r1 < qt ≤ r2). Under Assumptions

1–3, it is not difficult to show that Mi(r
+) > 0, Mi(r

−) > 0, and Mi(r1, r2) > 0,

for all r, r1, r2 ∈ Γ with r1 < r2, i = 1, 2. By applying the techniques in

Chan (1993) to each segment of {yt}, we have the convergence rate of r̂in and

the asymptotic normality of θ̂in, as follows.

Theorem 2. If Assumptions 1–5 hold, then

(a) n(r̂in − ri0) = Op(1),

(b)
√
n(θ̂in − θi0) −→L N(0, σ2

i0Σ−1
i ),

for i = 1, 2, as n → ∞, where Σ1 = τ0 diag{M1(r+
10),M1(r−10)} and Σ2 =

(1− τ0)diag{M2(r+
20), M2(r−20)}. Furthermore, n(r̂in − ri0) is asymptotically in-

dependent of
√
n(θ̂in − θi0), which is always asymptotically normal, and θ̂1n and

θ̂2n are asymptotically independent of each other.

This theorem shows that the rate of convergence of r̂in is the same as those

in Chan (1993) and Yau, Tang and Lee (2015), but is faster than those in Hansen

(2000) and Seo and Linton (2007) because their convergence rate is essentially

n1−2α̃, for some α̃ ∈ (0, 1/2), by assuming a vanishingly small thershold effect.
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Whereas Yau, Tang and Lee (2015) obtained only the
√
n-consistency of the slope

parameters, we show that these parameters have the same asymptotic properties

as those in Picard (1985) and Bai (1997), among others; that is, they are not

affected by the threshold parameters.

In Theorem 2, τ0, σ2
i0, and Σi are not known, in practice, but they can be

replaced by consistent estimates from (θ̂1n, θ̂2n, r̂1n, r̂2n, k̂n). For example, σ2
i0

can be estimated by

σ̂2
1n =

1

k̂n

k̂n∑
t=1

`t(θ̂1n, r̂1n), σ̂2
2n =

n∑
t=k̂n+1

`t(θ̂2n, r̂2n), (3.1)

and Mi(r
±
i0) can be estimated by

M̂1(r̂±1n) =
1

k̂n

k̂n∑
t=1

ZtZ
′
t(r̂
±
1n), M̂2(r̂±2n) =

1

n− k̂n

n∑
t=k̂n+1

ZtZ
′
t(r̂
±
2n), (3.2)

respectively. Hence, Σi can be estimated by

Σ̂1n = τ̂ndiag{M̂1(r̂+
1n), M̂1(r̂−1n)} and Σ̂2n = (1− τ̂n)diag{M̂2(r̂+

2n), M̂2(r̂−2n)}.
(3.3)

Using Theorems 1–2, it is not difficult to show that the above sample estimators

are all consistent with their corresponding true values and, hence, can be used

for statistical inferences.

To study the limiting distributions of r̂in, we consider the profile objective

function

S̃in(z, k̂n) ≡ Sin
(
θ̂in

(
ri0 +

z

n
, k̂n

)
, ri0 +

z

n
, k̂n

)
−Sin(θ̂in(ri0, k̂n), ri0, k̂n), (3.4)

where z ∈ R, i = 1, 2. According to the procedure for r̂in, we have that

n(r̂in − ri0) = arg min
z∈R

S̃in(z, k̂n). (3.5)

Now, we define two jump processes, as follows:

S̃1n(k0, θ10, r10, r1) =


∑k0

t=1 ξ1tI(r1 < qt−1 ≤ r10), r1 < r10,

0, r1 = r10,∑k0

t=1 η1tI(r10 < qt−1 ≤ r1), r1 > r10,

(3.6)

S̃2n(k0, θ20, r20, r2) =


∑n

t=k0+1 ξ2tI(r2 < qt−1 ≤ r20), r2 < r20,

0, r2 = r20,∑n
t=k0+1 η2tI(r20 < qt−1 ≤ r2), r2 > r20,

(3.7)

where ξit = (Φi0−Ψi0)′Zt−1Z
′
t−1(Φi0−Ψi0)−2(Φi0−Ψi0)′Zt−1εt and ηit = (Ψi0−
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Φi0)′Zt−1Z
′
t−1 (Ψi0−Φi0)− 2(Ψi0−Φi0)′Zt−1εt, for i = 1, 2. We reparameterize

ri as ri0 + z/n in (3.6) and (3.7). On the event {|z| ≤ B, |k̂n − k0| ≤M} for any

fixed B,M ∈ (0,∞), S̃in(z, k̂n) can be approximated by S̃in(k0, θi0, ri0, ri0 +z/n)

in D(R), the space of all càdlàg functions on R equipped with the Skorokhod

metric, as follows:

S̃in(z, k̂n) = S̃in
(
k0, θi0, ri0, ri0 +

z

n

)
+ op(1), i = 1, 2; (3.8)

see the proof of Lemma 4 in the Supplementary Material. We show that S̃in(k0,

θi0, ri0, ri0 + z/n) weakly converges to a two-sided compound Poisson process

P1(τ0z) for i = 1, and to P2((1− τ0)z) for i = 2, which are defined as follows:

Pi(z) = I(z < 0)

N i
1(−z)∑
t=1

Yit + I(z ≥ 0)

N i
2(z)∑
t=1

Zit, z ∈ R, i = 1, 2, (3.9)

where {N i
1(z), z ≥ 0} and {N i

2(z), z ≥ 0} are two independent Poisson processes

with N i
1(0) = 0 and N i

2(0) = 0 a.s. and with the same jump rate πi(ri0), where

πi(·) is the density function of {qt}; see Assumption 2. {Yit, t ≥ 1} are i.i.d.

random variables with a distribution function F1i(·|ri0), and {Zit, t ≥ 1} are

i.i.d. random variables with a distribution function F2i(·|ri0). Here, F1i(·|x) and

F2i(·|x) are the conditional distribution functions of ξit and ηit, respectively, given

qt−1 = x, and {Yit, t ≥ 1} and {Zit, t ≥ 1} are mutually independent. Clearly,

Pi(z) → +∞ a.s. when |z| → ∞ because EYit = EZit > 0 from Assumptions

3–4. Therefore, there exists a unique random interval [M
(i)
− ,M

(i)
+ ) on which the

process Pi(z) attains its global minimum a.s.. That is,

[M
(i)
− ,M

(i)
+ ) = arg min

z∈R
Pi(z), i = 1, 2. (3.10)

To obtain the limiting distribution of k̂n, we define a two-sided random walk

as follows:

W (k, θ10, θ20, r10, r20) =


∑−1

t=k[`t(θ20, r20)− `t(θ10, r10)], k < 0,

0, k = 0,∑k
t=1[`t(θ10, r10)− `t(θ20, r20)], k > 0,

(3.11)

where `t(θ, r) is defined in (2.2). Here, yt ∈ Y (θ10, r10) when t < 0, and yt ∈
Y (θ20, r20) when t > 0. Now we can state our next theorem.

Theorem 3. If Assumptions 1–5 hold, then k̂n, r̂1n, and r̂2n are asymptotically

independent of each other, and

(a) n(r̂1n − r10) −→L
1

τ0
M

(1)
−
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and n(r̂2n − r20) −→L
1

1− τ0
M

(2)
− ,

(b) k̂n − k0 −→L arg min
k

W (k, θ10, θ20, r10, r20),

as n→∞.

From this theorem, we have that the limiting distribution of r̂in is the same

as that in Chan (1993), subject to a scale τ0 or 1− τ0. The limiting distribution

of the estimated change-point corresponds to that of the MLE in Ling (2016)

and is related to a two-sided random walk, even if the objective function is not

continuous. On the other hand, this theorem can be treated as a complement to

the results in Yau, Tang and Lee (2015) because they obtained only the consis-

tency results, without investigating the limiting distributions of the thresholds

and the change-point.

4. Approximating the Limiting Distributions

Except for the MLE of the threshold in a simple regression model with

i.i.d. data in Yu (2012), we do not have a closed-form solution for the estimated

threshold, in general. The distributions in Theorem 3 are difficult to use directly

for statistical inferences. Li and Ling (2012) proposed a numerical method to

simulate the limiting distribution of the estimated thresholds when the threshold

effect is fixed, whereas Hansen (2000) adopted a different approach, obtaining a

closed form for the distribution by assuming the threshold effect is vanishingly

small as the sample size n → ∞. In this section, we use the method of Hansen

(2000) to obtain the approximating distributions of r10 and r20. By borrowing

a similar idea to those in Bai (1997) and Hansen (2000), we also obtain the ap-

proximating distribution of W (k, θ10, θ20, r10, r20). Our discussions are separated

into two subsections.

4.1. Approximating distributions of the estimated r10 and r20

Let ξ̄it = δ′inZt−1Z
′
t−1δin+ 2δ′inZt−1εt and η̄it = δ′inZt−1Z

′
t−1δin−2δ′inZt−1εt,

for i = 1, 2. Similarly to (3.6)–(3.7), we first define the following two processes:

S̄1n(k0, θ10, r10, r1) =


∑k0

t=1 ξ̄1tI(r1 < qt−1 ≤ r10), r1 < r10,

0, r1 = r10,∑k0

t=1 η̄1tI(r10 < qt−1 ≤ r1), r1 > r10,

(4.1)

and
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S̄2n(k0, θ20, r20, r2) =


∑n

t=k0+1 ξ̄2tI(r2 < qt−1 ≤ r20), r2 < r20,

0, r2 = r20,∑n
t=k0+1 η̄2tI(r20 < qt−1 ≤ r2), r2 > r20.

(4.2)

The difference between the processes in (3.6)–(3.7) and those in (4.1)–(4.2) lies

in (ξit, ηit) and (ξ̄it, η̄it). Here, yt in (ξit, ηit) depends on Φi0 and Ψi0, and hence

is changing if Ψi0 − Φi0 → 0. However, yt in (ξ̄it, η̄it) is irrelevant to δin, and

hence is still stationary and ergodic when δin → 0. This is why we introduce the

two new processes. We first make one additional assumption.

Assumption 6. δin = cin
−β, where β ∈ (0, 1/2), and c1 and c2 are nonzero

constant vectors.

Define

ẑin = arg min
z∈R

S̄in
(
k0, θi0, ri0, ri0 +

z

n

)
, i = 1, 2, (4.3)

and B(r) is a standard Brownian motion on (−∞,∞).

From Assumptions 1–5, 6, and the proof of Theorem 1 in Hansen (2000), we

easily obtain the following theorem.

Theorem 4. If Assumptions 1–5 and 6 hold and Ey4
t <∞, then

n−2β ẑin −→L wi arg min
−∞<r<∞

[
|r|
2

+B(r)

]
, i = 1, 2, (4.4)

where w1 = σ2
10/[τ0c

′
1M1(r10)c1π1(r10)], w2 = σ2

20/[(1 − τ0)c′2M2(r20)c2π2(r20)],

M1(r) = E(ZtZ
′
t|qt = r), with t ≤ k0, and M2(r) = E(ZtZ

′
t|qt = r), with t > k0.

Remark 1. The finite fourth moment in Theorem 4 is inherited from Hansen

(2000). In case of a threshold effect in the variance in model (2.1) as Chan

(1993), Li and Ling (2012) discussed the limiting distribution of the estimated

threshold. Here, the approximation in Theorem 4 should be asymmetric. For a

further discussion, see Yu (2012) and Yu (2015).

Let T = arg min
−∞<r<∞

[|r|/2 +B(r)] and let Φ(x) denote the cumulative standard

normal distribution function. Then, for x ≥ 0,

P (T ≤ x) = 1 +

√
x

2π
exp

(
−x

8

)
+

3

2
exp(x)Φ

(
−3
√
x

2

)
− (

x+ 5

2
)Φ

(
−
√
x

2

)
.

and for x < 0, P (T ≥ x) = 1 − P (T ≥ −x); see Yao (1987). By Theorem 4, if

Ψi0 − Φi0 ≈ δin, then we can use the following approximation:

n1−2β(r̂in − ri0)/wi ≈d arg min
−∞<r<∞

[
|r|
2

+B(r)

]
, i = 1, 2, (4.5)
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where n1−2β/wi can be replaced by σ−2
10 [(Ψ10−Φ10)′M1(r10)(Ψ10−Φ10)π1(r10)]k0

when i = 1, and by σ−2
20 [(Ψ20 − Φ20)′M2(r20)(Ψ20 − Φ20)π2(r20)](n − k0) when

i = 2. In practice, k0 can be replaced by [nτ̂n], other true values can be estimated

consistently in a similar way to (3.1)–(3.2), πi(ri0) can be estimated by its kernel

density estimator, and Mi(ri0) can be estimated by a polynomial regression, as

in Hansen (2000). Thus, we can use the distribution of T to make statistical

inferences for the thresholds r10 and r20.

4.2. Approximating distribution of the estimated k0

In this subsection, we investigate the limiting distribution ofW (k, θ10, θ20, r10, r20)

in Theorem 3. From (S2.24) in Section S2 of the Supplementary Material, we

have

k̂n = arg min
1≤k<n

{
I(k < k0)

k0∑
t=k+1

(A2
1t + 2A1tεt)

+I(k ≥ k0)

k∑
t=k0+1

(A2
2t + 2A2tεt) + op(1)

}
, (4.6)

where

A1t = (Φ10 − Φ20)′Zt−1I(qt−1 > r20) + (Ψ10 −Ψ20)′Zt−1I(qt−1 ≤ r10)

+ (Φ10 −Ψ20)′Zt−1I(r10 < qt−1 ≤ r20) (4.7)

and A2t = −A1t if r20 > r10, and

A1t = (Φ10 − Φ20)′Zt−1I(qt−1 > r10) + (Ψ10 −Ψ20)′Zt−1I(qt−1 ≤ r20)

+ (Ψ10 − Φ20)′Zt−1I(r20 < qt−1 ≤ r10) (4.8)

and A2t = −A1t if r10 > r20. We only consider the case of r20 > r10 in (4.6)

because it is similar to the case when r10 > r20. Now, we define the following

process:

W̄n(k) = I(k < k0)

k0∑
t=k+1

(Ā2
1t + 2Ā1tεt) + I(k ≥ k0)

k∑
t=k0+1

(Ā2
2t + 2Ā2tεt), (4.9)

where

Ā1t =κ′1nZt−1I(qt−1 > r20) + κ′2nZt−1I(qt−1 ≤ r10) + κ′3nZt−1I(r10 < qt−1 ≤ r20)

(4.10)

and Ā2t = −Ā1t. Here, yt in Ait depends on Φi0 and Ψi0, and hence is changing

if Φ20 − Φ10 → 0, Ψ20 − Ψ10 → 0, and Ψ20 − Φ10 → 0. However, yt in Āit is

irrelevant to κin and is stationary and ergodic when κin → 0. Next, we make one
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more assumption.

Assumption 7. κ1n = c3n
−β, κ2n = c4n

−β, and κ3n = c5n
−β, where β ∈

(0, 1/2), c3, c4, and c5 are nonzero constant vectors.

We parameterize k as k = k0 + [n2βs] in (4.9). From Assumptions 1–5 and

Theorem 1 in the Supplementary Material, we can show that the sum of Ā2
it goes

to $i|s| in probability and uniformly on any compact set of s, for i = 1, 2, where

$i = c′3Mi(r
+
20)c3 + c′4Mi(r

−
10)c4 + c′5Mi(r10, r20)c5.

By Theorem A.1 in Li, Ling and Zhang (2016), the sum of Āitεt weakly con-

verges to a Gaussian process G(s) with covariance kernel $iσ
2(|s| ∧ |t|), i = 1, 2,

respectively. Now we can state the following theorem.

Theorem 5. If Assumptions 1–5 and 7 hold, then

σ−2
10 $1 arg min

−∞<s<∞
W̄n

(
k0 +

[
n2βs

])
−→L Tφ,ξ,

where φ = $2σ
2
20/($1σ

2
10), ξ = $2/$1, and

Tφ,ξ = arg min
s∈R

{[
ξ

2
|s|+

√
φB(s)

]
I(s ≥ 0) +

[
1

2
|s|+B(s)

]
I(s < 0)

}
,

where Mi(r
+
i0) and Mi(r

−
i0) are defined as in Theorem 2.

Remark 2. Under Assumption 7, the third term in (4.10) and in $i vanishes

as r20 − r10 → 0, and the assumption on κ3n is redundant if r20 = r10. Alterna-

tively, if κ3n is fixed and r20 − r10 is vanishingly small, such that it matches the

convergence rate of s in Theorem 5, we obtain a similar result.

The distribution of Tφ,ξ can be found in Bai (1997) and its density is asym-

metric unless φ = ξ = 1. We can use the cumulative distribution functions in

Appendix B of Bai (1997) to construct confidence intervals once we know the

values of φ and ξ.

If Φ20 − Φ10 ≈ κ1n, Ψ20 − Ψ10 ≈ κ2n, and Φ10 − Ψ20 ≈ κ3n, by Theorem 5,

(4.6) and (4.9) and parameterizing k = k0 + [n2βs], we have
$1

σ2
10n

2β
(k̂n − k0) ≈ $1

σ2
10

arg min
−∞<s<∞

W̄n(k0 + [n2βs]) ≈d Tφ,ξ. (4.11)

Here, we can approximate φ, ξ, and $1/(σ
2n2β) as follows:

φ ≈ d2σ
2
20

d1σ2
10

, ξ ≈ d2

d1
, and

$1

σ2
10n

2β
≈ d1

σ2
10

, (4.12)

where di = (Φ20 −Φ10)′Mi(r
+
20)(Φ20 −Φ10) + (Ψ20 −Ψ10)′Mi(r

−
10)(Ψ20 −Ψ10) +

(Φ10−Ψ20)′Mi(r10, r20)(Φ10−Ψ20), for i = 1, 2. In practice, di can be estimated
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by

d̂in = (Φ̂2n − Φ̂1n)′M̂i(r̂
+
2n)(Φ̂2n − Φ̂1n) + (Ψ̂2n − Ψ̂1n)′M̂i(r̂

−
1n)(Ψ̂2n − Ψ̂1n)

+ (Φ̂1n − Ψ̂2n)′M̂i(r̂1n, r̂2n)(Φ̂1n − Ψ̂2n), i = 1, 2, (4.13)

where M̂i(r̂1n, r̂2n) is defined in a similar way to M̂i(r̂
±
in) in (3.2). Let φ̂n =

d̂2nσ̂
2
2n/(d̂1nσ̂

2
1n) and ξ̂n = d̂2n/d̂1n. Then it is not difficult to show that

φ̂n →p φ, ξ̂n →p ξ and
d̂1n

σ̂2
1n

→p
d1

σ2
10

. (4.14)

In practice, we do not know whether r20 > r10. If r̂2n > r̂1n, we use (4.13) to

obtain consistent estimates for (4.12). Otherwise, based on the expression of A1t

in (4.8) when r10 > r20, we replace Φ̂1n − Ψ̂2n with Ψ̂1n − Φ̂2n and interchange

the positions of r̂2n and r̂1n in (5.13). Thus, we can use Tφ̂n,ξ̂n to make statistical

inferences for the change-point k0. Note that Tφ̂n,ξ̂n is asymmetric and differs

from the symmetric T , which is commonly used to approximate the distribution

of the estimated change-point in the literature. See Bai (1994), Chong (2001),

and Ling (2016), among others.

5. Likelihood-ratio-based Inference for Thresholds and Change-points

The simulation method of Li and Ling (2012) for inferences of thresholds

may not be accurate when the threshold effect is small. At the same time,

the confidence interval based on the approximating method in Section 4 has

a coverage rate below the nominal level when the threshold/structural change

effect is large. See the discussion in Hansen (2000) for the threshold scenario,

and those in Elliott and Müller (2007), Eo and Morley (2015), and Elliott, Müller

and Watson (2015) for the change-point scenario, and they also commented that

the likelihood-ratio test is asymptotically pivotal when the threshold/structural

change effect is small and the confidence region based on the inverted likelihood-

ratio test is asymptotically valid, even if the threshold/structural change effect

is relatively large. In the regression model for the i.i.d. data, the nonparametric

approach of Yu (2015) seems to work well when the threshold effect is relatively

strong, but undercovers when the threshold effect is weak. However, it is not

clear whether his method can be applied to a threshold model with time-series

dependence. In this section, we consider likelihood-ratio-based confidence sets

for the thresholds and the change-change, respectively.

We first investigate the likelihood-ratio test statistics for the thresholds.

Following Hansen (2000), we consider the likelihood-ratio statistic LRin(r) for
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Hi0 : r = ri0 as

LRin(r) =
1

σ̂2
in

[Sin(θ̂in(r, k̂n), r, k̂n)− Sin(θ̂in, r̂in, k̂n)], i = 1, 2, (5.1)

where σ̂2
in and Sin are defined in (3.1) and (2.3), respectively. Under Hi0, by

(3.4), (3.5), and (5.1), we have

LRin(ri0) =
1

σ̂2
in

max
z∈R

[
−S̃in

(
k0, θi0, ri0, ri0 +

z

n

)]
+ op(1), (5.2)

where S̃in(k0, θi0, ri0, r) are defined in (3.6) and (3.7) for i = 1, 2, respectively.

Using a similar argument to that in Section 4.1, we use S̄in in (4.1)–(4.2) to

approximate S̃in for i = 1, 2, respectively. Using Theorem 4, it is not difficult to

show that
1

σ̂2
in

max
z∈R

[
−S̄in

(
k0, θi0, ri0, ri0 +

z

n

)]
=

1

σ̂2
in

max
v∈R

[
−S̄in

(
k0, θi0, ri0, ri0 +

v

n1−2β

)]
⇒ max

v∈R
[2B(v)− |v|]. (5.3)

Then, if Ψi0 − Φi0 ≈ δin, we can use the following approximation:

LRin(ri0) ≈d ∆ := max
v∈R

[2B(v)− |v|], (5.4)

where the distribution of ∆ is P (∆ ≤ x) = (1−e−x/2)2; see Hansen (2000). From

(5.4), we find that the asymptotic distribution of LRin(ri0) is free of nuisance

parameters because the errors {εt} are homoskedastic on each segment, by As-

sumption 1; see Theorem 2 in Hansen (2000) and the discussion thereafter. We

use the distribution of ∆ to solve for the critical value c1−α (e.g., α = 0.05), and

a 1− α likelihood-ratio-based confidence set for ri0 is given by

Γi1−α = {r : LRin(r) ≤ c1−α}. (5.5)

Next, we study the likelihood-ratio-based confidence set for the change-point.

Following Eo and Morley (2015), we define the likelihood-ratio test statistic for

H0 : k = k0 as follows:

LRn(k) =Sn

(
θ̂1n(r̂1n, k), θ̂2n(r̂2n, k), r̂1n, r̂2n, k

)
− Sn

(
θ̂1n, θ̂2n, r̂1n, r̂2n, k̂n

)
,

(5.6)

where Sn is defined as in (2.4). From our estimation procedure, the second term

of (5.6) is Sn(θ̂1n, θ̂2n, r̂1n, r̂2n, k̂n) = min1≤k<n Sn(θ̂1n, θ̂2n, r̂1n, r̂2n, k). Then,

under H0, and using the results in Sections 3–4 and (S3.4) in the Supplementary

Material, it is not difficult to show that

LRn(k0) = max
1≤k<n

[
Sn

(
θ̂1n(r̂1n, k0), θ̂2n(r̂2n, k0), r̂1n, r̂2n, k0

)
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−Sn
(
θ̂1n, θ̂2n, r̂1n, r̂2n, k

)]
= max

1≤k<n

{
I(k < k0)

k0∑
t=k+1

[`t(θ10, r10)− `t(θ20, r20)]

+I(k ≥ k0)

k∑
t=k0+1

[`t(θ20, r20)− `t(θ10, r10)]

}
+ op(1)

, max
1≤k<n

{−Wn(k)}+ op(1). (5.7)

Without loss of generality, we assume r20 > r10. Later, we show that this as-

sumption does not affect our limiting theory. Using a similar argument to that

in Section 4.2, we use W̄n(k) in (4.9) to approximate Wn(k) in (5.7). We only

consider the case when k < k0 in (4.9) because the other case is similar. From

(4.10) and Assumption 7, we first define

Āt = c′3Zt−1I(qt−1 > r20) + c′4Zt−1I(qt−1 ≤ r10) + c′5Zt−1I(r10 < qt−1 ≤ r20)

(5.8)

and, hence, Ā1t = n−βĀt. Under Assumption 7, we have

max
1≤k<n

k0∑
t=k+1

(−Ā2
1t − 2Ā1tεt) = max

s∈R

k0∑
t=k0+[n2βs]+1

(−Ā2
1t − 2Ā1tεt)

⇒ max
s∈R

[
2
√
EĀ2

tσ
2
10B(s)− EĀ2

t |s|
]

=d max
v∈R
{σ2

10[2B(v)− |v|]}, (5.9)

where we make a change of variables s = vσ2
10/EĀ

2
t in the last step of (5.9).

Then, we conclude that

max
1≤k<n

{−W̄n(k)} ⇒ ∆̃ = max
v

{
σ2

10[2B(v)− |v|] for v ∈ (−∞, 0),

σ2
20[2B(v)− |v|] for v ∈ [0,∞),

(5.10)

and

LRn(k0) ≈d ∆̃, (5.11)

where the distribution function of ∆̃ is

P (∆̃ ≤ x) =

(
1− exp

(
− x

2σ2
10

))(
1− exp

(
− x

2σ2
20

))
; (5.12)

see, for example, Eo and Morley (2015). Then, we use (5.12) to solve for the

critical value c̃1−α and a 1 − α likelihood-ratio-based confidence set for k0 is

given by

C1−α = {k : LRn(k) ≤ c̃1−α}. (5.13)
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In general, the different scaling factors σ2
10 and σ2

20 make the distribution of (5.12)

asymmetric. In practice, σ2
10 and σ2

20 are replaced by consistent estimates from

(3.1), and the calculation of the critical value using (5.12) is straightforward.

6. Simulation Study

This section examines the performance of our asymptotic results in finite

samples using Monte Carlo experiments; all tables are provided in the Supple-

mentary Material. We use sample sizes of n = 400, 800, and 1,200 with true

change-points k0 = 200, 400, and 600, respectively. The data are generated from

the following TAR(1) model with a change-point k:

yt =


(µ1 + φ1yt−1)I(yt−1 > r1)

+(ν1 + ψ1yt−1)I(yt−1 ≤ r1) + εt, if t ≤ k,
(µ2 + φ2yt−1)I(yt−1 > r2)

+(ν2 + ψ2yt−1)I(yt−1 ≤ r2) + εt, if t > k,

(6.1)

with the true values given as follows:

(θ′10, r10) = (−1,−0.6, 1, 0.4, 0.8)− γ(−1,−1, 1, 1, 0),

(θ′20, r20) = (−0.8,−0.9, 0.7, 0.6, 0.5)− γ(−1,−1, 1, 1, 0),

and γ = 0, 0.2, and 0.4, respectively, where εt ∼ N(0, 1); that is, σ10 = σ20 = 1.

Clearly, the AR functions are not continuous over two thresholds {0.8, 0.5} in

all cases. We use 1,000 replications for each case. Table S1 summarizes the

averages of the bias, empirical standard deviation (ESD), asymptotic standard

deviation (ASD), and estimated asymptotic standard deviation (EASD) when

γ = 0. The results are similar for the other cases and, hence, are not reported.

Here, the ASDs of θ̂in are computed using the true σ2
i0Σi in Theorem 2, where Σi

is calculated from (3.2) and (3.3) using the true thresholds ri0 and the change-

point k0. The ASDs of r̂in are obtained using the simulation method in Section

4 of Li and Ling (2012) with the true τ0 in Theorem 3. The EASDs of of θ̂in are

computed using the estimtors in (3.1)–(3.3), and the EASDs of r̂in are obtained

using the simulation method of Li and Ling (2012), replacing τ0 by τ̂n in Theorem

3. Table S1 shows that the bias is very close to zero for large n, but that it is

not strictly decreasing as n increases because the average of the empirical bias

also depends on the variance of the estimator. In addition, the larger the sample

size, the closer the ESDs, ASDs, and EASDs are, on the whole. We also find that

the convergence rate of the thresholds is n; for example, the ESDs of r̂in for the

sample of size 800 are half of those of the sample of size 400, and the ESDs of r̂in
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in sample of size 1,200 are one-third of those of the sample of size 400, for i = 1,

2. Similarly, we find that the convergence rates of the other parameters are lower

than those of the thresholds. These findings are similar to those reported in

Li and Ling (2012). Furthermore, Table S1 shows that all estimated thresholds

have a negative bias. This is because we used the left end-point of the interval on

which (2.4) achieves its minimum. This negative bias can be overcome by using

the middle-point; see Yu (2012) and Yu (2015). Note that we do not pursue this

issue here because the bias is negligible for a large sample size and because we

use the left end-point M
(i)
− to make statistical inferences in Theorem 3 and the

simulation studies below.

We now examine the coverage probabilities of ri0 and the performance of

the approximating distributions and the likelihood-ratio-based confidence sets in

Section 4.1 and Section 5, respectively. To do so, we first simulate the quantiles

of M
(1)
− and M

(2)
− with 10,000 replications. Based on these quantiles and those

in Table 1 of Hansen (1997), the coverage probabilities of ri0 are reported in

Table S2 when γ = 0, 0.2, and 0.4, where ‖δin‖ = ‖Ψi0 − Φi0‖, for i = 1, 2.

The results show that the coverage probabilities based on M
(1)
− and M

(2)
− are

relatively accurate in all cases, on the whole, but tend to undercover when the

threshold effect ‖δin‖ is small. The coverage probabilities based on the quantiles

of T are often relatively worse than those of the other two methods, especially

when γ = 0 (i.e., ‖δin‖ is very large), but their accuracy improves as ‖δin‖
becomes smaller. The coverage probabilities based on LRin tend to exceed the

nominal levels for large threshold effects ‖δin‖ and decrease with ‖δin‖; similar

results can be found in Hansen (2000), who also found that the likelihood-ratio-

based method may undercover for very small threshold effects and small sample

sizes. Overall, when the threshold effect is large, the simulation method of Li

and Ling (2012) is relatively accurate, the approximating method in Section

4.1 undercovers and the likelihood-ratio-based method overcovers and is quite

conservative. When the threshold effect is small, the simulation method of Li

and Ling (2012) undercovers and the methods based on the approximation and

the likelihood-ratio may be more accurate. In practice, we do not know the exact

magnitude of the threshold effect. Thus, we recommend using the likelihood-ratio

method and the simulation method when making statistical inferences because

they tend to be more accurate.

We next examine the performance of the approximating distribution in Theo-

rem 5 and the likelihood-ratio-based confidence sets in Section 5 for the estimated

change-points in finite samples. We examine both large and small structural
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change effects in our experiments. To determine the finite-sample performance

when the structural change effect is relatively large, we first fix the true parameter

(θ′10, r10) = (−1,−0.6, 1, 0.4, 0.8) and let the true parameter

(θ′20, r20) = (−θ′10, r10)− γ̃1(1, 1,−1,−1, 1), (6.2)

with γ̃1 = 0, 0.1, 0.2, and 0.4. It is easy to see that the structural change

effects are relatively large for the choices of γ̃1 because the vectors θ10 and θ20

have different signs. When γ̃1 increases, the structural change effect decreases.

The number of replications is 1,000 for each case in this experiment. Table

S3 summarizes the mean, ESD, ASD, and the estimators of di0, φ, and ξ for

(6.2). Here, κn = ‖Φ20 − Φ10‖ + ‖Ψ20 − Φ10‖ + ‖Ψ10 − Φ20‖, representing the

structural change effect, the ESD is calculated based on the 1,000 estimators, the

ASD is computed using the approximating distribution in (5.9), and d̂in is based

on (4.13). From the expressions of φ̂n and ξ̂n in (4.14), our simulation results

show that φ̂n and ξ̂n are almost the same, because we assume σ10 = σ20 = 1 in

our experiment. Using the true parameters and (4.12) to obtain di0, φ, and ξ,

the results are similar to those in Table S3 and, hence, are not reported here.

For reference purposes, we report only the values of (d̂10, d̂20) corresponding to

different γ̃1, which are calculated using (4.12) with the true parameters and the

sample estimates of Mi(r
±
i0). From Table S3, we find that the means of the

estimated change-points are close to the true change-points in all cases. The

ASDs are smaller than the ESDs in all cases, and tend to become closer as the

structural change effect decreases. This is reasonable because our approximating

distribution is based on a small change effect. We also find that the estimated

di0, φ, and ξ are almost the same for different sample sizes with fixed γ̃1.

Based on the results in Table S3 and the density function of Tφ,ξ in Bai (1997),

we examine the coverage probabilities of the estimated change-points. The re-

sults are reported in Table S4. From Table S4, we can see that the likelihood-

ratio-based confidence sets of LRn overcover at all three nominal levels, while

the approximating distribution Tφ,ξ undercovers significantly for relatively large

structural change effects in (6.2). These findings are similar to those in Eo and

Morley (2015), who found that the coverage rate based on the likelihood-ratio

approach is more precise than those of Bai (1997) and Elliott and Müller (2007).

Now, we study the finite-sample performance when the structural change

effect is relatively small. We set (θ′10, r10) as before, and let the true parameter

(θ′20, r20) = (θ′10, r10)− γ̃2(−1,−1, 1, 1, 1), (6.3)

with γ̃2 = 0.1, 0.2, 0.3, and 0.5. It is easy to see that the structural change
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effects are relatively small for the choices of γ̃2. As γ̃2 increases, the structural

change effect increases. Table S5 summarizes the results. The results shown

in Table S5 are similar to those in Table S3, although the ESDs and ASDs

are larger than those reported in Table S3. This is reasonable because it is

not easy to locate the change-point when the structural change effect is small.

Based on the estimators in Table S5 and the density function of Tφ,ξ in Bai

(1997), we examine the coverage probabilities of the estimated change-points.

The results are reported in Table S6, which shows that the likelihood-ratio-based

confidence sets of LRn undercover at all three nominal levels. In addition, the

approximating distribution Tφ,ξ outperforms the likelihood-ratio-based method

for relatively small structural change effects in (6.3).

Overall, when the structural change effect is large, the likelihood-ratio-based

confidence sets of LRn overcover and are somewhat conservative. When the

structural change effect is very small, the approximating method in Section 5.2

may be more accurate. In practice, it is not easy to evaluate the magnitude of the

change, especially when the two thresholds are different. Based on our limited

simulation experience, we recommend using the likelihood-ratio-based method

because it exhibits better performance in general.

7. A Real-Data Example

Yau, Tang and Lee (2015) applied the TAR model with structural breaks

to U.S. GNP data and found breaks associated with substantial changes in the

U.S. economy. This section uses model (2.1) with a structural change to study a

long time series of annual tree-ring widths (Figure S1(a)). All measurements are

taken from a Qilian Juniper tree in the northeastern Tibetan Plateau of China.

The time series spans the period from 1079 to 2009 and it was obtained from the

NOAA paleoclimatology database, available at https://www.ncdc.noaa.gov/

paleo/study/16645. Tree rings provide important records of past climates and,

hence, can be used to study climate change; see Cook (1985). In the past decades,

TAR models have been recognized as an important nonlinear time series model

for studying climate changes. Ellis and Post (2004) and Tong (2011) demonstrate

the merits of using TAR models rather than linear AR models.

Let xt denote the original data and yt denote the continuously annualized

average growth rate; that is, yt = log(xt/xt−1). Figure S1(b) shows the time

plot of yt. We can see large fluctuations in Figure S1(a)–(b). Figure S2 shows

the autocorrelation function (ACF) and the partial ACF (PACF) of {yt}, which

https://www.ncdc.noaa.gov/paleo/study/16645
https://www.ncdc.noaa.gov/paleo/study/16645
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indicate that {yt} is a sequence of dependent time series. Next, we explain how

to build a TAR model with a structural change to {yt}.
Step 1. We first perform the threshold nonlinearity test. There are many

ways to do this in the literature; see Tsay (1989) and Chan (1991), among others.

Here, we adopt the likelihood-ratio approach of Chan (1991), and use the corre-

sponding package TSA in R. See also Cryer and Chan (2008) for details. For each

null model AR(p), we choose the threshold variable qt−1 = yt−d with 1 ≤ d ≤ p.
Table S7 reports the p-values when performing the threshold nonlinearity test

under possible linear AR models. The choice of the AR order p is based on the

PACF in Figure S2(b), as suggested by Tsay (1989), when testing for threshold

nonlinearity. From Table S7, we can see that most of the p-values are close to

zero except for some cases when d = 2, where the p-values are only slightly larger

than 5%. We conclude that there is likely a threshold effect in the data {yt}. In

other words, it is better to use a threshold model to fit the data than to use a

pure AR model.

Step 2. We now fit a TAR(p) model to {yt} with a threshold yt−d, where

1 ≤ d ≤ p. Define

AIC(p, d) = n log(σ̂2
n) + 2(p+ 1) and BIC(p, d) = n log(σ̂2

n) + (p+ 1) log(n),

(7.1)

where σ̂2
n is defined similarly to (3.1), using the whole sample. Here, (7.1) is

slightly different from that in Li and Ling (2012) because we do not allow a

threshold effect in the error term of (2.1). To simplify the model, based on the

PACF in Figure S2(b), we set 1 ≤ p ≤ 12 and 1 ≤ d ≤ p. The results of the

AICs and BICs are summarized in Table S8. From Table S8, we can see that the

AIC selects the model TAR(12) with d = 10, and the BIC selects TAR(8) with

d = 8. For ease of exposition, we choose the simpler model TAR(8). Thus, the

fitted model is as follows:

yt = (µ+

8∑
i=1

φiyt−i)I(yt−8 > 0.1252)

+(ν +

8∑
i=1

ψiyt−i)I(yt−8 ≤ 0.1252) + 0.247ut, (7.2)

where the standard deviaton 0.247 is calculated using the residual sum of squares

and the other parameters are summarized in Table S9. We now use the port-

manteau test in (15.8.3) of Cryer and Chan (2008, p.412) to check whether model

(7.2) is adequate. Figure S3 displays the p-values of the test, showing that they
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are all larger than 5%. Therefore, model (7.2) is adequate for the data {yt}.
Step 3. We use the Sup-likelihood-ratio test statistic in Andrews (1993)

(see also Davis, Huang and Yao (1995)), supτ∈[0.05,0.95] LR(τ), to test whether a

structural change exists in model (7.2). Because the estimate of the threshold is

super-efficient with convergence rate of n under the null hypothesis of no change-

point, the limiting distribution in Andrews (1993) or Davis, Huang and Yao

(1995) is still applicable to the TAR(p) model with degrees of freedom 2(p+ 1).

We find that supτ∈[0.1,0.9] LR(τ) = 89.77, which exceeds the critical value of 46.69

at the 0.01 significance level; see Table 1 in Andrews (1993). Hence, model (7.2)

most likely has a structural change during this period. Note that this does not

contradict the finding in Step 2 that model (7.2) is adequate for the data because

the likelihood-ratio test uses a different criterion for the model selection in this

step.

Step 4. Based on the estimation procedure in Section 2, a TAR(8) model

with d = 8 and a structural change is used to fit the data. The result is as follows:

yt =


(µ1 +

∑8
i=1 φ1iyt−i)I(yt−8 > −0.1744)

+(ν1 +
∑8

i=1 ψ1iyt−i)I(yt−8 ≤ −0.1744) + 0.241ut, t ≤ 578,

(µ2 +
∑8

i=1 φ2iyt−i)I(yt−8 > 0.0972)

+(ν2 +
∑8

i=1 ψ2iyt−i)I(yt−8 ≤ 0.0972) + 0.232ut, t > 578,

(7.3)

where the two standard deviations 0.241 and 0.232 are calculated from (3.1) and

the other coefficients are reported in Table S10. The standard deviations are

given in parentheses, and some parameters are not significant at the 5% level.

We use the method of Cryer and Chan (2008, p.412) for the model diagnostic

checking. Figure S4 displays the p-values of the test in the two segments of

(7.3), and again shows that model (7.3) is adequate for {yt}. Note that there

appear to be at least two change-points in the data from Figure S1(b), but that

our method finds the most visually obvious point. For multiple change-points,

interested readers may consult the approach provided in Section 2 on page 9.

From the model, we can see that almost all of the AR coefficients are neg-

ative. This is reasonable because a higher growth rate in the current year will

result in a lower growth rate in the subsequent year, and vice versa. Further-

more, the AR coefficients before and after the change-point k̂n = 578 change

significantly, and almost all of their absolute values after the change-point are

larger than their counterparts before the change-point. Therefore, the depen-

dence of the growth rates grows stronger after the change-point. Based on

the methods of Li and Ling (2012), the approximation in Section 4.1, and the
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likelihood-ratio method in Section 5, the 95% confidence intervals for r10 are

[−0.189,−0.166], [−0.213,−0.135], and [−0.174,−0.014], respectively, and those

of r20 are [0.084, 0.119], [−0.179, 0.374], and [−0.028, 0.301], respectively. We can

see that the simulation method provides rather tight confidence intervals for the

thresholds, but the other two methods tend to yield wider confidence intervals.

The likelihood-ratio-based method gives similar intervals to those of the simula-

tion one for r10, but provides a much wider interval for r20. Thus, we suggest

using the intervals produced by the simulation-based method because they are

relatively tight in this case. The 95% confidence interval of k0 based on the ap-

proximation method is [563, 585]. This tight interval indicates that the estimator

k̂n is very accurate.

After checking the data, we find that k̂n represents the year 1656. The 95%

confidence intervals show that there was most likely a significant change in the

climate in the period 1641–1663. From Figure S1(a), we can see that the growth

of the tree rings declined from the 1600s onwards, indicating that temperatures

might have changed rapidly around this period. Historical records indicate that

there were many disasters, such as dry weather and crop failures, in this period,

and that the Ming dynasty collapsed in 1644. There are no climate records for

this period in China. Many historians suspect that the bad weather was the

result of climate change. Our findings provide evidence that supports this view

and may be useful for future study of Chinese history.

In the Supplementary Material, we further examine some of the steps in

this section and demonstrate the merits of model (7.3) with a change-point by

focusing on the forecasting errors. See Section S5 in the Supplementary Material

for details.

Supplementary Materials

Owing to space constraints, we provide a new SLLN, the proofs of all theo-

rems, the effect of the initial values, and some tables and figures in the Supple-

mentary Material.
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