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Abstract: In some practical problems, a subset of predictors may be subject to

missingness, especially when the dimension of the predictors is high. In this case,

the standard sufficient dimension-reduction (SDR) methods cannot be applied di-

rectly to avoid the curse of dimensionality. Therefore, a dimension-reduction-based

imputation method is developed such that any spectral-decomposition-based SDR

method for full data can be applied to the case where predictors are missing at

random. The sliced inverse regression (SIR) technique is used to illustrate this pro-

cedure. The proposed imputation estimator of the candidate matrix for the SIR,

called the DRI-SIR estimator, is asymptotically normal under some mild condi-

tions. Hence, the resulting estimator of the central subspace is root-n consistent.

The finite-sample performance of the proposed method is evaluated through com-

prehensive simulations and real data are analyzed in an application of the method.

Key words and phrases: Kernel imputation, missing at random, missing predictors,

sliced inverse regression, sufficient dimension reduction.

1. Introduction

Consider the regression of a univariate response variable Y on a p×1 covariate

vector X. Regression analyses typically focus on how the conditional distribution

function F (y|X = x) changes as the value of X varies in its marginal sample

space. When the dimension p is large, modeling a parametric structure for the

regression is difficult, and nonparametric methods are not effective owing to the

curse of dimensionality. As a result, sufficient dimension-reduction (SDR; Cook

(1998a)) methods have been proposed in order to reduce the dimension of X

while preserving full information for Y , without imposing specified regression

parametric models. These methods replace X with d ≤ p linear combinations,

βT1 X, . . . , β
T
d
X, such that Y |= X

∣∣BTX, where B is a p× d matrix with columns

βj , and |= indicates statistical independence. The column space of B is called

a dimension-reduction subspace (Li (1991)). Such subspaces always exist, but
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they are not necessarily unique. Under mild, but fairly weak conditions, Cook

(1996) showed that the intersection of all dimension-reduction subspaces is itself

a dimension-reduction subspace and called the central subspace (CS) SY |X for the

regression of Y on X, where its dimension d = dim(SY |X) is called the structural

dimension. It is clear that the CS provides the greatest reduction from X to

BTX and captures all regression information of Y on X.

Since Li’s pioneering work on the sliced inverse regression (SIR; Li (1991)),

many SDR methods have been developed to estimate SY |X. These include

spectral-decomposition-based methods, such as the SIR, sliced average variance

estimation (SAVE; Cook and Weisberg (1991)), principal Hessian direction (PHD;

Li (1992)), kernel inverse regression (Zhu and Fang (1996); Ferré and Yao (2005)),

contour regression (Li, Zha and Chiaromonte (2005)), directional regression (DR;

Li and Wang (2007)), and so on. Some other methods have been derived by nu-

merically minimizing (or maximizing) nonparametric objective functions. These

methods include the minimum average variance estimator (MAVE; Xia et al.

(2002)), the information index method (Yin and Cook (2005)), and so forth. Cai

and Chen (2010, Chap. 2) were the first to provide a selective review of SDR

methods for regressions. Later, Ma and Zhu (2013) discussed recent develop-

ments in the SDR field.

Despite the growing number of the SDR literature with significant theoretical

advances, only little attention has been paid to SDR with missing values, even

though the problem of missing data is relatively common. For responses missing

at random (MAR), Ding and Wang (2011) proposed a fusion-refinement (FR)

procedure to handle dimension-reduction problems. In the context of predictors

MAR, Li and Lu (2008) introduced the augmented inverse probability-weighted

SIR estimator (AIPW-SIR), and Zhu, Wang and Zhu (2012) proposed a paramet-

ric imputation procedure for SIR (PI-SIR). Both methods require that parametric

models are specified for the conditional expectations and the propensity function.

For ease of exposition, we write X = (X1, . . . , Xp)
T = (XT

mis,X
T
obs)

T , where

Xmis = (X1, . . . , Xp1
)T ∈ Rp1 refers to predictors with missingness in a subset

of subjects, and Xobs = (Xp
1
+1, . . . , Xp)

T ∈ Rp−p1 is always observed for all sub-

jects. Let δ = (δ1, . . . , δp
1
)T denote a vector of missingness indicators for Xmis,

where δk takes the value one if there is no missingness for the k-th component

Xk in Xmis, and zero otherwise. Throughout this paper, we assume that Xmis

is MAR; that is,

δ |= Xmis | (XT
obs, Y )T , (1.1)
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which essentially allows the missingness to depend only on the completely ob-

served variables (XT
obs, Y )T .

To make the SIR applicable to the case of missing predictors, the main diffi-

culty is to estimate the candidate matrix {Cov(X)}−1Cov{E(X|Y )} for the SIR.

According to Zhu, Wang and Zhu (2012), we need to obtain consistent estimators

of the quantities, E(Xk), E(XkX
T
obs), E(Xk|Y ), E(X2

k), and E(XkXl) (k 6= l),

where Xk (or Xl) denotes the k-th (or l-th) component in Xmis, for k, l =

1, . . . , p
1
. Because there is no need to estimate the mixed moment E(XkXl) (k 6=

l) for p
1

= 1, we focus on the general case p
1
≥ 2. Let V = (XT

obs, Y )T ∈ Rp−p1+1.

The double-expectation theorem yields that E(Xk) = E{E(Xk|V)}, E(XkX
T
obs)

= E{E(Xk|V)XT
obs}, E(Xk|Y ) = E{E(Xk|V)|Y }, E(X2

k) = E{E(X2
k |V)},

and E(XkXl) = E{E(XkXl|V)} (k 6= l). Thus, we need to handle E(Xk|V),

E(X2
k |V), and E(XkXl|V), which poses two challenges:

• how to overcome the curse of dimensionality in the presence of missing

predictors when estimating these conditional expectations; and

• how to obtain consistent estimators of these expectations or conditional

expectations in the presence of missing predictors after the above problem

is solved.

Existing methods fail to solve these two problems. To lessen the effect of high

dimension, Li and Lu (2008) recommended using linear models or other proper

parametric models for these conditional expectations. Then, Zhu, Wang and Zhu

(2012) imposed linear models on E(δkXk|V), E(δk|V), E(δkX
2
k |V), E(δkδlXk

Xl|V), and E(δkδl|V), and constructed the estimators of these conditional expec-

tations based on the equations E(Xk|V) = E(δkXk|V)/E(δk|V), E(X2
k |V) =

E(δkX
2
k |V)/E(δk|V), and E(XkXl|V) = E(δkδlXkXl|V)/E(δkδl|V) indicated

by the MAR assumption (1.1). Both methods might yield inconsistent estima-

tors owing to the misspecification of the involved parametric models. Moreover, it

is almost impossible to specify all of the parametric models correctly, in practice.

We are now in a position to develop nonparametric methods that avoid the

parametric specification of the models, enabling us to resolve the two issues men-

tioned above. Our strategy is to seek a q×r matrix Γ, with r < q = p−p
1
+1, for

each conditional expectation such that Γ satisfies the following: (i) V in the con-

ditional expectation can be replaced by its low-dimensional linear transformation

ΓTV, without changing the conditional expectation, and (ii) the complete-case

(CC) approach that simply removes all subjects with missing values can be used

to obtain consistent estimators of Γ and the corresponding conditional expecta-
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tion; we treat this as an intermediate step in the proposed method. It can be

shown that any existing SDR methods based on a CC analysis can be used to

obtain Γ. Furthermore, a dimension-reduction-based kernel imputation method

is proposed to obtain consistent estimators of the expectations and conditional

expectations in the candidate matrix for the SIR, and thus yield a consistent

estimator of the candidate matrix.

The rest of the paper is organized as follows. In Section 2, we present the

proposed method and our theoretical results. In Section 3, we check the finite-

sample performance of the proposed method using simulated data. In Section 4,

we analyze a real data set for illustration. We then conclude our paper with a

discussion in Section 5. The proofs of the main results are given in the Appendix.

2. Dimension-reduction-based Kernel Imputation for SIR

In this section, we first briefly review the SIR under full data, and then

develop a dimension-reduction-based kernel imputation method for the SIR with

predictors MAR.

2.1. Review

The SIR is the most popular method for estimating SY |X. It relies on a

typically reasonable linearity condition, in which for any basis matrix B of SY |X,

E(X|BTX) is linear in BTX. This condition holds approximately as the di-

mension of X increases, while d remains fixed (Hall and Li (1993)). Under this

condition, Span{Σ−1
X ΣE(X|Y )} ⊆ SY |X, where ΣX = cov(X) ∈ Rp×p, ΣE(X|Y ) =

cov{E(X|Y )} ∈ Rp×p, and Span{A} denotes the column space of a matrix A.

The literature refers to the matrix Σ−1
X ΣE(X|Y ) as a candidate matrix for the

SIR. Li (1991) divided the range of Y into H slices I1, . . . , IH , and provided an

approximation of ΣE(X|Y ) as

Λ =

H∑
h=1

p
h
(m

h
− µ)(m

h
− µ)T , (2.1)

where µ = E(X), p
h

= Pr(Y ∈ Ih), and m
h

= E(X|Y ∈ I
h
), for h = 1, . . . ,H. It

also can be derived that Span{Σ−1
X Λ} ⊆ SY |X.

Given n independent and identically distributed (i.i.d) observations {(X
1
, Y

1
),

. . . , (X
n
, Y

n
)}, by substituting the usual sample estimates of p

h
,m

h
, and µ into

(2.1), the sample version Λ̂ of Λ can be obtained and used as an estimate of

ΣE(X|Y ). Then, the sample estimate of the SIR follows from the spectral decom-

position
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Λ̂β̂j = λ̂jΣ̂Xβ̂j for j = 1, . . . , d,

where Σ̂X is the usual sample estimate of ΣX, and β̂1, . . . , β̂d denote the eigen-

vectors corresponding to the d largest nonzero eigenvalues λ̂1 ≥ · · · ≥ λ̂d > 0 of

the matrix Σ̂−1
X Λ̂. Mainly under the linearity condition and the coverage con-

dition Span{Σ−1
X ΣE(X|Y )} = SY |X, Li (1991) showed that Span{β̂1, . . . , β̂d} is a√

n-consistent estimator of SY |X.

2.2. Extension to the case of missing predictors

When the predictors are MAR, the major difficulty is to develop a consistent

estimating approach for the candidate matrix Σ−1
X ΣE(X|Y ) of the SIR. According

to Zhu, Wang and Zhu (2012), ΣE(X|Y ) = Φ1 − Φ0 and ΣX = Φ2 − Φ0, where

Φ0 = E(X)E(XT ) =

(
E(Xmis)E(XT

mis) E(Xmis)E(XT
obs)

E(Xobs)E(XT
mis) E(Xobs)E(XT

obs)

)
,

Φ1 = E{E(X|Y )E(XT |Y )}

=

(
E{E(Xmis|Y )E(XT

mis|Y )} E{E(Xmis|Y )E(XT
obs|Y )}

E{E(Xobs|Y )E(XT
mis|Y )} E{E(Xobs|Y )E(XT

obs|Y )}

)
,

Φ2 = E(XXT ) =

(
E(XmisX

T
mis) E(XmisX

T
obs)

E(XobsX
T
mis) E(XobsX

T
obs)

)
,

by the partition X = (XT
mis,X

T
obs)

T . To implement the SIR, we need to estimate

the following expectations E(Xobs), E{E(Xobs|Y )E(XT
obs|Y )}, E(XobsX

T
obs), E

{E(Xmis|Y )E(XT
obs|Y )}, E{E(Xmis|Y )E(XT

mis|Y )}, E(Xmis), E(XmisX
T
obs),

and E(XmisX
T
mis). The first three quantities can be estimated using standard

methods because they involve only the completely observed variables (XT
obs, Y )T .

However, the last five quantities involve the missing covariate vector Xmis. Thus,

we need to develop new methods to obtain their consistent estimators. In an

element-wise manner, this problem reduces to estimating E(Xk|Y ), E(Xk), E(Xk

XT
obs), E(X2

k), and E(XkXl) (k 6= l), with Xk (or Xl) denoting the k-th (or l-th)

component in Xmis, for k, l = 1, 2, . . . , p
1
. As discussed in the introduction, es-

timating these expectations essentially reduces to estimating several conditional

expectations, given V = (XT
obs, Y )T .

In particular, we describe how to estimate E(Xk), for k = 1, . . . , p
1
, and note

that the principle of estimating other quantities is similar. Here, we focus on es-

timating E(Xk|V), owing to E(Xk) = E{E(Xk|V)}. A parametric regression

model is most efficient when the dimension of V is small and the relationship
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between Xk and V is correctly specified (Yates (1933); Matloff (1981)). In this

case, we can estimate E(Xk) by n−1
∑n

i=1 m̂(Vi), with m̂(·) being an estimator

of the parametric model m(·) imposed on E(Xk|V). Such an estimator is incon-

sistent if m(·) is misspecified. A nonparametric method also can be employed to

estimate E(Xk|V) without requiring a parametric specification, but it will most

likely suffer from the curse of dimensionality. A natural idea is to replace V in

E(Xk|V) with its low-dimensional transformation Sk(V) : Rq 7→ Rq
∗

(q∗ < q),

such that E(Xk|V) = E{Xk|Sk(V)}. The simplest form of Sk(V) is the linear

transformation ΓTkV, where Γk denotes a q × r
k

matrix with r
k
< q. It then

follows that

E(Xk) = E{E(Xk|ΓTkV)}, (2.2)

E(XkX
T
obs) = E{E(Xk|V)XT

obs} = E{E(Xk|ΓTkV)XT
obs}, (2.3)

E(Xk|Y ) = E{E(Xk|V)|Y } = E{E(Xk|ΓTkV)|Y }. (2.4)

Following this idea, let Υk be a q × r̃
k

matrix and let Γkl (k 6= l) be a q × r
kl

matrix with r̃
k
, r

kl
< q and k, l = 1, . . . , p

1
. Then, we have

E(X2
k) = E{E(X2

k |ΥT
kV)}, (2.5)

E(XkXl) = E{E(XkXl|ΓTklV)} (k 6= l). (2.6)

To estimate the above-mentioned five quantities based on(2.2)–(2.6), we need to

first find suitable Γk,Υk, and Γkl, as well as their sample counterparts, and then

employ kernel smoothing to estimate E(Xk|ΓTkV), E(X2
k |ΥT

kV), and E(XkXl|
ΓTklV) (k 6= l).

As stated in the introduction, obtaining Γk,Υk, and Γkl as an intermediate

step should avoid intensive computations. It is well known that the CC method

is a simple, but useful approach in some cases, although it often yields biased

and inefficient estimators in many other cases. To make the CC method ap-

plicable to constructing consistent estimators of E(Xk|ΓTkV), E(X2
k |ΥT

kV), and

E(XkXl|ΓTklV) (k 6= l) with k, l = 1, 2, . . . , p1, the matrices Γk, Υk, and Γkl
should respectively satisfy

E(Xk|V) = E(Xk|ΓTkV) = E(Xk|ΓTkV, δk = 1), (2.7)

E(X2
k |ΥT

kV) = E(X2
k |ΥT

kV, δk = 1), (2.8)

E(XkXl|ΓklV) = E(XkXl|ΓTklV, δk = 1, δl = 1) (k 6= l). (2.9)

We next describe how to obtain Γk,Υk, and Γkl, for k, l = 1, . . . , p
1
.

(i) Derivation of Γk, for k = 1, . . . , p
1
.

We gain insights from the condition E(Xk|V) = E(Xk|ΓTkV). This makes

the basis matrix of the central mean subspace (CMS; Cook and Li (2002))
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SE(Xk|V) a natural choice for Γk, where SE(Xk|V) is the minimal mean subspace

S satisfying E(Xk|V) = E(Xk|PSV), with PS being a projection operator onto

S in a standard inner product. With such a Γk and the MAR assumption, we

further obtain that

E(Xk|ΓTkV, δk = 1) = E
[
E(Xk|V, δk = 1)

∣∣ΓTkV, δk = 1
]

= E
[
E(Xk|V)

∣∣ΓTkV, δk = 1
]

= E
[
E(Xk|ΓTkV)

∣∣ΓTkV, δk = 1
]

= E(Xk|ΓTkV). (2.10)

This implies that taking Γk as a basis matrix of SE(Xk|V) satisfies condition

(2.7). However, this raises the question of how to obtain a consistent estimator

of a method-specific basis Γk of SE(Xk|V) in the presence of missing predictors.

In this paper, we use the phrase “a method-specific basis” to avoid ambiguity

caused by the non-uniqueness of the basis; at times, we may omit it for simplicity.

SDR methods based on the CC analysis can yield an estimator of the partial

central mean subspace (Li, Cook and Chiaromonte (2003)) S{δk=1}
E(Xk|V), which is the

minimal partial mean subspace S satisfying E(Xk|V, δk = 1) = E(Xk|PSV, δk =

1). Proposition 1 states that a consistent estimator of Γk can be obtained using

S{δk=1}
E(Xk|V).

Proposition 1. Suppose that the MAR assumption (1.1) holds, V has support

Rq, and P (δk = 1|V) > 0, for k = 1, . . . , p
1
. Then, we have SE(Xk|V) = S{δk=1}

E(Xk|V),

for k = 1, . . . , p
1
.

Cook and Li (2002) proposed the iterative Hessian transformation (IHT)

method for estimating the basis of a CMS. By Proposition 1, the IHT method can

be applied to the completely observed dataset {(Xki,Vi) : δki = 1, i = 1, . . . , n}
to obtain a consistent estimator Γ̂k of Γk.

(ii) Derivation of Υk, for k = 1, . . . , p
1
.

Let X̃k = X2
k . Similar arguments to (2.10) can be used to verify that con-

dition (2.8) holds, provided that Υk is taken as a basis matrix of the CMS

SE(X̃k|V). Proposition 2 ensures that we can obtain a consistent estimator of

a method-specific basis Υk using the partial central mean subspace S{δk=1}
E(X̃k|V)

,

where S{δk=1}
E(X̃k|V)

is the minimal partial mean subspace S satisfying E(X̃k|V, δk =

1) = E(X̃k|PSV, δk = 1).

Proposition 2. Assuming the same conditions as those in Proposition 1, we

have SE(X̃k|V) = S{δk=1}
E(X̃k|V)

, for k = 1, . . . , p
1
.
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According to Proposition 2, the IHT method can be applied to the completely

observed dataset {(X̃ki,Vi) : X̃ki = X2
ki, δki = 1, i = 1, . . . , n} to obtain a

consistent estimator Υ̂k of Υk.

(iii) Derivation of Γkl (k 6= l), for k, l = 1, . . . , p
1
.

Observing that Γkl = Γlk, with k 6= l, we consider the case of k < l only.

Let Z(kl) = XkXl, with k < l. When Γkl is taken as a basis matrix of the CMS

SE(Z(kl)|V), together with the MAR assumption, we can show that

E(XkXl|ΓTklV, δk = 1, δl = 1)

= E
[
E(XkXl|V, δk = 1, δl = 1)

∣∣ΓTklV, δk = 1, δl = 1
]

= E
[
E(XkXl|V)

∣∣ΓTklV, δk = 1, δl = 1
]

= E
[
E(XkXl|ΓTklV)

∣∣ΓTklV, δk = 1, δl = 1
]

= E(XkXl|ΓTklV) (k < l).

In other words, Γkl satisfies condition (2.9). Proposition 3 states that a consistent

estimator of a method-specific basis Γkl of SE(Z(kl)|V) can be obtained using the

partial central mean subspace S{δk=1,δl=1}
E(Z(kl)|V)

, which is the minimal partial mean

subspace S satisfying E{Z(kl)|V, δk = 1, δl = 1} = E{Z(kl)|PSV, δk = 1, δl = 1}.

Proposition 3. Assuming the same conditions as those in Proposition 1, we

have SE(Z(kl)|V) = S{δk=1,δl=1}
E(Z(kl)|V)

, for k < l and k, l = 1, . . . , p
1
.

Proposition 3 ensures that the IHT method can be applied to the completely

observed dataset {(Z(kl)
i ,Vi) : Z

(kl)
i = XkiXli, δkiδli = 1, k < l, i = 1, . . . , n} to

obtain a consistent estimator Γ̂kl of Γkl.

2.3. Dimension-reduction-based imputation for SIR (DRI-SIR)

We now employ the kernel method to derive a dimension-reduction-based

imputation estimator of the candidate matrix for the SIR.

Given n i.i.d observations {(Xmis,i, Xobs,i, Yi, δ1i, . . . , δp
1
i)}ni=1, where Xmis,i

= (X1i, . . . , Xp
1
i)
T is subject to missingness, Vi=(XT

obs,i, Yi)
T =(Xp

1
+1,i, . . . , Xpi,

Yi)
T is always observed, and δki = 1 if Xki is observed and δki = 0 other-

wise, for k = 1, . . . , p
1
. For ease of exposition, let Mk(Γ

T
kV) = E(Xk|ΓTkV) =

E(Xk|ΓTkV, δk = 1), Qk(Υ
T
kV) = E(X2

k |ΥT
kV) = E(X2

k |ΥT
kV, δk = 1), and

Rkl(Γ
T
klV) = E(XkXl|ΓTklV) = E(XkXl|ΓTklV, δk = 1, δl = 1) (k 6= l), for

1 ≤ k, l ≤ p
1
. Then, after obtaining the consistent estimators Γ̂k, Υ̂k, and Γ̂kl of

Γk,Υk, and Γkl using the method presented in Subsection 2.2, Mk(Γ
T
kV), Qk(Υ

T
k
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V), and Rkl(Γ
T
klV) can be estimated nonparametrically as

M̂k(Γ̂
T
kV) =

∑n
j=1Kh(Γ̂TkVj − Γ̂TkV)δkjXkj∑n
j=1Kh(Γ̂TkVj − Γ̂TkV)δkj

, (2.11)

Q̂k(Υ̂
T
kV) =

∑n
j=1Kh(Υ̂T

kVj − Υ̂T
kV)δkjX

2
kj∑n

j=1Kh(Υ̂T
kVj − Υ̂T

kV)δkj
, (2.12)

R̂kl(Γ̂
T
klV) =

∑n
j=1Kh(Γ̂TklVj − Γ̂TklV)δkjδljXkjXlj∑n

j=1Kh(Γ̂TklVj − Γ̂TklV)δkjδlj
, (2.13)

where Kh(u) = h−r
∏r
i=1K(ui/h) is a multivariate product kernel function, with

r denoting the dimension of Γ̂TkV, Υ̂
T
kV, or Γ̂TklV, and the bandwidth h might

take different values when it appears in different palaces.

From (2.11) to (2.13), the dimension-reduction-based imputation estimators

Ê(Xk), Ê(X2
k), and Ê(XkXl) (k 6= l) of E(Xk), E(X2

k), and E(XkXl) with

1 ≤ k, l ≤ p
1
, can be respectively expressed as

Ê(Xk) = n−1
n∑
i=1

{δkiXki + (1− δki)M̂k(Γ̂
T
kVi)}, (2.14)

Ê(X2
k) = n−1

n∑
i=1

{δkiX2
ki + (1− δki)Q̂k(Υ̂T

kVi)}, (2.15)

Ê(XkXl) = n−1
n∑
i=1

{δkiδliXkiXli + (1− δkiδli)R̂kl(Γ̂TklVi)}. (2.16)

Based on (2.3), E(XkX
T
obs) can be estimated using

Ê(XkX
T
obs) = n−1

n∑
i=1

{δkiXki + (1− δki)M̂k(Γ̂
T
kVi)}XT

obs,i. (2.17)

Let Tk(Y ) = E(Xk|Y ). Based on (2.4), we can estimate Tk(Y ) using

T̂k(Y ) = n−1
n∑
j=1

Kh(Yj − Y ){δkjXkj + (1− δkj)M̂k(Γ̂
T
kVj)}

f̂(Y )
, (2.18)

where f̂(Y ) = n−1
∑n

j=1Kh(Yj − Y ) is the kernel estimator of the density func-

tion of Y . Consequently, the kl-th element of E{E(Xmis|Y )E(XT
mis|Y )} can be

estimated using n−1
∑n

i=1 T̂k(Yi)T̂l(Yi). In addition, let H(Y ) = E(XT
obs|Y ), with

its kernel estimator given by

Ĥ(Y ) = n−1
n∑
i=1

Kh(Yi − Y )XT
obs,i

f̂(Y )
. (2.19)
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Then, we use n−1
∑n

i=1 T̂k(Yi)Ĥ(Yi) to estimate E{E(Xk|Y )E(XT
obs|Y )}, which

is the k-th raw of E{E(Xmis|Y )E(XT
obs|Y )}.

Finally, by replacing the expectations and conditional expectations in Φ0, Φ1,

and Φ2 with their corresponding estimators, we obtain an estimator of the can-

didate matrix for the SIR, say Σ̂−1
X Σ̂E(X|Y ), where Σ̂X = Φ̂1− Φ̂0 and Σ̂E(X|Y ) =

Φ̂2 − Φ̂0. For ease of exposition, Σ̂−1
X Σ̂E(X|Y ), constructed using our proposed

method, is called the DRI-SIR estimator of Σ−1
X ΣE(X|Y ). Then, the eigenvectors

corresponding to the first d largest nonzero eigenvalues of Σ̂−1
X Σ̂E(X|Y ) form an

estimator of the CS SY |X.

Remark 1. If the dimension of SE(Xk|V),SE(X̃k|V), or SE(Z(kl)|V) (i.e., ΓTkV,

ΥT
kV, or ΓTklV) is greater than three, our method might not perform well. In fact,

existing dimension-reduction techniques only partly solve the high-dimension

problems. In some cases, the dimension might be as small as one, two or three.

However, in other cases, the dimension may be larger than three, but smaller than

the dimension of the predictors, in which case the subsequent statistical inference

can be improved, but might not work well. In fact, it is a common problem that

existing dimension-reduction techniques are limited when the structural dimen-

sion is not small. On the other hand, as illustrated in several studies, the low

structural dimension might be sufficient for many practical problems. For exam-

ple, Cook (1998b) analyzed motor octane data, selecting a structural dimension

of one using his proposed chi-square test. Xia et al. (2002) chose a dimension

of two for Hitter’s salary data using cross-validation. Ma and Zhu (2012) used

bootstrap procedure to determine a dimension of one for employee’s salary data

from the Fifth National Bank of Springfield. Zhu et al. (2011) also noted that,

for the purpose of dimension reduction, the structural dimension is, in general,

assumed to be small, taking values one, two or three.

2.4. Asymptotic properties

In this section, we study the asymptotic behavior of the proposed DRI-

SIR estimator. Let f
0
(·), fk(·), f̃k(·), and fkl(·) respectively denote the density

functions of Y,ΓTkV,Υ
T
kV, and ΓTklV (k 6= l), for k, l = 1, . . . , p

1
. For ease of

interpretation, we also introduce the following notations:

πk(Γ
T
kV) = P (δk = 1|ΓTkV), π̃k(Υ

T
kV) = P (δk = 1|ΥT

kV),

πkl(Γ
T
klV) = P (δkδl = 1|ΓTklV), mk(Γ

T
kV) = E(δkXk|ΓTkV),

qk(Υ
T
kV) = E(δkX

2
k |ΥT

kV), wkl(Γ
T
klV) = E(δkδlXkXl|ΓTklV),
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gk(Γ
T
kV) = πk(Γ

T
kV)fk(Γ

T
kV), Gk(Γ

T
kV) = mk(Γ

T
kV)fk(Γ

T
kV),

ak(Υ
T
kV) = π̃k(Υ

T
kV)f̃k(Υ

T
kV), Ak(Υ

T
kV) = qk(Υ

T
kV)f̃k(Υ

T
kV),

bkl(Γ
T
klV) = πkl(Γ

T
kV)fkl(Γ

T
klV), Bkl(Γ

T
klV) = wkl(Γ

T
kV)fkl(Γ

T
klV),

Sk(Y ) = Tk(Y )f
0
(Y ), W (Y ) = H(Y )f

0
(Y ).

Next,we list a set of regularity conditions to facilitate our technical derivations

of the main results.

Condition 1. The symmetric and continuous kernel function K(·) has sup-

port in the interval [−1, 1]. Moreover, for some positive integer m, the func-

tion satisfies
∫ 1
−1K(u)du = 1,

∫ 1
−1 u

iK(u)du = 0, with 1 ≤ i ≤ m − 1, 0 6=∫ 1
−1 |u|

mK(u)du <∞, and
∫ 1
−1K

2(u)du <∞.

Condition 2. The (m − 1)-th-order derivatives of the functions f
0
(·), fk(·),

f̃k(·), fkl(·), gk(·), Gk(·), ak(·), Ak(·), bkl(·), Bkl(·), Tk(·), Sk(·), H(·), and

W (·) are locally Lipschitz continuous.

Condition 3. The bandwidth h satisfies nh2m → 0, nh2(r
k

+1)/(log n)2 →∞,

nh2(r̃
k

+1)/(log n)2 → ∞, and nh2(r
kl

+1)/(log n)2 → ∞ (k 6= l) as n → ∞ and

h→ 0, for k, l = 1, . . . , p
1
, where r

k
= dim {SE(Xk|V)}, r̃k

= dim {SE(X̃k|V)}, and

r
kl

= dim {SE(Z(kl)|V)}.
Condition 4. f

0
(·), gk(·), ak(·), and bkl(·) have compact supports, and there

exist positive constants c
1
, c

2
, c

3
, and c

4
such that infy f0

(y) ≥ c
1
, infΓT

k V
gk(Γ

T
k

V) ≥ c
2
, infΥT

k V
ak(Υ

T
kV) ≥ c

3
, and infΓT

klV
bkl(Γ

T
klV) ≥ c

4
.

Condition 5. Each entry in XXT has a finite fourth-order moment.

Here, we briefly discuss these conditions. Condition 1 is commonly used in

the literature. Condition 2 presents the smooth properties of density functions

and regression curves. Condition 3 is needed technically for Lemmas B.1–B.3 in

the Appendix to ensure the desired convergence rate. In particular, condition 3

indicates that m ≥ 4 is required in our method to reduce the order of the bias

of the kernel estimators such that the
√
n rate of consistence can be achieved.

Condition 4 is widely used in the literature to avoid the boundary effect of the

related kernel estimators. Condition 5 assumes several finite moments, and is

necessary for asymptotic normality.

Theorem 1. Suppose that the MAR assumption (1.1) and the regularity condi-

tions 1–5 hold, and that the dimensions r
k
, r̃

k
, and r

kl
of the subspaces SE(Xk|V),

SE(X̃k|V), and SE(Z(kl)|V) (k 6= l), respectively are known. Then, we have the

following:

(i)
√
n
{

vec(Σ̂−1
X Σ̂E(X|Y ))− vec(Σ−1

X ΣE(X|Y ))
}

converges in distribution to a

multivariate normal distribution with mean 0 as n → ∞, where “vec” denotes
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an operator that stacks all columns of a matrix to a vector.

(ii) We further assume that the linearity condition and the coverage condition

hold, and that the dimension d of the CS SY |X is known. Let β̂
1
, . . . , β̂

d
denote

the eigenvectors corresponding to the first d nonzero eigenvalues of Σ̂−1
X Σ̂E(X|Y ).

Then, Span{β̂
1
, . . . , β̂

d
} is a

√
n-consistent estimator of SY |X.

When r
k
, r̃

k
, r

kl
, and d are unknown, but their respective consistent estima-

tors r̂
k
, ̂̃r

k
, r̂

kl
, and d̂, are available, that is, r̂

k
→ r

k
, ̂̃r

k
→ r̃

k
, r̂

kl
→ r

kl
, and d̂→ d

in probability, the proposed estimator of SY |X is still
√
n-consistent.

2.5. Estimation of the structural dimension

The structural dimension d of the CS SY |X is, in general, unknown, and thus

needs to be estimated. Here,we employ the modified Bayes information criterion

(BIC), initially developed by (Zhu, Miao and Peng (2006)) and later modified by

Zhu et al. (2010), to estimate the true dimension d of SY |X:

d̂ = arg max
s=1,...,p

{
n

2
×
∑s

i=1{log(λ̂i + 1)− λ̂i}∑p
i=1{log(λ̂i + 1)− λ̂i}

− Cn ×
s(s+ 1)

p

}
, (2.20)

where λ̂1 ≥ · · · ≥ λ̂p ≥ 0 are the eigenvalues of Σ̂−1
X Σ̂E(X|Y ), and Cn is a penalty

constant. Theorem 2 states the consistency of the estimated dimension d̂ in the

presence of missing predictors.

Theorem 2. Suppose that limn→∞Cn/n = 0 and limn→∞Cn = ∞. If the

conditions in Theorem 1 hold, then d̂ converges to d in probability.

The proof of Theorem 2 is similar to that presented by Zhu et al. (2010) and,

hence, is omitted here.

The choice of Cn remains an open problem. Zhu, Miao and Peng (2006)

recommend a practical form Cn = c−1Wn, where c denotes the number of obser-

vations per slice and Wn = alog(n) + bn1/3, for some scalar constants a and b.

In fact, c−1 can be absorbed into a and b. In our simulation studies, we choose

Cn = 6log(n) + 3n1/3 in all of the model settings.

Remark 2. Our proposed method also needs to estimate the generally unknown

dimensions r
k

= dim{SE(Xk|V)}, r̃k
= dim{SE(X̃k|V)}, and r

kl
= dim{SE(Z(kl)|V)}

(k 6= l), for k, l = 1, . . . , p
1
. Their respective consistent estimators, r̂

k
, ̂̃r

k
, and r̂

kl

can be obtained by solving similar minimization problems to that given in (2.20).

The major change is that we substitute λ̂i in (2.20) with the eigenvalues of the

estimated candidate matrices for the corresponding subspaces SE(Xk|V),SE(X̃k|V),

and SE(Z(kl)|V).
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3. Simulation Studies

In this section, we check the finite-sample performance of the proposed DRI-

SIR estimator. In our simulations, we also compare the results with those of five

other estimations:

• Full-SIR Without missingness, the SIR is applied to all n observations.

• CC-SIR The subjects with missing values are removed, and the SIR is ap-

plied to the remaining completely observed data.

• AIPW-SIR in Li and Lu (2008) Only one missingness indicator δ is in-

troduced; δ = 1 if there is no missingness for all of the predictors, and 0

otherwise.

• MAIPW-SIR in Li and Lu (2008) Here, p
1

missingness indicators (δ1, . . . , δp
1
)

are introduced; δk = 1 if there is no missingness for the k-th component Xk

of Xmis, and 0 otherwise, for k = 1, . . . , p
1
.

• PI-SIR in Zhu, Wang and Zhu (2012).

(i) Evaluation Criteria.

We assess the performance of the above estimators from two aspects. First,

assuming that the structural dimension d of SY |X is known, we use the trace

correlation coefficient (TCC; Hooper (1959)) to measure the closeness between

the estimated subspace and the true subspace. Let Bp×d be the true basis matrix

of SY |X. For an estimator B̂ of B, the TCC is defined as the positive square root

of r2 = d−1
∑d

i=1 φ
2
i , where 1 ≥ φ2

1 ≥ φ2
2 ≥ · · ·φ2

d ≥ 0 are the eigenvalues of the

matrix B̂T
0 (B0B

T
0 )B̂0, with B̂0 and B0 denoting the orthonormalized versions

of B̂ and B, respectively. A TCC closer to one indicates a better estimate of

the CS. Second, assuming d is unknown, we report the empirical distribution (in

percentages) of the estimated dimension d̂ to evaluate the efficacy of the various

methods in determining the structural dimension.

(ii) Simulation Settings.

The simulations for each model are repeated 500 times, where each sample

is of size n = 400. We set the slice number to H = 10, as required for the Full-

SIR, CC-SIR, AIPW-SIR, and MAIPW-SIR. For the PI-SIR and the proposed

DRI-SIR, which involve kernel smoothing, we use a multivariate product kernel

Kh(u) = h−r
∏r
i=1K(ui/h), where K(u) = (2π)−1/2 exp(−u2/2) and r is the

dimension of the kernel. Because the kernel method for a global estimator is
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insensitive to the choice of bandwidth (Wang and Rao (2002)), we simply choose

the classical bandwidth h ∝ n−1/(4+r).

For comparison purposes, we consider the following three models:

Y = (βT
1
X)(βT

1
X + βT

2
X + 3) + 0.5ε, (3.1)

Y =
βT

1
X

(βT
2
X + 1.5)2 + 0.5

+ 0.5ε, (3.2)

Y = 0.5βT
1
X + (βT

2
X + 2)ε, (3.3)

where X = (X1, . . . , Xp)
T follows a multivariate normal distribution, with mean

0 and covariance 0.3|k−l| between Xk and Xl, with 1 ≤ k, l ≤ p, and ε follows

a standard normal distribution and is independent of X. The predictor effects

exist only in the conditional mean of Y |X for models (3.1)–(3.2), but also appear

in the conditional variance of model (3.3). We set p = 15, p
1

= 3, 5, and 10 (the

dimension of the missing predictors), β
1

= (0.5 × 1p
1
−1,0p−p

1
−2, 0.5,−1,−1)T ,

and β
2

= (0p
1
−1, 0.5,−0.5,−0.5, 0.5, 0.5, 0.5,0p−p

1
−5)T , where 1s and 0s are 1×s

vectors with all elements being one and zero respectively. For the three models,

the CS SY |X = Span{β
1
, β

2
} and, thus, the true structural dimension is d = 2.

In addition to the logistic linear missingness mechanism,

P (δk = 1|V) =
exp(c

0
+ γT

0
V)

1 + exp(c
0

+ γT
0
V)

k = 1, . . . , p
1
, (3.4)

we also consider the logistic quadratic missingness mechanism,

P (δk = 1|V) =
exp(c

0
+ (γT

1
V)2 + γT

2
V)

1 + exp(c
0

+ (γT
1
V)2 + γT

2
V)

k = 1, . . . , p
1
, (3.5)

where V = (Xp
1
+1, . . . , Xp, Y )T is always observed, and c

0
is a scalar constant

to control the missing proportion. Here, the same form of model (3.4) or (3.5)

is used for P (δk = 1|V) with different k, which does not affect the performance

evaluation of the proposed method. To investigate the effect of different missing

proportions on the efficacy of the various methods, we take three values of c
0

for

each case to control the corresponding missing proportions around 20%, 35%,

and 50%. We set γ
0

= (−1,−1,−1, 0, . . . , 0, 0.5, 0.5, 0.25)T with q − 6 zeros,

γ
1

= (0.5, 0, . . . , 0,−1, 0.25)T with q − 3 zeros, and γ
2

= (0, 1, . . . , 1, 0, 0)T with

q − 3 ones.

As discussed in the introduction, it is necessary to assume parametric models

when implementing the AIPW-SIR, MAIPW-SIR, or PI-SIR. From a theoretical

point of view , we should evaluate the performance of these three methods for two

cases, where all or some of the required parametric models are specified correctly.
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Table 1. Comparison of the median TCC of the SDR estimations for model (3.1) under
the missingness mechanism in (3.4), with different p

1
and missing proportions (mp).

p
1

C0 mp Full-SIR DRI-SIR CC-SIR AIPW-SIR MAIPW-SIR PI-SIR

3
1.7 20.54% 0.9518 0.9470 0.8935 0.9311 0.9381 0.7473
0.4 35.49% 0.9518 0.9375 0.8102 0.9063 0.9145 0.6943
−0.7 50.03% 0.9530 0.9242 0.6731 0.8372 0.7979 0.7354

5
1.6 20.84% 0.9477 0.9378 0.8301 0.9007 0.9186 0.6446
0.3 35.33% 0.9480 0.9266 0.6919 0.8337 0.8428 0.6192
−0.9 50.62% 0.9480 0.9058 0.5592 0.6416 0.6570 0.6119

10
1.5 20.63% 0.9476 0.9316 0.7258 0.8201 0.8906 0.5314
0.2 34.96% 0.9484 0.9034 0.5770 0.5915 0.6833 0.6133
−1 50.27% 0.9476 0.8380 0.5077 0.4978 0.4808 0.6381

However, it is nontrivial to specify parametric models correctly for all of the

quantities, including E(Xk|V), E(X2
k |V), E(XkXl|V), and P (δk = 1|V) for the

AIPW-SIR and MAIPW-SIR, and P (δk = 1|V), E(δkXk|V), E(δkX
2
k |V), E(δk

δlXkXl|V), and E(δkδl|V) for the PI-SIR. Existing studies consider only the

case in which the missingness mechanism is specified correctly, without regard

for the correctness of other involved parametric models. Thus, we conduct our

comparisons under two special cases, where P (δk = 1|V), for k = 1, . . . , p
1
,

are specified correctly and incorrectly, respectively. Specifically, regardless of

whether the missingness mechanism in (3.4) or (3.5) holds, we always use a

logistic linear form of the missingness mechanism when implementing the AIPW-

SIR, MAIPW-SIR and PI-SIR. Then, it corresponds to a correct specification of

the missingness mechanism if the missingness mechanism (3.4) is true, and a

misspecification of the missingness mechanism otherwise.

(iii) Simulation Results.

Tables 1–2 give the simulation results under model (3.1) with the missingness

mechanism (3.4).

Table 1 reports the median TCCs between the true subspace and the esti-

mated subspace for each method, with different p
1

and three missing proportions,

in 500 replications. Here, the missingness mechanism is specified correctly. First,

in most situations, the proposed DRI-SIR performs uniformly better than the

CC-SIR, AIPW-SIR, MAIPW-SIR, and PI-SIR do, and even shows comparable

performance to that of the Full-SIR under small missing proportions. Second,

as the missing proportion increases, the CC-SIR, AIPW-SIR, MAIPW-SIR, and

PI-SIR perform increasingly poorly, but our method is relatively robust. Third,

even though the missing proportion exceeds 50%, the DRI-SIR still performs



1766 YANG AND WANG

Table 2. Distribution (in percentages) of the estimated structural dimension for model
(3.1) under the missingness mechanism in (3.4), with different p

1
and missing proportions

(mp).

p1 Method d̂ 1 2 > 2 1 2 > 2 1 2 > 2
mp=20.54% mp=35.49% mp=50.03%

3

Full-SIR 0.0020 0.9980 0.0000 0.0020 0.9980 0.0000 0.0040 0.9960 0.0000
DRI-SIR 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.9980 0.0020
CC-SIR 0.2180 0.7820 0.0000 0.6720 0.3280 0.0000 0.9780 0.0220 0.0000
AIPW-SIR 0.0080 0.9760 0.0160 0.0140 0.9360 0.0500 0.0280 0.8120 0.1600
MAIPW-SIR 0.0060 0.9900 0.0040 0.0200 0.9280 0.0520 0.0580 0.7540 0.1880
PI-SIR 0.1700 0.6620 0.1680 0.1200 0.5920 0.2880 0.0880 0.5880 0.3240

mp=20.84% mp=35.33% mp=50.62%

5

Full-SIR 0.0000 1.0000 0.0000 0.0020 0.9980 0.0000 0.0020 0.9980 0.0000
DRI-SIR 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.9940 0.0060
CC-SIR 0.4860 0.5140 0.0000 0.9240 0.0760 0.0000 0.9960 0.0040 0.0000
AIPW-SIR 0.0100 0.9500 0.0400 0.0320 0.8580 0.1100 0.1060 0.6360 0.2580
MAIPW-SIR 0.0100 0.9620 0.0280 0.0240 0.8220 0.1540 0.0760 0.5240 0.4000
PI-SIR 0.2780 0.4660 0.2560 0.1980 0.4780 0.3240 0.1740 0.4680 0.3580

mp=20.63% mp=34.96% mp=50.27%

10

Full-SIR 0.0000 1.0000 0.0000 0.0040 0.9960 0.0000 0.0000 1.0000 0.0000
DRI-SIR 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0060 0.9060 0.0880
CC-SIR 0.8980 0.1020 0.0000 0.9920 0.0080 0.0000 1.0000 0.0000 0.0000
AIPW-SIR 0.0260 0.9100 0.0640 0.3060 0.5020 0.1920 0.2200 0.5240 0.2560
MAIPW-SIR 0.0120 0.9520 0.0360 0.0320 0.7120 0.2560 0.1060 0.4180 0.4760
PI-SIR 0.2420 0.5280 0.2300 0.2020 0.5680 0.2300 0.1780 0.6040 0.2180

well, especially with the low-dimensional missing predictors, whereas the CC-

SIR, AIPW-SIR, MAIPW-SIR and PI-SIR, perform quite poorly.

Table 2 reports the empirical distribution of the estimated dimension d̂ for

each method, with different p
1

and three missing proportions, over 500 repli-

cations. In nearly all cases, the proposed DRI-SIR selects the true structural

dimension with a probability much close to one, clearly outperforming the other

methods. In fact, d̂ obtained using the modified BIC in (2.20) is determined by

both the penalty constant Cn and the eigenvalues of the estimated candidate ma-

trix. Our finite simulation studies also reveal that a well-chosen Cn may result in

the performance of d̂ coinciding well with that of the estimated candidate matrix

for SY |X. However, as noted in Section 2.5, the choice of Cn requires further

research.

The simulation results under model (3.1) with the missingness mechanism

in (3.5) are given in Tables 3–4. In this case, the missingness mechanism is

misspecified for the AIPW-SIR, MAIPW-SIR, and PI-SIR. The proposed DRI-

SIR performs uniformly better than the CC-SIR, AIPW-SIR, MAIPW-SIR, and
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Table 3. Comparison of the median TCC of the SDR estimations for model (3.1) under
the missingness mechanism in (3.5), with different p

1
and missing proportions (mp).

p
1

C0 mp Full-SIR DRI-SIR CC-SIR AIPW-SIR MAIPW-SIR PI-SIR

3
1.5 20.06% 0.9532 0.9524 0.9180 0.9008 0.9270 0.6730
−0.9 35.18% 0.9535 0.9454 0.8802 0.8172 0.8784 0.6274
−3.3 50.74% 0.9542 0.9355 0.8304 0.7160 0.7832 0.6334

5
1.3 19.86% 0.9483 0.9434 0.8966 0.8573 0.9091 0.6319
−1.1 35.41% 0.9480 0.9387 0.8430 0.7158 0.8420 0.5485
−3.3 50.42% 0.9480 0.9255 0.7858 0.5996 0.6890 0.5057

10
0.1 20.56% 0.9490 0.9406 0.8621 0.8195 0.9220 0.9014
−1.6 35.03% 0.9465 0.9272 0.8251 0.7307 0.8789 0.8140
−3.4 49.84% 0.9465 0.9068 0.7778 0.4410 0.8000 0.6159

Table 4. Distribution (in percentages) of the estimated structural dimension for model
(3.1) under the missingness mechanism in (3.5), with different p

1
and missing proportions

(mp).

p1 Method d̂ 1 2 > 2 1 2 > 2 1 2 > 2
mp=20.06% mp=35.18% mp=50.74%

3

Full-SIR 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
DRI-SIR 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
CC-SIR 0.1180 0.8820 0.0000 0.3200 0.6800 0.0000 0.7140 0.2860 0.0000
AIPW-SIR 0.0400 0.8020 0.1580 0.0700 0.7180 0.2120 0.0620 0.6480 0.2900
MAIPW-SIR 0.0200 0.8960 0.0840 0.0460 0.7840 0.1700 0.0500 0.6800 0.2700
PI-SIR 0.1780 0.5840 0.2380 0.2300 0.4760 0.2940 0.1340 0.4620 0.4040

mp=19.86% mp=35.41% mp=50.42%

5

Full-SIR 0.0000 1.0000 0.0000 0.0020 0.9980 0.0000 0.0020 0.9980 0.0000
DRI-SIR 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
CC-SIR 0.1360 0.8640 0.0000 0.4440 0.5560 0.0000 0.8000 0.2000 0.0000
AIPW-SIR 0.0580 0.7280 0.2140 0.0740 0.6600 0.2660 0.1000 0.5280 0.3720
MAIPW-SIR 0.0180 0.8960 0.0860 0.0320 0.7720 0.1960 0.0620 0.6000 0.3380
PI-SIR 0.2820 0.5260 0.1920 0.2780 0.5100 0.2120 0.2740 0.4900 0.2360

mp=20.56% mp=35.03% mp=49.84%

10

Full-SIR 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000
DRI-SIR 0.0000 1.0000 0.0000 0.0020 0.9980 0.0000 0.0000 0.9880 0.0120
CC-SIR 0.0460 0.9540 0.0000 0.1760 0.8240 0.0000 0.4920 0.5080 0.0000
AIPW-SIR 0.0140 0.8700 0.1160 0.0360 0.7860 0.1780 0.1500 0.5220 0.3280
MAIPW-SIR 0.0000 0.9800 0.0200 0.0000 0.9560 0.0440 0.0140 0.8660 0.1200
PI-SIR 0.0700 0.9180 0.0120 0.2460 0.7340 0.0200 0.4920 0.4400 0.0680

PI-SIR in all simulation settings. In particular, the AIPW-SIR, MAIPW-SIR,

and PI-SIR even perform worse than the CC-SIR in most cases.

The simulation results under models (3.2)–(3.3) with the missingness mecha-

nisms in (3.4)–(3.5), given in Tables 5–12 of the supplementary material, indicate

similar features to those of Tables 1-4. The results reinforce the general quanti-
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tative patterns observed in Tables 1-4, and show the superiority of our proposed

DRI-SIR over other methods.

4. Real-Data Analysis

Here, We apply the proposed method to an automobile data set, which is

available from the Machine Learning Repository at the University of California-

Irvine (http://mlr.cs.umass.edu/ml/datasets/Automobile). Our primary

goal is to describe the relationship between the car price and a set of car at-

tributes. We choose 14 features with continuous values as predictors, including

normalized losses, wheelbase, length, width, height, curb-weight, engine size,

bore, stroke, compression ratio, horsepower, peak-rpm, city-mpg, and highway-

mpg. The response Y is the logarithm of the car price. The original data set

consists of 205 sample points. For simplicity, we first remove four sample points

with missing responses. For bore and stroke, four sample points contain miss-

ing values, and for horsepower and peak-rpm, two sample points have missing

values. Because the number of sample points with missing values in these four

predictors is very small relative to the sample size, we simply delete these six

points. Among the remaining 195 observations, 35 observations have missing

values in the predictor “normalized losses.” To eliminate the influence of the

scale, we standardize each predictor. In particular, for the missing predictor

“normalized losses,” standardization is only implemented for the 160 completely

observed data points.

The structural dimension of SY |X is chosen as one, from (2.20). Using our

proposed method, the first dimension-reduction direction is estimated as

β̂DRI−SIR = (0.0598,−0.1448, 0.2465,−0.2284,−0.0745, 0.5577,−0.0483,

0.0229, 0.1325,−0.1851,−0.5381,−0.0739, 0.3152,−0.3112)T .

Figure 1 shows a scatterplot of the log price versus the estimated linear com-

bination of the standardized predictors using only the 160 completely observed

data points. The figure shows a significant linear trend. This indicates that

our method not only reduces the dimension of the predictors effectively, but also

provides a reference for modeling the parametric structure of a regression of Y

on the linear combination of the standardized predictors.

5. Concluding Remarks

It is a common practice to develop imputation or inverse probability-weighted

http://mlr.cs.umass.edu/ml/datasets/Automobile
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− − − −

−

Figure 1. Sufficient summary plot for the log price versus the first linear combination of
the standardized predictors based on the DRI-SIR.

methods such that the standard statistical methods for full data can be applied

to the case of missing data. Our proposed method belongs to the former group.

Future research interests in the SDR field might only need to focus on SDR meth-

ods for full data, because when they satisfy certain conditions, these methods can

always be applied to the case of missing predictors with the aid of our proposed

imputation procedure.

Our proposed method possesses typical nonparametric properties. It is quite

different to existing semiparametric methods, such as the AIPW-SIR (Li and Lu

(2008)) and PI-SIR (Zhu, Wang and Zhu (2012)), which assume parametric mod-

els and, hence, are difficult to apply in some practical problems. In particular,

we describe the differences between the proposed DRI-SIR and the methods of

Zhu, Wang and Zhu (2012), who consider the problem of the SDR with missing

predictors under two types of missingness mechanisms. First, they assume all

predictors are MAR, or equivalently, δ |= X | Y . They consider this special

case to avoid the curse of dimensionality. We take the estimation of E(Xk) as an

example to illustrate this point. They construct the estimator of E(Xk) based on

E(Xk) = E{E(Xk|Y )} = E{E(Xk|Y, δk = 1)} which is derived from this type of

missingness mechanism. They also consider the same MAR assumption as that in
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(1.1) in our paper. However, their proposed PI-SIR imposes parametric models

on E(δkXk|V), E(δk|V), E(δkX
2
k |V), E(δkδlXkXl|V), and E(δkδl|V) to avoid

the curse of dimensionality. It is very difficult to specify all parametric mod-

els correctly; hence the PI-SIR runs a significant risk of misspecified parametric

models. In contrast, our proposed method not only avoids assuming parametric

models, but also overcomes the curse of dimensionality. This is the main reason

why the numerical performance of our method is uniformly better than that of

the other methods.

The proposed method can be applied in broader contexts. As pointed out by

an anonymous referee, a direct extension of our work would be to estimate a gen-

eral class of conditional expectations, where the variables treated as responses are

MAR and the given variables are high-dimensional. The estimation of mean func-

tionals with missing responses Cheng (1994) is the most typical example. Another

important extension would be to apply all spectral-decomposition-based SDR

methods to the case of predictors MAR using the proposed dimension-reduction

imputation procedure. Part S1 in the supplementary material demonstrates how

to extend our method to the SAVE and PHD. In addition, the proposed method

works when Y is discrete or categorical. We describe the details and conduct a

simulation study with a discrete response in Part S2 of the supplementary mate-

rial. These extensions would greatly expand the scope of the applicability of our

method.

Supplementary Materials

The supplementary material is available online. It contains two extensions

of our proposed method, the simulation results under models (3.2)–(3.3) and

technical proofs for Lemmas B.1–B.3 in the Appendix.
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Appendix A: Proof of Proposition 1.

First, we show that S{δk=1}
E(Xk|V) ⊆ SE(Xk|V), for k = 1, . . . , p

1
. Suppose that A

is a basis matrix of SE(Xk|V), that is, E(Xk|V) = E(Xk|ATV). Under the MAR

assumption, E(Xk|V, δk = 1) = E(Xk|V). Then, we have E(Xk|V, δk = 1) =

E(Xk|ATV), which implies that

E(Xk|ATV, δk = 1) = E{E(Xk|V, δk = 1)|ATV, δk = 1}
= E{E(Xk|ATV)|ATV, δk = 1}
= E(Xk|ATV)

= E(Xk|V, δk = 1).

It follows that SE(Xk|V) is also a partial mean dimension-reduction subspace

for the regression of Xk on V under the condition δk = 1. Then, S{δk=1}
E(Xk|V) ⊆

SE(Xk|V), because S{δk=1}
E(Xk|V) is the minimal partial mean dimension-reduction

subspace of Xk on V, given δk = 1.

Second, we prove S{δk=1}
E(Xk|V) ⊇ SE(Xk|V) in a similar way. Assume that A is a

basis matrix of S{δk=1}
E(Xk|V). Then, we have E(Xk|V, δk = 1) = E(Xk|ATV, δk = 1).

Together with the MAR assumption, we have E(Xk|V) = E(Xk|ATV, δk = 1),

which indicates that

E(Xk|ATV) = E{E(Xk|V)|ATV}
= E{E(Xk|ATV, δk = 1)|ATV}
= E(Xk|ATV, δk = 1)

= E(Xk|V).

It follows that S{δk=1}
E(Xk|V) is also a mean dimension-reduction subspace for the

regression of Xk on V. Then, S{δk=1}
E(Xk|V) ⊇ SE(Xk|V), because SE(Xk|V) is the

minimal mean dimension-reduction subspace of Xk on V. This completes the

proof of Proposition 1.

Because the technical proofs of Proposition 2–3 are almost similar to that of

Proposition 1, we omit the details here.

Appendix B: Proof of Theorem 1

We begin with three lemmas to facilitate the proof of Theorem 1. All tech-

nical proofs for these lemmas are provided in the supplementary material. Note

that the notation used here is defined in Section 2.

Lemma B.1. Suppose that conditions 1–4 hold. Then, for the case 1 ≤ k, l ≤ p
1
,
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we have the following results:

(i) Ê(Xk)− E(Xk) =
1

n

n∑
i=1

J1(Xki, δki,Γ
T
kVi) + op(n

−1/2).

(ii) Ê(X2
k)− E(X2

k) =
1

n

n∑
i=1

J2(Xki, δki,Υ
T
kVi) + op(n

−1/2).

(iii) Ê(XkXl)− E(XkXl) =
1

n

n∑
i=1

J3(Xki, Xli, δki, δli,Γ
T
klVi) + op(n

−1/2), (k 6= l).

(iv) Ê(XkX
T
obs)− E(XkX

T
obs) =

1

n

n∑
i=1

J4(Xki,Xobs,i, δki,Γ
T
kVi) + op(n

−1/2).

where Ê(Xk) , Ê(X2
k) , Ê(XkXl), and Ê(XkX

T
obs) are defined in (2.14)–

(2.17), respectively, and

J1(Xki, δki,Γ
T
kVi) = Mk(Γ

T
kVi) +

δki
πk(Γ

T
kVi)

{Xki −Mk(Γ
T
kVi)} − E(Xk),

J2(Xki, δki,Υ
T
kVi) = Qk(Υ

T
kVi) +

δki
π̃k(Υ

T
kVi)

{X2
ki −Qk(ΥT

kVi)} − E(X2
k),

J3(Xki, Xli, δki, δli,Γ
T
klVi) = Rkl(Γ

T
klVi) +

δkiδli
πkl(Γ

T
klVi)

{XkiXli −Rkl(ΓTklVi)}

− E(XkXl),

J4(Xki,Xobs,i, δki,Γ
T
kVi) =

{
δkiXki + (1− δki)Mk(Γ

T
kVi)

}
XT
obs,i − E(XkX

T
obs)

+
δki

πk(Γ
T
kVi)

{Xki−Mk(Γ
T
kVi)}E[(1−δk)XT

obs|ΓTkVi],

with Mk(·) , Qk(·) , Rkl(·) , πk(·) , π̃k(·), and πkl(·) defined in Subsections 2.3–2.4.

Lemma B.2. Suppose that conditions 1–4 hold. Then, for the case 1 ≤ k, l ≤ p
1
,

we have the following results:

(i)
1

n

n∑
i=1

T̂k(Yi)T̂l(Yi)− E{E(Xk|Y )E(Xl|Y )}

=
1

n

n∑
i=1

J5(Xki, Xli, δki, δli, Yi,Γ
T
kVi,Γ

T
l Vi) + op(n

−1/2),

(ii)
1

n

n∑
i=1

T̂k(Yi)Ĥ(Yi)− E{E(Xk|Y )E(XT
obs|Y )}

=
1

n

n∑
i=1

J6(Xki, δki,Xobs,i, Yi,Γ
T
kVi) + op(n

−1/2),
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where T̂k(·) and Ĥ(·) are defined in (2.18) and (2.19), respectively, and

J5(Xki, Xli, δki, δli, Yi,Γ
T
kVi,Γ

T
l Vi)

=
{
δkiXki + (1− δki)Mk(Γ

T
kVi)

}
Tl(Yi) +

{
δliXli + (1− δli)Ml(Γ

T
l Vi)

}
Tk(Yi)

+ E
{[
δkXk + (1− δk)Mk(Γ

T
kV)

]∣∣∣Y = Yi

}
Tl(Yi)

+ E
{[
δlXl + (1− δl)Ml(Γ

T
l V)

]∣∣∣Y = Yi

}
Tk(Yi)

+
δki
[
Xki −Mk(Γ

T
kVi)

]
πk(Γ

T
kVi)

E
[
(1− δk)Tl(Y )

∣∣ΓTkV = ΓTkVi

]
+
δli
[
Xli −Ml(Γ

T
l Vi)

]
πl(Γ

T
l Vi)

E
[
(1− δl)Tk(Y )

∣∣ΓTl V = ΓTl Vi

]
− E

{[
δkXk+(1−δk)Mk(Γ

T
kV)

]
Tl(Y )

}
−E

{[
δlXl+(1−δl)Ml(Γ

T
l V)

]
Tk(Y )

}
+ E

{
Tk(Y )Tl(Y )

}
− 3Tk(Yi)Tl(Yi) + op(n

−1/2),

J6(Xki, δki,Xobs,i, Yi,Γ
T
kVi)

=
{
δkiXki + (1− δki)Mk(Γ

T
kVi)

}
H(Yi) + Tk(Yi)X

T
obs,i − 2E

[
Tk(Y )H(Y )

]
,

with Tk(·) ,Mk(·), and H(·) defined in Subsection 2.2.

Lemma B.3. Suppose that conditions 1–4 hold. Then, we have

1

n

n∑
i=1

Ĥ(Yi)
T Ĥ(Yi)−E{E(Xobs|Y E(XT

obs|Y )} =
1

n

n∑
i=1

J7(Xobs,i, Yi)+op(n
−1/2),

where J7(Xobs,i, Yi) = Xobs,iH(Yi) +H(Yi)
TXT

obs,i − 2E[H(Y )TH(Y )].

Remark B.1. Lemmas B.1–B.2 only consider the nontrivial cases. For the case

of p
1

+ 1 ≤ k, l ≤ p, both Ê(Xk) and Ê(XkXl) are the usual sample estimates

such that each is naturally a sum of i.i.d random variables.

Proof of Theorem 1. Observe that

Σ̂−1
X Σ̂E(X|Y ) − Σ−1

X ΣE(X|Y )

= Σ−1
X (ΣX − Σ̂X)Σ̂−1

X (Σ̂E(X|Y ) − ΣE(X|Y )) + Σ−1
X (ΣX − Σ̂X)Σ̂−1

X ΣE(X|Y )

+ Σ−1
X (Σ̂E(X|Y ) − ΣE(X|Y )). (B.1)

To prove the asymptotic normality of
√
n
{

vec(Σ̂−1
X Σ̂E(X|Y ))−vec(Σ−1

X ΣE(X|Y ))
}

,

it suffices to prove that both Σ̂X − ΣX and Σ̂E(X|Y ) − ΣE(X|Y ) can be asymp-

totically represented as sums of i.i.d random variables. Clearly, we only need

to deal with the kl-th element of these two matrices. It is easy to show that

the kl-th elements of the matrices Σ̂X −ΣX and Σ̂E(X|Y ) −ΣE(X|Y ), denoted by(
Σ̂X − ΣX

)
kl

and
(
Σ̂E(X|Y ) − ΣE(X|Y )

)
kl

, respectively, with 1 ≤ k, l ≤ p can be
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written as(
Σ̂X − ΣX

)
kl

= Ê(XkXl)− E(XkXl)− {Ê(Xk)Ê(Xl)− E(Xk)E(Xl)}

= Ê(XkXl)− E(XkXl)− {Ê(Xk)− E(Xk)}E(Xl)− {Ê(Xl)− E(Xl)}E(Xk)

− {Ê(Xk)− E(Xk)}{Ê(Xl)− E(Xl)}, (B.2)

and(
Σ̂E(X|Y ) − ΣE(X|Y )

)
kl

= Ê
{
Ê(Xk|Y )Ê(Xl|Y )

}
−E

{
E(Xk|Y )E(Xl|Y )

}
−{Ê(Xk)Ê(Xl)−E(Xk)E(Xl)}

= Ê
{
Ê(Xk|Y )Ê(Xl|Y )

}
− E

{
E(Xk|Y )E(Xl|Y )

}
− {Ê(Xk)− E(Xk)}E(Xl)

− {Ê(Xl)− E(Xl)}E(Xk)− {Ê(Xk)− E(Xk)}{Ê(Xl)− E(Xl)}, (B.3)

where Ê(Xk), Ê(XkXl) and Ê
{
Ê(Xk|Y )Ê(Xl|Y )

}
denote the estimates of E(Xk),

E(XkXl) and E{E(Xk|Y )E(Xl|Y )}, respectively. It then suffices to prove that

Ê(Xk)−E(Xk) , Ê(XkXl)−E(XkXl) and Ê
{
Ê(Xk|Y )Ê(Xl|Y )

}
−E

{
E(Xk|Y )

E(Xl|Y )
}

can be asymptotically represented as sums of i.i.d random variables.

These are presented in Lemmas B.1 – B.2 for the case of 1 ≤ k, l ≤ p
1
, and in

Lemma B.3 and Remark B.1 for the case of p
1

+ 1 ≤ k, l ≤ p.
Next, we show details for the asymptotic representations of Σ̂X − ΣX and

Σ̂E(X|Y ) − ΣE(X|Y ). Let

Σ̂X − ΣX := n−1
n∑
i=1

A(i) + op(n
−1/2), (B.4)

where the block matrix

A(i) =

(
A

(i)
1 A

(i)
2

A
(i)
2

T
A

(i)
3

)
p×p

corresponds to the partition X = (XT
mis,X

T
obs)

T , with A
(i)
1 , A

(i)
2 , and A

(i)
3 denoting

p
1
× p

1
, p

1
× (p − p

1
), and (p − p

1
) × (p − p

1
) matrices, respectively. By (B.2)

and Lemma B.1 (i)–(iii), the kl-th element a
(i)
1kl of the sub-matrix A

(i)
1 can be

expressed as

a
(i)
1kl = J3(Xki, Xli, δki, δli,Γ

T
klVi)− J1(Xki, δki,Γ

T
kVi)E(Xl)

− J1(Xli, δli,Γ
T
l Vi)E(Xk) for 1 ≤ k 6= l ≤ p

1

and

a
(i)
1kk = J2(Xki, δki,Υ

T
kVi)− 2J1(Xki, δki,Γ

T
kVi)E(Xk) for 1 ≤ k ≤ p

1
.
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By (B.2), Lemma B.1 (iv), and Remark B.1, the k-th raw a
(i)
2k of the sub-matrix

A
(i)
2 can be expressed as

a
(i)
2k = J4(Xki,Xobs,i, δki,Γ

T
kVi)

− J1(Xki, δki,Γ
T
kVi)E(XT

obs)− [Xobs,i − E(Xobs)]
TE(Xk).

In addition, the sub-matrix A
(i)
3 only involves the completely observed data and,

hence, can be expressed as

A
(i)
3 = Xobs,iX

T
obs,i −Xobs,iE(XT

obs)

− E(Xobs)X
T
obs,i − E(XobsX

T
obs) + 2E(Xobs)E(XT

obs).

Similarly, we write

Σ̂E(X|Y ) − ΣE(X|Y ) := n−1
n∑
i=1

B(i) + op(n
−1/2), (B.5)

where the block matrix

B(i) =

(
B

(i)
1 B

(i)
2

B
(i)
2

T
B

(i)
3

)
p×p

corresponds to the partition X = (XT
mis,X

T
obs)

T , with B
(i)
1 , B

(i)
2 , and B

(i)
3 denot-

ing p
1
× p

1
, p

1
× (p− p

1
), and (p− p

1
)× (p− p

1
) matrices, respectively. By (B.3),

Lemma B.1 (i), and Lemma B.2 (i), the kl-th element b
(i)
1kl of the sub-matrix B

(i)
1

can be expressed as

b
(i)
1kl = J5(Xki, Xli, δki, δli, Yi,Γ

T
kVi,Γ

T
l Vi)− J1(Xki, δki,Γ

T
kVi)E(Xl)

− J1(Xli, δli,Γ
T
l Vi)E(Xk).

By (B.3), Lemma B.2 (ii), and Remark A, the k-th raw b
(i)
2k of the sub-matrix

B
(i)
2 can be expressed as

b
(i)
2k = J6(Xki, δki,Xobs,i, Yi,Γ

T
kVi)− J1(Xki, δki,Γ

T
kVi)E(XT

obs)

− [Xobs,i − E(Xobs)]
TE(Xk).

In addition, (B.3) and Lemma B.3 jointly yield that

B
(i)
3 = J7(Xobs,i, Yi)−Xobs,iE(XT

obs)− E(Xobs)X
T
obs,i + 2E(Xobs)E(XT

obs).

Finally, from (B.1), (B.4), and (B.5), simple algebraic calculations give the

result

Σ̂−1
X Σ̂E(X|Y ) − Σ−1

X ΣE(X|Y ) =
1

n

n∑
i=1

{
Σ−1
X B(i)−Σ−1

XA
(i)Σ−1

X ΣE(X|Y )

}
+op(n

−1/2)

(B.6)
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which implies that each element of the matrix Σ̂−1
X Σ̂E(X|Y )−Σ−1

X ΣE(X|Y ) can be

asymptotically expanded as a sum of i.i.d random variables. Then, the central

limit theorem leads to conclusion (i) of Theorem 1, as a result of which, conclusion

(ii) of Theorem 1 also holds.
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