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Abstract: In this study, we investigate the problem of testing the equality of two

distributions by integrating the squared norm of the difference between two corre-

sponding empirical characteristic functions. This results in a linear combination of

three different U-statistics. Thus the original testing problem is reduced to testing

whether this linear combination is zero. We apply the jackknife empirical likelihood

(JEL) method to the new hypothesis testing problem. Under multivariate case, the

log JEL statistic after scaling tends to a chi-square distribution with one degree of

freedom. Simulation studies are presented to assess the finite-sample performance

of our method.
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1. Introduction

In statistics, one often need to know whether two multivariate populations

are the same or have some common characteristics, such as their population

means and covariance matrices. Comparisons of multivariate populations have

many real applications. A typical example is case-control studies in biomedicine.

For example, assume there are two sets of patients suffering from a particular

illness. The patients in one group are treated by a new cure and the other group

is given the usual treatment. Then, we examine whether the new cure has any

advantages by studying the two sets of data, which are often presented in the

form of gene expressions of patients. Clearly, we need to apply suitable statistical

methods to make such comparisons.

In the literature, several works have examined this multivariate two-sample

problem in a parametric setting. As examples, please refer to Bai and Saranadasa

(1996), Chen and Qin (2010), Li and Chen (2012), Wang, Peng and Qi (2013),

and the references therein. However, in a nonparametric setting, this multivariate

two-sample problem becomes more difficult. The classical methods, such as the
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nonparametric Kolmogorov−Smirnov test, the Wald−Wolfowitz runs test, and

Wilcoxon rank test, which are commonly for univariate populations, no longer

work. Studies that have examined tests of two multivariate populations, include

those of Liu and Modarres (2011), Biswas and Ghosh (2014), and Liu, Xia and

Zhou (2015). The first two works propose different nonparametric methods to

test the equality of two distributions based on a theoretical observation about

inter-point distance by Maa, Pearl and Bartoskzyński (1996). Then, Liu, Xia and

Zhou (2015) propose a jackknife empirical likelihood (JEL) test, which works well

in the case of a small sample and asymmetric data, in which they incorporate

characteristic functions. Inferences based on empirical characteristic functions

have also been investigated by Kellermeier (1980) and Fernandez, Gamero and

Garcia (2008).

In this study, we consider the integration of the difference of two empirical

characteristic functions, which can be expressed as a linear combination of three

U-statistics. As a result, the original problem is reduced to testing whether this

linear combination is equal to zero. A similar idea is proposed by Fernandez,

Gamero and Garcia (2008).

U-statistics, including functions of U-statistics, have been well studied in

the literature. Refer to Bentkus, Jing and Zhou (2009) for a discussion of the

classical results. Although we can apply the fundamental results of U-statistics,

such as normal approximations, to our testing problem, there is a better method,

called the JEL method, proposed by Jing, Yuan and Zhou (2009). Many studies

have investigated applications of the JEL method, including Gong, Peng and Qi

(2010), Adimari and Chiogna (2012), Wang, Peng and Qi (2013), and Zhao, Meng

and Yang (2015). The JEL approach not only inherits appealing properties of

Owen’s EL (1988), such as being range-preserving and transformation-respecting,

but is also a powerful tool for handling nonlinear statistics. The key idea of the

method is to change the statistic of interest into a sample mean based on jackknife

pseudo-values Quenouille (1956). If we can show that these pseudo-values are

asymptotically independent, we can apply Owen’s EL to their mean. Fortunately,

the pseudo-values for U-statistics are asymptotically independent. In this study,

we apply the JEL method to test whether two multivariate distributions are

equal. To the best of our knowledge, we are the first to adapt the JEL method

for functions of U-statistics.

The rest of this paper is organized as follows. In Section 2, we state our

methodology and main results. The results of our Simulation studies are pre-

sented in Section 3. In Section 4, we apply the proposed method to gene data.
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Lastly, Section 5 concludes the paper. All the technical proofs are relegated to

the Appendix.

2. Methodology

Suppose that X = (X1, . . . , Xp)
> and Y = (Y1, . . . , Yp)

> are two p-dimensional

populations with distributions F and G, respectively. An important issue in hy-

pothesis testing is to consider the following problem:

H0 : F = G versus H1 : F 6= G. (2.1)

In practice, we can only collect two groups of sample observations,

{Xk = (Xk1, . . . , Xkp)
>, 1 ≤ k ≤ n1} and {Yj = (Yj1, . . . , Yjp)

>, 1 ≤ j ≤ n2},

from X and Y, respectively, where n1 and n2 are the corresponding sample sizes.

The distribution of X is mutually determined by its characteristic functions

(c.f.). Therefore testing (2.1) is equivalent to testing whether φ(t) = ψ(t) for

all t := (t1, t2, . . . , tp)
> ∈ Rp, where φ(t) = E(eit

>X) and ψ(t) = E(eit
>Y) are

the c.f.’s of X and Y, respectively. Hence, the problem (2.1) is reformulated by

testing the hypothesis

H0 : φ(t) = ψ(t) for all t vs. H1 : φ(t) 6= ψ(t), for some t 6= 0. (2.2)

2.1. Integration with respect to the lebesgue measure

By Riemann−Lebesgue’s lemma, lim|t|→∞ φ(t) = 0 for most distributions.

Hence, when t is large, we cannot tell φ(t) from ψ(t). Therefore, instead of

considering (2.2), we can consider a weaker hypothesis,

H′0 : φ(t) = ψ(t) for |t| ≤ t0 vs. H′1 : φ(t) 6= ψ(t), for some |t| ≤ t0, (2.3)

where t0 is some positive constant, and j = 1, 2, . . . , p. Refer to Section 3 for

further details on t0. Clearly, H′0 is equivalent to∫
Π
‖φ(t)− ψ(t)‖2 dt = 0, (2.4)

where Π = [−t0, t0]× · · · × [−t0, t0] ⊂ Rp and ‖·‖ denotes the norm of a complex

number. Because

‖φ(t)− ψ(t)‖2

= E(eit
>(X1−X2)) + E(eit

>(Y1−Y2) − E(eit
>(X1−Y1))− E(eit

>(Y1−X1)),

we have
1

2

∫
Π
‖φ(t)− ψ(t)‖2 dt
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=
1

2
E

(∫
Π

(
eit

>(X1−X2) + eit
>(Y1−Y2) − eit>(X1−Y1) − eit>(Y1−X1)

)
dt

)
= E[h(X1,X2)] + E[h(Y1,Y2)]− 2E[h(X1,Y1)],

where

h(X1,X2) =

p∏
j=1

sin[t0(X1j −X2j)]

X1j −X2j
. (2.5)

Define

U =
2

n1(n1 − 1)

∑
1≤k1<k2≤n1

h(Xk1 ,Xk2) +
2

n2(n2 − 1)

∑
1≤j1<j2≤n2

h(Yj1 ,Yj2)

− 2

n1n2

n1∑
k=1

n2∑
j=1

h(Xk,Yj)

:= U1 + U2 − 2U3. (2.6)

Remark 1. The above statistic can also be expressed as

U =

(
n1

2

)−1(n2

2

)−1 ∑
1≤k1<k2≤n1

∑
1≤j1<j2≤n2

h(Xk1 ,Xk2 ;Yj1 ,Yj2),

where

h(Xk1 ,Xk2 ;Yj1 ,Yj2) = h(Xk1 ,Xk2) + h(Yj1 ,Yj2)−
1

2
h(Xk1 ,Yj1)

−1

2
h(Xk2 ,Yj2)−

1

2
h(Xk1 ,Yj2)−

1

2
h(Xk2 ,Yj1).

This is a two-sample U-statistic of degree (2, 2). However, it is degenerate under

H0. Refer to Fernandez, Gamero and Garcia (2008) for a similar version of (2.6)

and a discussion on its limiting properties.

Remark 2. Interestingly, the test statistics proposed in Liu and Modarres (2011)

and Biswas and Ghosh (2014) are also two-sample U-statistics.

Therefore, U is an unbiased estimator of 2−1
∫

Π ‖φ(t)− ψ(t)‖2 dt under H0, and

is a linear combination of three different U-statistics, U1, U2, and U3. Note that

the hypothesis

H′′0 : E(U1) = E(U2) = E(U3) (2.7)

implies H′0. On the other hand, under H0, we obviously have (2.7). Thus

H0 ⇒ H′′0 ⇒ H′0.

Based on the discussions about formulae (2.2) and (2.3), H0 and H′0 are very close.

Hence, from now on, we do not distinguish between these three hypotheses. Thus,

our test statistic is U .
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2.2. Integration with respect to the probability measure

Let f(t) be any probability density function supported on the real line. Sup-

pose

f(t) > 0, f(t) = f(−t)

for any t ∈ R. Define

f(t) =

p∏
j=1

f(tj),

which is a probability density function supported on Rp. Clearly, H0 is equivalent

to ∫
Rp

‖φ(t)− ψ(t)‖2 f(t)dt = 0. (2.8)

A direct calculation shows that∫
Rp

‖φ(t)− ψ(t)‖2 f(t)dt = E[h(X1,X2)] + E[h(Y1,Y2)]− 2E[h(X1,Y1)],

where

h(X1,X2) =

p∏
j=1

∫
R

cos
[
tj(X1j −X2j)

]
f(tj)dtj . (2.9)

Based on the above formula, we can propose another test statistic for H0,

U =
2

n1(n1 − 1)

∑
1≤k1<k2≤n1

h(Xk1 ,Xk2) +
2

n2(n2 − 1)

∑
1≤j1<j2≤n2

h(Yj1 ,Yj2)

− 2

n1n2

n1∑
k=1

n2∑
j=1

h(Xk,Yj)

=: U1 + U2 − 2U3. (2.10)

In practice, we can let f(t) = e−t
2/(2p)/

√
2π, the normal density function, because

in this case, the kernel function has a simple expression,

h(X1,X2) =

p∏
j=1

exp

[
− 1

2p
(X1j −X2j)

2

]
.

Remark 3. In the previous subsection,

h(X1,X2) =

p∏
j=1

sin[t0(X1j −X2j)]

X1j −X2j
.

Letting f(t) = 2−1I(−t0 < t < t0), we can see that it is a special case of (2.9).

This is why we use one notation to denote different kernels. There is no confusion

because we can tell the meaning of h(X1,X2) from the text. On the other hand,
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the motivations behind (2.5) and (2.9) are different. Therefore we put these two

statistics in two subsections, even though they have the same form.

2.3. The JEL method

Because U is a degenerate U-statistic with an asymptotic distribution that

contains unknown variance, we have to provide consistent estimates of the vari-

ance so that we can use the limiting distribution of U to perform the hypothesis

test. However, it is not easy to provide consistent estimates for degenerate U-

statistics. On the other hand, the inference accuracy decreases of we have to

estimate many parameters. Therefore, we employ the JEL approach, the prop-

erties of which are discussed in Section 1. Next, we start to describe the JEL

procedure. Write

U1 =

(
n1

2

)−1 ∑
1≤k<j≤n1

h(Xk,Xj),

U2 =

(
n2

2

)−1 ∑
1≤k<j≤n2

h(Yk,Yj),

U3 =

(
n

2

)−1 ∑
1≤k<j≤n

h̃(Zk,Zj),

where n = n1 + n2, (Z1, . . . ,Zn) = (X1, . . . ,Xn1
,Y1, . . . ,Yn2

),

h̃(Zk,Zj) =
1

n1n2

(
n

2

)
h(Xk,Yj−n1

),

for 1 ≤ k ≤ n1 < j ≤ n1 +n2, and 0 otherwise. Here, h(X1,X2) could be (2.5) or

(2.9), or any kernel function satisfying conditions C2 and C3. The corresponding

jackknife pseudo-values are defined by

V
(s)
i = nsUs − (ns − 1)U

(−i)
s,ns−1,

for s = 1, 2, 3, i = 1 . . . ns, n3 = n, where

U
(−i)
1,n1−1 =

(
n1 − 1

2

)−1 (−i)∑
(n1−1,2)

h(Xk,Xj),

U
(−i)
2,n2−1 =

(
n2 − 1

2

)−1 (−i)∑
(n2−1,2)

h(Yk,Yj),

U
(−i)
3,n3−1 =

(
n3 − 1

2

)−1 (−i)∑
(n3−1,2)

h̃(Zk,Zj).
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Here,
∑(−i)

(ns−1,2) is the summation over {(j, k) : 1 ≤ j < k ≤ ns − 1, j 6= i, k 6= i}.

It is well known that Us = n−1
s

∑ns

i=1 V
(s)
i , for s = 1, 2, 3. Therefore, under H′′0,

E(V
(1)
i ) = θ0, E(V

(2)
j ) = θ0, and

E(V
(3)
k ) =

n3θ0

n3 − 2

[
n2 − 1

n1
I(0 ≤ k ≤ n1) +

n1 − 1

n2
I(n1 + 1 ≤ k ≤ n)

]
,

where θ0 = E[h(X1,X2)].

We now apply the JEL method to these three sets of jackknife pseudo-values.

Let p = (p1, . . . , pn1
), q = (q1, . . . , qn2

), and r = (r1, . . . , rn) be three probability

vectors. Hence, the empirical likelihood is

L = sup
(p,q,r,θ)

(
n1∏
i=1

pi

) n2∏
j=1

qi

( n∏
k=1

ri

)
, (2.11)

subject to the following constraints:
n1∑
i=1

pi(V
(1)
i − θ) = 0,

n2∑
i=1

qi(V
(2)
i − θ) = 0,

n∑
i=1

ri(V
(3)
i − E(V

(3)
i )) = 0.

Therefore, the corresponding empirical log likelihood ratio statistic is

l = −2

 n1∑
i=1

log(n1pi) +

n2∑
j=1

log(n2qj) +

n∑
k=1

log(nrk)

 , (2.12)

with

pi =
1

n1
· 1

1 + λ1(V
(1)
i − θ)

, i = 1, . . . n1,

qj =
1

n2
· 1

1 + λ2(V
(2)
i − θ)

, j = 1, . . . n2,

rk =
1

n
· 1

1 + λ3(V
(3)
i − EV (3)

i )
, k = 1, . . . n,

where (λ1, λ2, λ3, θ) are solutions to the following four score equations:

∂

∂θ
l = λ1

n1∑
i=1

−1

1 + λ1(V
(1)
i − θ)

+ λ2

n2∑
i=1

−1

1 + λ2(V
(2)
i − θ)

(2.13)

+ λ3

n1∑
i=1

(−n/(n− 2)) · ((n2 − 1)/n1)

1 + λ3(V
(3)
i − E(V

(3)
i ))

+ λ3

n2∑
i=1

(−n/(n− 2)) · ((n1 − 1)/n2)

1 + λ3(V
(3)
n1+i − E(V

(3)
n1+i))

= 0,
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∂

∂λ1
l =

n1∑
i=1

V
(1)
i − θ

1 + λ1(V
(1)
i − θ)

= 0, (2.14)

∂

∂λ2
l =

n2∑
i=1

V
(2)
i − θ

1 + λ2(V
(2)
i − θ)

= 0, (2.15)

∂

∂λ3
l =

n∑
i=1

V
(3)
i − E(V

(3)
k )

1 + λ3(V
(3)
i − E(V

(3)
i ))

= 0. (2.16)

To obtain Wilks’ theorem for l, we need the following conditions:

• C1. As min(n1, n2) → ∞, nj/(n1 + n2 + n) → γj > 0, j = 1, 2, where

γ1 + γ2 = 1/2. We also denote γ3 = 1/2, such that γ1 + γ2 + γ3 = 1.

• C2. σg1 > 0 and σg2 > 0.

• C3. σ1,0 > 0 and σ0,1 > 0, where the definitions of σg1 , σg2 , σ1,0, and σ0,1

are given at the beginning of the Appendix.

Theorem 1. Under C1−C3 and H0, as min(n1, n2) → ∞, the empirical log

likelihood ratio ω−1l converges in distribution to χ2
1, where χ2

1 is a chi-square

random variable with one degree of freedom, and

ω =
1

16γ1γ2
− 2

1 + 16γ1γ2
+

64γ1γ2

(1 + 16γ1γ2)2
.

Remark 4. The limiting distribution in Theorem 1 contains unknown parame-

ters γ1 and γ2. In practice, we can estimate them by n1/N and n2/N , respec-

tively, where N := n1 + n2 + n.

3. Simulation

In this section, we investigate the finite-sample performance of our proposed

test statistics and compare them with other existing methods in literature.

3.1. Simulation design

We generate the p-dimensional samples {Xk, k = 1, . . . , n1} and {Yj , j =

1, . . . , n2} from the distributions in the following cases.

Case I: Normal distribution with non-diagonal covariance matrix. We generate

Xk, k = 1, 2, . . . , n1, from the multivariate normal distribution N(0,Σ),

where Σ is a p × p matrix, with elements in the diagonal set to one, and

elements in the off-diagonal set to 0.5, and Yj , j = 1, 2, . . . , n2, are generated

from N(0, (1 + δ)2 · Σ), where δ is a real number;
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Case II: Exponential distribution. We generate Xk, k = 1, 2, . . . , n1, from the

standard multivariate exponential distribution with independent compo-

nents; that is, the components of Xk are independently generated from

Exp(1). Similarly, the components of Yj , j = 1, 2, . . . , n2, are indepen-

dently generated from Exp(1 + δ), where δ is a real number.

For all cases above, we consider p = 2, 3, (n1, n2) = (50, 50), (40, 60), and (100,

100), δ = 0, 0.2, 0.4, 0.6, 0.8, 1. Here, δ = 0 is used to assess the size of the test

statistics and the other cases are used to assess the power. For Case I, we also

consider p = 10.

We compute the statistics in Sections 2.1 and 2.2, that is, U (t0), using the

kernel function

h(X1,X2) =

p∏
j=1

sin[t0(X1j −X2j)]

X1j −X2j
,

which is the statistic in (2.6) of Section 2.1 with t0 = 1, 1.5, 2. Then U is com-

puted using the kernel function

h(X1,X2) =

p∏
j=1

exp

{
− 1

2p
(X1j −X2j)

2

}
,

which is the statistic in (2.10) of Section 2.2. For the purpose of comparison,

we compute the test statistics of Liu, Xia and Zhou (2015) (LXZ) with t = 1,

which is the case that perform best their paper, and the test statistics proposed

by Biswas and Ghosh (2014) (BG). Refer to Theorem 2.1 in Liu, Xia and Zhou

(2015) and Theorem 4.1 in Biswas and Ghosh (2014), respectively. For Case I,

we also compare the proposed method with Box’s test. Specifically, define

S =
1

n− 2
{(n1 − 1)S1 + (n2 − 1)S2},

M = (n− 2) log det(S)− (n1 − 1) log det(S1)− (n2 − 1) log det(S2),

c =
2p2 + 3p− 1

6(p− 1)

(
1

n1 − 1
+

1

n2 − 1
− 1

n− 2

)
,

where S1 and S2 are sample covariance matrices corresponding to X and Y,

respectively. Then Box’s states one that when X and Y are multivariate normal,

(1− c)M ∼ χ2
(p(p+1))/2.

3.2. Simulation results

The simulation is repeated 10,000 times. Tables 1, 3, and 5 display the

empirical sizes and powers at the nominal significance levels 0.1 and 0.05 under
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Table 1. Power at the nominal levels α = 0.1 and 0.05 for Case I (p = 2).

δ α = 0.1 α = 0.05
(n1, n2) = (50, 50)

U (1) U (1.5) U (2) U LXZ BG BOX U (1) U (1.5) U (2) U LXZ BG BOX
0 0.102 0.099 0.090 0.099 0.108 0.167 0.091 0.054 0.047 0.038 0.046 0.059 0.115 0.044
0.2 0.211 0.207 0.188 0.204 0.165 0.272 0.164 0.130 0.125 0.113 0.125 0.092 0.196 0.093
0.4 0.453 0.439 0.398 0.437 0.290 0.482 0.342 0.334 0.311 0.276 0.313 0.191 0.379 0.235
0.6 0.690 0.663 0.620 0.666 0.441 0.676 0.562 0.569 0.539 0.479 0.542 0.314 0.577 0.431
0.8 0.849 0.825 0.788 0.832 0.596 0.811 0.760 0.761 0.725 0.671 0.730 0.472 0.733 0.643
1 0.944 0.929 0.895 0.933 0.723 0.887 0.892 0.890 0.863 0.810 0.866 0.608 0.829 0.811

(n1, n2) = (40, 60)
0 0.098 0.103 0.040 0.093 0.119 0.159 0.097 0.046 0.055 0.117 0.044 0.062 0.102 0.048
0.2 0.204 0.203 0.087 0.192 0.172 0.306 0.159 0.121 0.119 0.123 0.109 0.105 0.219 0.091
0.4 0.440 0.428 0.237 0.413 0.286 0.597 0.331 0.313 0.299 0.257 0.286 0.196 0.483 0.217
0.6 0.675 0.653 0.436 0.643 0.443 0.814 0.552 0.540 0.518 0.453 0.506 0.319 0.723 0.414
0.8 0.839 0.812 0.633 0.816 0.590 0.928 0.740 0.742 0.713 0.646 0.708 0.469 0.878 0.616
1 0.931 0.915 0.779 0.919 0.715 0.971 0.877 0.878 0.840 0.781 0.844 0.605 0.949 0.783

(n1, n2) = (100, 100)
0 0.098 0.096 0.095 0.098 0.101 0.125 0.095 0.048 0.042 0.046 0.045 0.053 0.072 0.044
0.2 0.329 0.323 0.303 0.323 0.214 0.451 0.255 0.225 0.221 0.200 0.216 0.135 0.336 0.162
0.4 0.717 0.705 0.668 0.701 0.450 0.853 0.600 0.595 0.583 0.539 0.574 0.330 0.773 0.468
0.6 0.927 0.912 0.891 0.914 0.711 0.983 0.870 0.867 0.855 0.820 0.851 0.590 0.962 0.794
0.8 0.986 0.981 0.978 0.984 0.881 0.998 0.971 0.972 0.960 0.945 0.964 0.803 0.996 0.945
1 0.998 0.993 0.995 0.997 0.955 1.000 0.995 0.993 0.986 0.987 0.992 0.910 0.999 0.989

H0 for Case I. Tables 2 and 4 show the empirical sizes and powers for Case II.

We have the following observations from the simulation results:

(a) From Table 1 to Table 5, we find that the proposed statistic ω−1l in Section

2 with t0 = 1 outperforms t0 = 1.5 and 2 in terms of power and size. This

observation is consistent with our expectation. The reason is as follows. A

large t0 may cause cumulative errors. A small disturbance of data could

lead to large deviations of t0X and t0Y, even if X and Y are close to each

other. On the other hand, a small t would make t0X and t0Y close to zero,

even if X and Y are quite different. Thus, choosing t0 = 1 is reasonable. We

also conduct experiments for small t0 and large t0 (e.g., t0 = 0.2, t0 = 8).

The corresponding results further confirm our conclusion. Thus, we suggest

letting t0 = 1 for the proposed statistic ω−1l in Section 2, in practice.

(b) In Table 1, we find that both our methods (U (1) and U) and LXZ outperform

BG in terms of size, and that our methods and LXZ are very competitive.

The sizes of our methods and LXZ are very close to the nominal level. In

Tables 2 and 4, the sizes of our two methods are closer to the nominal level

than those of LXZ and BG are. From Tables 1, 3, and 5, we find that our
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Table 2. Power at nominal levels α = 0.1 and 0.05 for Case II (p = 2).

δ α = 0.1 α = 0.05
(n1, n2) = (50, 50)

U (1) U (1.5) U (2) U LXZ BG U (1) U (1.5) U (2) U LXZ BG
0 0.105 0.091 0.085 0.100 0.132 0.174 0.058 0.044 0.041 0.055 0.073 0.121
0.2 0.289 0.283 0.283 0.299 0.243 0.369 0.194 0.182 0.180 0.198 0.155 0.277
0.4 0.609 0.609 0.611 0.635 0.523 0.649 0.490 0.482 0.484 0.504 0.408 0.556
0.6 0.843 0.852 0.855 0.870 0.801 0.838 0.754 0.755 0.756 0.781 0.702 0.765
0.8 0.949 0.955 0.957 0.964 0.941 0.920 0.901 0.915 0.914 0.925 0.897 0.883
1 0.985 0.988 0.988 0.990 0.990 0.941 0.970 0.975 0.975 0.978 0.974 0.929

(n1, n2) = (40, 60)
0 0.110 0.093 0.092 0.108 0.140 0.180 0.055 0.047 0.043 0.052 0.078 0.126
0.2 0.288 0.285 0.293 0.297 0.223 0.345 0.190 0.186 0.192 0.196 0.143 0.263
0.4 0.599 0.603 0.614 0.626 0.495 0.636 0.483 0.480 0.488 0.504 0.364 0.541
0.6 0.844 0.843 0.843 0.863 0.773 0.839 0.748 0.752 0.755 0.781 0.665 0.768
0.8 0.947 0.946 0.952 0.960 0.922 0.914 0.903 0.901 0.911 0.921 0.871 0.881
1 0.985 0.986 0.988 0.991 0.981 0.935 0.968 0.970 0.971 0.979 0.959 0.921

(n1, n2) = (100, 100)
0 0.103 0.103 0.100 0.106 0.108 0.145 0.054 0.055 0.047 0.055 0.053 0.086
0.2 0.431 0.439 0.444 0.457 0.338 0.485 0.312 0.320 0.317 0.334 0.224 0.372
0.4 0.856 0.864 0.864 0.880 0.778 0.884 0.764 0.776 0.781 0.800 0.671 0.810
0.6 0.981 0.980 0.984 0.987 0.972 0.987 0.959 0.964 0.961 0.973 0.942 0.971
0.8 0.998 0.997 0.998 0.999 0.998 0.996 0.995 0.995 0.996 0.999 0.996 0.995
1 1.000 0.999 0.998 1.000 1.000 0.996 1.000 0.998 0.997 1.000 1.000 0.996

two methods outperform LXZ in terms of power. From Tables 2 and 4, our

proposed methods outperform LXZ in terms of power as well. On the other

hand, when δ is small (for example, δ = 0.2), the empirical power of BG

is slightly better than ours. But when δ becomes large, our methods again

dominate BG.

(c) When X and Y are normal, U (1) and U perform competitively with Box’s

test in terms of size. However when δ is nonzero, the power of each of U (1)

and U is better than that of Box’s test. Of course, as δ becomes large, this

advantage gradually disappears.

From the above numerical observations, we conclude that our two methods

outperform the existing methods in the literature.

4. Application

In this section, we apply the proposed method to a gene data set of 6,033 gene

expressions obtained from 102 independent observations of 52 prostate cancer
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Table 3. Power at the nominal levels α = 0.1 and 0.05 for Case I (p = 3).

δ α = 0.1 α = 0.05
(n1, n2) = (50, 50)

U (1) U (1.5) U (2) U LXZ BG BOX U (1) U (1.5) U (2) U LXZ BG BOX
0 0.090 0.085 0.080 0.087 0.122 0.166 0.103 0.045 0.042 0.039 0.043 0.063 0.115 0.049
0.2 0.266 0.253 0.219 0.256 0.174 0.300 0.173 0.173 0.159 0.126 0.161 0.102 0.224 0.103
0.4 0.576 0.566 0.502 0.563 0.312 0.546 0.378 0.436 0.432 0.363 0.428 0.211 0.448 0.265
0.6 0.833 0.812 0.742 0.811 0.472 0.770 0.631 0.729 0.707 0.623 0.707 0.353 0.668 0.506
0.8 0.952 0.935 0.890 0.938 0.652 0.885 0.831 0.901 0.883 0.810 0.885 0.527 0.822 0.735
1 0.986 0.979 0.956 0.982 0.781 0.922 0.937 0.971 0.957 0.909 0.962 0.676 0.906 0.886

(n1, n2) = (40, 60)
0 0.099 0.094 0.087 0.095 0.120 0.175 0.106 0.051 0.043 0.040 0.044 0.060 0.122 0.055
0.2 0.247 0.232 0.188 0.235 0.182 0.278 0.171 0.157 0.139 0.102 0.142 0.115 0.211 0.098
0.4 0.548 0.534 0.458 0.532 0.325 0.524 0.355 0.420 0.397 0.314 0.402 0.223 0.419 0.241
0.6 0.798 0.778 0.701 0.780 0.482 0.734 0.601 0.696 0.665 0.567 0.670 0.367 0.645 0.468
0.8 0.934 0.918 0.858 0.919 0.626 0.864 0.803 0.873 0.846 0.759 0.852 0.517 0.796 0.696
1 0.984 0.975 0.939 0.979 0.751 0.910 0.924 0.962 0.943 0.875 0.949 0.649 0.885 0.859

(n1, n2) = (100, 100)
0 0.102 0.104 0.095 0.104 0.111 0.140 0.098 0.052 0.048 0.046 0.049 0.060 0.087 0.048
0.2 0.409 0.406 0.374 0.402 0.218 0.402 0.263 0.296 0.295 0.261 0.291 0.135 0.303 0.166
0.4 0.845 0.842 0.801 0.836 0.489 0.803 0.661 0.753 0.756 0.695 0.747 0.361 0.702 0.532
0.6 0.982 0.977 0.962 0.976 0.741 0.963 0.928 0.958 0.953 0.929 0.953 0.627 0.933 0.876
0.8 0.999 0.998 0.995 0.998 0.909 0.994 0.993 0.995 0.994 0.988 0.995 0.848 0.991 0.982
1 1.000 1.000 0.998 1.000 0.971 0.997 0.999 1.000 0.999 0.997 0.999 0.945 0.996 0.999

patients and 50 healthy men. Our purpose is to detect all genes that have different

distributions in the two groups. Thus it is natural to consider genes individually.

This data set is analyzed in Liu, Xia and Zhou (2015), who assert that 14

common genes are significant with a Bonferroni correction, that is, D1 = {332,

377, 610, 905, 1,082, 1,113, 1,458, 1,557, 1,589, 1,620, 1,647, 2,450, 3,439, 4,405}.
Thus, we would like to discover whether there are any other relevant genes that

can be identified using our proposed methods.

We apply our methods to each gene variable individually. For the method

of integration with respect to the Lebesgue measure, we set t = 1 and denote it

as Method 1. For simplicity, we denote the method of integration with respect

to the probability measure as Method 2. The experiment is conducted under the

significance level α = 0.1, with a Bonferroni correction.

We denote D2 and D3 as the index sets of the genes selected by Methods

1 and 2, respectively, where D2 = {2, 332, 377, 398, 905, 1,082, 1,113, 1,139, 1,142,

1,169, 1,185, 1,557, 1,584, 1,620, 1,647, 3,439} andD3 ={332, 377, 905, 1,082, 1,113,

1,142, 1,620}. We find that all genes selected by Method 2 are contained in D2.

Therefore, we consider the genes belonging to D2 in the following discussion. The
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Table 4. Power at the nominal levels α = 0.1 and 0.05 for Case II (p = 3).

δ α = 0.1 α = 0.05
(n1, n2) = (50, 50)

U (1) U (1.5) U (2) U LXZ BG U (1) U (1.5) U (2) U LXZ BG
0 0.108 0.097 0.125 0.105 0.134 0.176 0.055 0.044 0.084 0.053 0.078 0.119
0.2 0.360 0.351 0.386 0.376 0.289 0.420 0.251 0.235 0.271 0.259 0.193 0.333
0.4 0.759 0.747 0.758 0.779 0.638 0.752 0.641 0.628 0.638 0.671 0.525 0.659
0.6 0.941 0.941 0.950 0.958 0.907 0.903 0.890 0.888 0.897 0.923 0.839 0.866
0.8 0.991 0.989 0.989 0.996 0.984 0.941 0.976 0.975 0.976 0.988 0.966 0.929
1 0.999 0.999 0.996 1.000 0.999 0.943 0.997 0.997 0.992 0.999 0.996 0.940

(n1, n2) = (40, 60)
0 0.111 0.091 0.130 0.104 0.158 0.183 0.059 0.043 0.087 0.047 0.095 0.125
0.2 0.360 0.363 0.415 0.380 0.260 0.406 0.256 0.254 0.295 0.269 0.163 0.317
0.4 0.740 0.735 0.778 0.769 0.600 0.739 0.638 0.623 0.667 0.662 0.467 0.663
0.6 0.938 0.941 0.960 0.957 0.875 0.901 0.887 0.887 0.912 0.916 0.797 0.853
0.8 0.990 0.992 0.991 0.997 0.974 0.937 0.976 0.978 0.981 0.990 0.948 0.924
1 0.997 0.998 0.992 1.000 0.996 0.938 0.994 0.996 0.988 0.999 0.991 0.937

(n1, n2) = (100, 100)
0 0.107 0.101 0.100 0.103 0.121 0.147 0.057 0.053 0.059 0.055 0.065 0.091
0.2 0.581 0.576 0.582 0.607 0.399 0.612 0.446 0.447 0.452 0.478 0.279 0.493
0.4 0.948 0.953 0.951 0.967 0.888 0.956 0.901 0.913 0.910 0.935 0.813 0.917
0.6 0.995 0.995 0.996 0.999 0.995 0.994 0.989 0.991 0.993 0.997 0.989 0.991
0.8 0.999 0.998 0.995 1.000 1.000 0.995 0.999 0.997 0.994 1.000 1.000 0.995
1 1.000 0.999 0.995 1.000 1.000 0.994 1.000 0.999 0.995 1.000 1.000 0.994

number of genes in D2 and the corresponding observed statistic for each gene are

illustrated in Table 6.

In order to consolidate our method, box plots of genes indexed by D2\D1

are given in Figure 1. From Figure 1, we can clearly see that the genes of these

two groups have different distributions.

In addition, in order to make the hypothesis more powerful, we combine

our method with a false discovery rate (FDR) control (Benjamini and Hochberg

(1995)) at the nominal level α = 0.1. The procedure is conducted as follows.

• Sort the corresponding P -values in ascending order, denoted as P(1), . . . , P(p).

• Let k denote the largest index, such that P(i) ≤ α× i/p for all i ≤ k.

• Declare all tests with P -values P(1), . . . , P(k) significant.

Using this procedure, we find that all genes in D1 ∪D2 can be recruited.
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Table 5. Power at the nominal levels α = 0.1 and 0.05 for Case I (p = 10).

δ α = 0.1 α = 0.05
(n1, n2) = (50, 50)

U (1) U (1.5) U (2) U LXZ BG BOX U (1) U (1.5) U (2) U LXZ BG BOX
0 0.090 0.088 0.081 0.094 0.344 0.163 0.102 0.038 0.042 0.047 0.052 0.238 0.113 0.056
0.2 0.544 0.470 0.415 0.415 0.396 0.360 0.168 0.424 0.339 0.307 0.294 0.292 0.283 0.095
0.4 0.939 0.883 0.867 0.847 0.582 0.665 0.394 0.886 0.800 0.769 0.756 0.474 0.578 0.260
0.6 0.999 0.980 0.950 0.979 0.682 0.828 0.714 0.990 0.957 0.909 0.965 0.586 0.777 0.574
0.8 0.999 0.984 0.986 0.999 0.825 0.872 0.920 0.999 0.980 0.930 0.997 0.750 0.857 0.858
1 1.000 0.985 0.991 1.000 0.903 0.882 0.988 1.000 0.975 0.987 1.000 0.848 0.877 0.965

(n1, n2) = (40, 60)
0 0.080 0.086 0.090 0.091 0.389 0.165 0.097 0.051 0.037 0.042 0.046 0.293 0.117 0.047
0.2 0.511 0.410 0.368 0.400 0.457 0.358 0.150 0.369 0.357 0.333 0.271 0.356 0.277 0.092
0.4 0.917 0.840 0.797 0.821 0.622 0.657 0.364 0.857 0.858 0.828 0.736 0.520 0.564 0.220
0.6 0.996 0.976 0.954 0.974 0.742 0.828 0.662 0.987 0.989 0.971 0.950 0.660 0.771 0.524
0.8 0.999 0.995 0.975 0.998 0.840 0.878 0.894 0.999 0.999 0.972 0.996 0.768 0.860 0.816
1 0.997 0.994 0.998 1.000 0.900 0.892 0.977 0.999 0.997 0.987 1.000 0.860 0.884 0.950

(n1, n2) = (100, 100)
0 0.102 0.094 0.090 0.107 0.169 0.151 0.096 0.050 0.054 0.043 0.054 0.096 0.095 0.046
0.2 0.781 0.735 0.641 0.647 0.294 0.578 0.280 0.680 0.624 0.593 0.518 0.186 0.467 0.172
0.4 0.999 0.991 0.916 0.982 0.526 0.927 0.784 0.995 0.972 0.867 0.960 0.405 0.877 0.663
0.6 1.000 0.994 0.988 1.000 0.808 0.972 0.988 1.000 0.990 0.973 1.000 0.705 0.969 0.971
0.8 1.000 0.988 0.998 1.000 0.938 0.972 1.000 1.000 0.984 0.994 1.000 0.888 0.972 1.000
1 1.000 0.991 0.998 1.000 0.983 0.972 1.000 1.000 0.985 0.996 1.000 0.964 0.972 1.000

Table 6. Observed statistics for genes in D2, t0 = 1

No.gene value ω−1l No.gene value ω−1l
2 89.51 1,142 27.95

332 68.84 1,169 25.69
377 20.39 1,185 19.02
398 19.55 1,557 19.63
905 24.64 1,584 20.85

1,082 23.98 1,620 28.75
1,113 28.58 1,647 23.84
1,139 20.41 3,439 26.26

5. Conclusion

In this study, we investigate the problem of testing the equality of two dis-

tributions using the JEL approach. We prove that the scaled log JEL statistic

tends to a chi-square distribution with one degree of freedom, which is easy to

implement in practice. Extensive simulation studies confirm that our proposed

method outperforms its competitors. It would be interesting to derive the limit-

ing distribution of the scaled log JEL statistic when p tends to infinity.
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,

Figure 1. Expression levels for genes in D2\D1.
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Appendix

In this appendix, we present the proof of Theorem 1. We begin with the

following notations:
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Q1n(θ, λ1, λ2, λ3) =
1

N

n1∑
i=1

V
(1)
i − θ

1 + λ1(V
(1)
i − θ)

,

Q2n(θ, λ1, λ2, λ3) =
1

N

n2∑
i=1

V
(2)
i − θ

1 + λ2(V
(2)
i − θ)

,

Q3n(θ, λ1, λ2, λ3) =
1

N

n3∑
i=1

V
(3)
i − EV (3)

i

1 + λ3(V
(3)
i − EV (3)

i )
,

Q4n(θ, λ1, λ2, λ3) =
1

N

[
λ1

n1∑
i=1

−1

1 + λ1(V
(1)
i − θ)

+ λ2

n2∑
i=1

−1

1 + λ2(V
(2)
i − θ)

+λ3

n1∑
i=1

(−n/(n− 2)) · ((n2 − 1)/n1)

1 + λ3(V
(3)
i − EV (3)

i )

+λ3

n3∑
i=n1+1

(−n/(n− 2)) · ((n1 − 1)/n2)

1 + λ3(V
(3)
i − EV (3)

i )

]
,

where N = 2n = n1 + n2 + n. Also, we define

g1(x) = E[h(x,X2)]− θ0, σ2
g1 = var(g1(X1)), g2(y) = E[h(y,Y2)]− θ0,

σ2
g2 = Var[g1(Y1)], g1,0(x) = E[h(x,Y1)]− θ0, g0,1(y) = E[h(X1, y)]− θ0

σ2
1,0 = Var[g1,0(X1)], σ2

0,1 = Var[g0,1(Y1)].

Under H0, g1(x) = g2(x) = g1,0(x) = g0,1(x). →D denotes the weak convergence.

Lemma A1. (Hoeffding (1948)) If E[h2(X1,X2)] < ∞, E[h2(Y1,Y2)] < ∞,

σg1 > 0 and σg2 > 0, then

(a)
√
n1(U1 − θ0)/(2σg1)→D N(0, 1) as n1 →∞;

(b)
√
n2(U2 − θ0)/(2σg2)→D N(0, 1) as n2 →∞.

Lemma A2. (Arvesen (1969)) If E[h2(X,Y)] < ∞, σ2
1,0 > 0 and σ2

0,1 > 0, let

S2
n1,n2

= σ2
1,0/n1 + σ2

0,1/n2, then, as min(n1, n2)→∞, we have

U3 − θ0

Sn1,n2

→D N(0, 1).

Remark A1. To simplify our notation, we write

σ2
1 = 4σ2

g1 , σ2
2 = 4σ2

g2 , σ2
3 =

σ2
g1

(2γ1)
+

σ2
g2

(2γ2)
.

Under the null hypothesis, we denote σ := σ1 = σ2.
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Lemma A3. (Jing, Yuan and Zhou (2009)) Let S1 = n−1
1

∑n1

i=1(V
(1)
i − θ0)2,

S2 = n−1
2

∑n2

i=1(V
(2)
i − θ0)2 and S3 = n−1

∑n
i=1(V

(3)
i − E(V (3)))2. Under the

conditions of Lemmas 1 and 2,

(a) S1 = σ2
1 + oP (1) as n1 →∞,

(b) S2 = σ2
2 + oP (1) as n2 →∞,

(c) S3 = σ2
3 + oP (1) as lim infn→∞min(n1, n2)/max(n1, n2) > 0.

Lemma A4. Under C1-C3 and H0, with probability tending to one as min(n1, n2)

→ ∞, there exists a root θ̃ of (2.13)-(2.16), such that |θ̃ − θ0| < δ, where δ =

n−1/3.

Proof. For θ ∈ {θ : |θ− θ0| < δ}, E(V
(s)
i − θ) = θ0 − θ for s = 1, 2, and E(V

(3)
i −

E(V
(3)
i |θ)) = (n(θ0 − θ))/(n− 2)[((n2 − 1)/n1)I(0 ≤ i ≤ n1)+((n1 − 1)/n2)I(n1+

1 ≤ i ≤ n)], (here E(V
(3)
i |θ) means the expectation of V

(3)
i when E[h(X1,X2)] =

θ.)

1

ns

ns∑
i=1

(V
(s)
i − θ) = Us − θ0 − (θ − θ0) = OP (δ + n−1/2

s ),

1

n

n∑
i=1

(
V

(3)
i − E(V

(3)
i |θ)

)
= U3 − θ0 − (θ − θ0) = OP (δ + n−1/2).

Similarly, we have

1

ns

ns∑
i=1

(V
(s)
i − θ)2 = Ss +OP (δ + n−1/2) = σ2 +OP (δ + n−1/2) + oP (1),

1

n

n∑
i=1

(
V

(3)
i − E(V

(3)
i |θ)

)2
= S3 +OP (δ + n−1/2) + oP (1).

In particular,

1

ns

ns∑
i=1

(V
(s)
i − θ0 − δ) = −δ +OP (n−1/2

s ),

1

n

n∑
i=1

(
V

(3)
i − E(V

(3)
i |θ0+δ)

)
= −δ +OP (n−1/2),

1

ns

ns∑
i=1

(V
(s)
i − θ0 − δ)2 = σ2 + δ2 +Op(n

−1/2
s ) + oP (1),

1

n

n∑
i=1

(
V

(3)
i − E(V

(3)
i |θ0+δ)

)2
= S3 + δ2 +Op(n

−1/2) + oP (1).
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Expanding (2.14)-(2.16), we have

1

ns

ns∑
i=1

(V
(s)
i − θ)− λs

1

ns

ns∑
i=1

(V
(s)
i − θ)2

1 + λs(V
(s)
i − θ)

= 0, (A.1)

1

n

n∑
i=1

(V
(3)
i − E(V

(3)
i |θ))− λ3

1

n

n∑
i=1

(V
(3)
i − E(V

(3)
i |θ))2

1 + λs(V
(3)
i − E(V

(3)
i |θ))

= 0,

and define Z
∗(s)
n = max

1≤i≤ns

|V (s)
i − θ| for s = 1, 2, and

Z∗(3)
n = max

1≤i≤n
|V (3)
i − E(V

(3)
i |θ)|.

Since the kernel function h is bounded, there exists a constant c such that 0 <

Z
∗(s)
n < c for s = 1, 2, 3. Thus, we have

λs|θ = OP (δ + n−1/2
s ) (A.2)

uniformly in θ ∈ {θ : |θ − θ0| < δ} and λs|θ0+δ = OP (δ + n
−1/2
s ). Similarly,

λs|θ0−δ = OP (δ + n
−1/2
s ).

For simplicity, we write

∆δ1 = δ + n
−1/2
1 ,

H1(θ) =
1

n1

n1∑
i=1

log[1 + λ1(V
(1)
i − θ)],

H2(θ) =
1

n2

n2∑
i=1

log[1 + λ2(V
(2)
i − θ)],

H3(θ) =
1

n

n∑
i=1

log[1 + λ3(V
(3)
i − E(V

(3)
i |θ))],

H(θ) = n1H1(θ) + n2H2(θ) + nH3(θ).

We consider H1 first. By the Taylor expansion and the order of λ1,

H1(θ0 + δ) = λ1|θ0+δ
1

n1

n1∑
i=1

(V
(1)
i − θ0 − δ)−

1

2
λ1|2θ0+δ

1

n1

n1∑
i=1

(V
(1)
i − θ0 − δ)2

+OP (∆3
δ1).

By 1/(x+ 1) = 1− x+ x2/(1 + x) and (A.1), we also have

0 =
1

n1

n1∑
i=1

(V
(1)
i − θ0 − δ)− λ1|θ0+δ

1

n1

n1∑
i=1

(V
(1)
i − θ0 − δ)2
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+λ2
1|θ0+δ

1

n1

n1∑
i=1

(V
(1)
i − θ0 − δ)3

1 + λ1|θ0+δ(V
(1)
i − θ0 − δ)

.

Combining this with the order of λ1|θ0+δ yields

λ1|θ0+δ =
1

n1

n1∑
i=1

(V
(1)
i − θ0 − δ)σ−2

δ +OP (∆2
δ1).

where σ2
δ = σ2 + δ2 +OP (n

−1/2
s ) + oP (1). Substituting λ1|θ0+δ into H1(θ0 + δ),

H1(θ0 + δ) =
1

2
σ−2
δ

[
1

ns

ns∑
i=1

(V
(s)
i − θ0 − δ)

]2

+OP (∆3
δ1)

=
1

2σ2
δ

[
δ2 +Op(n

−1
s )
]

+OP (∆3
δ1).

Letting δ = 0, we also have

H1(θ0) =
1

2
σ−2
δ

[
1

ns

ns∑
i=1

(V
(s)
i − θ0)

]2

+OP (∆3
δ1)

=
1

2σ2
δ

[
Op(n

−1/2
s )

]2
+OP (∆3

δ1).

Thus, we have that H1(θ0 + δ) ≥ H1(θ0) with probability tending to one. Simi-

larly, we are able to show that H1(θ0 − δ) ≥ H1(θ0) with probability tending to

one, and so do H2 and H3. So, H(θ0 ± δ) ≥ H(θ0) with probability tending to

one. By the continuity of H in {θ : |θ− θ0| < δ}, with probability tending to one

H(θ) achieves its minimum in {θ : |θ − θ0| < δ}, denoted as θ̃, which is given by

the root of (2.13)-(2.16).

Now, we assume β̃ = (θ̃, λ̃1, λ̃2, λ̃3)> is the solution to Qin(θ, λ1, λ2, λ3) = 0,

for i = 1, 2, 3, 4. Thus, we expand them at β0 = (θ0, 0, 0, 0)>,

0 = Qin(β0) +
∂Qin
∂θ

(β0)(θ̃ − θ0) +
∂Qin
∂λ1

(β0)λ̃1 +
∂Qin
∂λ2

(β0)λ̃2

+
∂Qin
∂λ3

(β0)λ̃3 +Rin, (A.3)

where Rin = (1/2)(β̃ − β0)>{(∂2Qin(β∗))/(∂β∂β>)}(β̃ − β0), and one can check

that Rin = oP (n−1/2) by Lemma 4 and (A.2).

Lemma A5. Under H0, Cov(U1, U2) = 0, Cov(U1, U3) = 2n−1
1 σ2

g1 and Cov(U2,

U3) = 2n−1
2 σ2

g1.

Proof. This follows from the Hoeffding decomposition of U-statistics.
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Proof of Theorem 1. By Lemma A3 and (A.3),
Q1n(β0)

Q2n(β0)

Q3n(β0)

0

 = W


λ̃1

λ̃2

λ̃3

θ̃ − θ0

+ oP (n−1/2),

where

W =


γ1σ

2
1 0 0 γ1

0 γ2σ
2
2 0 γ2

0 0 (1/2)σ2
3 1/2

γ1 γ2 1/2 0

 .

Thus, we can get
λ̃1

λ̃2

λ̃3

θ̃ − θ0

 = W−1


Q1n(β0)

Q2n(β0)

Q3n(β0)

0

+ oP (n−1/2).

In particular

θ̃ − θ0 = d1Q1n(β0) + d2Q2n(β0) + d3Q3n(β0) + oP (n−1/2), (A.4)

where

d1 = d2 =
2

1 + 16γ1γ2
, d3 =

32γ1γ2

1 + 16γ1γ2
.

From (2.14), we have

1

n1

n1∑
i=1

(V
(1)
i − θ̃)− λ̃1

1

n1

n1∑
i=1

(V
(1)
i − θ̃) + λ̃2

1

1

n1

n1∑
i=1

(V
(1)
i − θ̃)3

1 + λ̃1(V
(1)
i − θ̃)

= 0.

This implies that

λ̃1 =
U1 − θ̃
S̃1

+ oP (n−1/2),

where S̃1 = (1/n1)
∑n1

i=1(V
(1)
i − θ̃)2. Similarly,

λ̃2 =
U2 − θ̃
S̃2

+ oP (n−1/2), λ̃3 =
U3 − θ̃
S̃3

+ oP (n−1/2),

where S̃2 = (1/n2)
∑n2

i=1(V
(2)
i − θ̃)2 and S̃3 = (1/n)

∑n
i=1(V

(3)
i − E(Ṽ

(3)
i ))2 with

E(Ṽ
(3)
i ) =

nθ̃

n− 2

[
n2 − 1

n1
I(0 ≤ i ≤ n1) +

n1 − 1

n2
I(n1 + 1 ≤ i ≤ n)

]
.

It is easy to check S̃j = σ2
j + oP (1) via Lemmas A3 and A4, j = 1, 2, 3. Now we
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plug the above formulas of λ̃j into the expansion of l(θ0) to get

l(θ0) =

[
n1

(U1 − θ̃)2

σ2
1

+ n2
(U2 − θ̃)2

σ2
2

+ n
(U3 − θ̃)2

σ2
3

] (
1 + oP (1)

)
.

By (A.4), we have

n1
(U1 − θ̃)2

σ2
1

+ n2
(U2 − θ̃)2

σ2
2

+ n
(U3 − θ̃)2

σ2
3

=
(√

NQ1n(β0),
√
NQ3n(β0),

√
NQ2n(β0)

)
×A>DA

(√
NQ1n(β0),

√
NQ2n(β0),

√
NQ3n(β0)

)>
+ op(1),

where D =

γ1/σ
2
1 0 0

0 γ2/σ
2
2 0

0 0 γ3/σ
2
3

 .

By Lemmas 1, 2 and 5, we have

√
N

Q1n(β0)

Q2n(β0)

Q3n(β0)

→D N


0

0

0

 ,

γ1σ
2
1 0 σ2

g1

0 γ2σ
2
2 σ2

g2

σ2
g1 σ2

g2 (1/2)σ2
3


 , (A.5)

which is a degenerate three dimensional normal distribution. Note that under

H0, σ2
g1 = σ2

g2 = σ2/4, σ2
1 = σ2

2 = σ2, σ2
3 = σ2/(16γ1γ2). Hence under H0

the empirical log likelihood ratio l converges in distribution to
∑3

i=1 ωiχ
2
i , where

χ2
i , i = 1, 2, 3 are three independent chi-square random variables with one degree

of freedom, ωi, i = 1, 2, 3 are three eigenvalues of Ω1/2A>D0AΩ1/2 with Ω = γ1 0 1/4

0 γ2 1/4

1/4 1/4 1/(32γ1γ2)

,

A =

γ−1
1 − d1 −d2 −d3

−d1 γ−1
2 − d2 −d3

−d1 −d2 γ−1
3 − d3

 , D0 =

γ1 0 0

0 γ2 0

0 0 γ3

 .

By an elementary but tedious calculation one can check that both Ω and A
have one zero eigenvalue with eigenvectors (γ−1

1 , γ−1
2 ,−4)> and (2γ1, 2γ2, 1)>

respectively. These two eigenvectors are orthogonal. So Ω1/2A>D0AΩ1/2 has

only one nonzero eigenvalue, which is

trace(Ω1/2A>D0AΩ1/2) =
1

16γ1γ2
− 2

1 + 16γ1γ2
+

64γ1γ2

(1 + 16γ1γ2)2
.

Now we can complete the proof.
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