
Statistica Sinica 29 (2019), 1739-1749
doi:https://doi.org/10.5705/ss.202017.0106

STRONG LAWS FOR RANDOMLY WEIGHTED SUMS OF

RANDOM VARIABLES AND APPLICATIONS IN THE

BOOTSTRAP AND RANDOM DESIGN REGRESSION

Pingyan Chen1, Tao Zhang1 and Soo Hak Sung2

1Jinan University and 2Pai Chai University

Abstract: In this study, we establish the Marcinkiewicz–Zygmund strong law of

large numbers for randomly weighted sums of negatively orthant dependent random

variables. The law of the single law of logarithm for randomly weighted sums of

negatively orthant dependent random variables is also established. Finally, the

results are applied to bootstrap sample means and least-squares estimators in a

simple linear regression with random design.
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1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables, and let {wnk, n ≥ 1, 1 ≤
k ≤ n} be an array of random variables independent of {Xn, n ≥ 1}. Then a

randomly weighted sum is defined by
n∑
k=1

wnkXk. (1.1)

Here, wnk, n ≥ 1, 1 ≤ k ≤ n, are called random weights. In the special case of

constant random variables wnk, n ≥ 1, 1 ≤ k ≤ n, (1.1) is referred to as a non-

randomly weighted sum or as a weighted sum. Many useful linear statistics, for

example, least-squares estimators, nonparametric regression function estimators,

and jackknife estimates, are weighted sums. Randomly weighted sums play an

important role in various applied and theoretical problems. For example, in

queueing theory,
∑n

k=1wnkXk represents the total output for a customer being

served by n machines, where wnk is the service time of the kth machine and

Xk is the output from the kth machine. In statistics, bootstrap sample means

and least-squares estimators in simple linear regressions with random design are

randomly weighted sums (see Section 3).
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We first consider strong laws for the weighted sums
∑n

k=1 ankXk of inde-

pendent and identically distributed (i.i.d.) random variables {X,Xn, n ≥ 1},
where {ank, n ≥ 1, 1 ≤ k ≤ n} is an array of constants, that is, each ran-

dom weight wnk has a constant value ank with probability one. Chow (1966)

proved the Kolmogorov strong law n−1
∑n

k=1 ankXk → 0 almost surely (a.s.)

when EX = 0, E|X|2 < ∞, and {ank} is an array of second Cesàro uniformly

bounded constants, that is, supn≥1 n
−1∑n

k=1 |ank|2 <∞. Choi and Sung (1987)

showed the Kolmogorov strong law under the conditions that EX = 0 and the

weights ank are uniformly bounded, that is, supn≥1 max1≤k≤n |ank| < ∞. Here,

we compare these two results. If ank are uniformly bounded, then they are sec-

ond Cesàro uniformly bounded. Hence, the condition on the weights of Chow

(1966) is weaker than that of Choi and Sung (1987), but the moment conditions

of Chow (1966) are stronger. Cuzick (1995) proved Chow’s result (1966) when

the weights ank are α-th Cesàro uniformly bounded for some 1 < α < ∞ (i.e.,

supn≥1 n
−1∑n

k=1 |ank|α <∞), EX = 0, and E|X|β <∞, where 1/α+ 1/β = 1.

If α = β = 2, the result of Cuzick (1995) reduces to that of Chow (1966). Bai and

Cheng (2000) extended Cuzick’s result (1995) and obtained the Marcinkiewicz–

Zygmund strong law:

n−1/p
n∑
k=1

ankXk → 0 a.s., (1.2)

where 1 ≤ p < 2, {ank} is an array of α-th Cesàro uniformly bounded constants

for some p < α <∞, EX = 0, and E|X|β <∞, where 1/α+ 1/β = 1/p.

On the other hand, Bai, Cheng and Zhang (1997) obtained the law of the

single logarithm:

lim sup
n→∞

|
∑n

k=1 ankXk|√
2n log n

≤ lim sup
n→∞

(
n−1

n∑
k=1

|ank|2
)1/2

a.s., (1.3)

where {ank} is an array of α-th Cesàro uniformly bounded constants for some

2 < α < ∞, EX = 0, EX2 = 1, and E|X|β < ∞, where 1/α + 1/β = 1/2. The

result of Bai, Cheng and Zhang (1997) has since been improved and extended

by several works. Chen and Gan (2007) weakened the moment condition to

E|X|β/(log |X|)β/2 <∞. Then, Sung (2009) and Chen and Chen (2010) extended

the result of Chen and Gan (2007) from real-valued random variables to Banach-

valued random elements. Chen, Ma and Sung (2014) and Chen, Kong and Sung

(2017) subsequently obtained more generalized results that include the result

of Chen and Gan (2007).

We next consider the strong laws for randomly weighted sums
∑n

k=1wnkXk
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of i.i.d. random variables {X,Xn, n ≥ 1}. These strong laws are less studied than

those for non-randomly weighted sums. Cuzick (1995) proved the Kolmogorov

strong law for randomly weighted sums:

n−1
n∑
k=1

(wnkXk − EwnkEX)→ 0 a.s. (1.4)

if {wnk, n ≥ 1, 1 ≤ k ≤ n} is an array of i.i.d. random variables independent

of {Xn, n ≥ 1}, E|w11|α < ∞ for some 2 ≤ α < ∞, and E|X|β < ∞, where

1/α + 1/β = 1. Cuzick (1995) also proved the law of the single logarithm for

randomly weighted sums:

lim sup
n→∞

∑n
k=1wnkXk√
2n log n

= 1 a.s. (1.5)

provided that {wnk, n ≥ 1, 1 ≤ k ≤ n} is an array of independent Rademacher

random variables and EX2 = 1. Li, Rao and Wang (1995) proved (1.5) under

the general conditions that {wnk} is an array of bounded i.i.d. random variables

independent of {Xn, n ≥ 1}, E(w11X1) = 0, E(w11−Ew11)
2 = 1, and EX2 = 1.

The Marcinkiewicz–Zygmund strong law is between the Kolmogorov strong

law (1.4) and the law of the single logarithm (1.5). However, the Marcinkiewicz–

Zygmund strong law for randomly weighted sums of i.i.d. random variables is

not proved.

Bootstrap samples were first investigated by Efron (1979) for a sequence of

i.i.d. random variables. However, in general, bootstrap samples are defined for a

sequence of random variables that are not necessarily i.i.d. Moreover, in the boot-

strap sample mean, the weights wnk are negatively associated, not independent

(see Section 3). Therefore, it is more interesting to study the Marcinkiewicz–

Zygmund strong law for randomly weighted sums of dependent random variables

under dependent random weights.

For randomly weighted sums of dependent random variables, Rosalsky and

Sreehari (1998), Thanh, Yin and Wang (2011), and Csörgő and Nasari (2013)

provided sufficient conditions for some kinds of strong laws. However, their

findings do not imply the Marcinkiewicz–Zygmund strong law. In this study,

we prove the Marcinkiewicz–Zygmund strong law for randomly weighted sums

of negatively orthant dependent (NOD) random variables. The weights are also

NOD random variables.

First, we define the concept of NOD random variables, as originally intro-

duced by Lehmann (1966).

Definition 1. A finite family of random variables {X1, . . . , Xn} is said to be
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NOD if the following two inequalities hold:

P (X1 ≤ x1, . . . , Xn ≤ xn) ≤
n∏
i=1

P (Xi ≤ xi)

and

P (X1 > x1, . . . , Xn > xn) ≤
n∏
i=1

P (Xi > xi),

for all real numbers x1, . . . , xn. An infinite family of random variables is NOD

if every finite subfamily is NOD.

It is well known that if {Xn, n ≥ 1} is a sequence of NOD random variables

and {fn, n ≥ 1} is a sequence of Borel functions, all of which are monotone

increasing (or all monotone decreasing), then {fn(Xn), n ≥ 1} is still a sequence of

NOD random variables. It is also well known that if X1, . . . , Xn are nonnegative

NOD random variables, then E[X1 . . . Xn] ≤ EX1 . . . EXn.

The next dependence notion is that of negative association, as first intro-

duced by Alam and Saxena (1981).

Definition 2. A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to be

negatively associated if, for every pair of disjoint subsets A and B of {1, 2, . . . , n},

Cov(f1(Xi, i ∈ A), f2(Xj , j ∈ B)) ≤ 0

whenever f1 and f2 are coordinatewise increasing (or coordinatewise decreasing)

and the covariance exists. An infinite family of random variables is negatively

associated if every finite subfamily is negatively associated.

As pointed out and proved by Joag-Dev and Proschan (1983), a number of

well-known multivariate distributions possess the negative association property,

including the multinomial distribution, convolution of unlike multinomial distri-

bution, multivariate hypergeometric distribution, Dirichlet distribution, permu-

tation distribution, negatively correlated normal distribution, random sampling

without replacement, and joint distribution of ranks.

Because a negative association implies NOD, the above multivariate distri-

butions also possess NOD property.

The following example shows that the random variables X1, X2, X3 are NOD,

but not negatively associated.

Example 1. Let (X1, X2, X3) have the joint distribution described in Table 1.

For x1, x2, x3 = 0 or 1, it is easy to show that

P{X1 ≤ x1, X2 ≤ x2, X3 ≤ x3} ≤ P{X1 ≤ x1}P{X2 ≤ x2}P{X3 ≤ x3},
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Table 1. The joint distribution of (X1, X2, X3).

(x1, x2, x3) (0,0,0) (0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
probability 1/16 3/16 3/16 1/16 1/8 1/8 1/8 1/8

P{X1 ≥ x1, X2 ≥ x2, X3 ≥ x3} ≤ P{X1 ≥ x1}P{X2 ≥ x2}P{X3 ≥ x3}.

For example, if (x1, x2, x3) = (1, 0, 0), then

P{X1 ≤ x1, X2 ≤ x2, X3 ≤ x3} =
3

16
, P{X1 ≤ x1}P{X2≤x2}P{X3≤x3} =

1

4
,

P{X1 ≥ x1, X2 ≥ x2, X3 ≥ x3} =
1

2
, P{X1 ≥ x1}P{X2 ≥ x2}P{X3 ≥ x3} =

1

2
.

Therefore, X1, X2, X3 are NOD. However, P{X1 ≤ 0, X2 + X3 ≤ 1} > P{X1 ≤
0}P{X2+X3 ≤ 1}, because P{X1 ≤ 0, X2+X3 ≤ 1} = 7/16, P{X1 ≤ 0}P{X2+

X3 ≤ 1} = 13/32. Hence, X1, X2, X3 are not negatively associated.

The rest of this paper is organized as follows. In Section 2, we present the

main results and remarks. The applications of our main results to bootstrap

sample means and least-squares estimators are given in Section 3. The technical

details are provided in the online supplementary material.

Note that throughout this paper, I(A) denotes the indicator function of the

event A. It proves convenient in defining that log x = max{1, lnx} for x >0,

where lnx denotes the natural logarithm.

2. Main Results and Remarks

In this section, we present our main results and remarks. We first provide a

lemma that plays an important role in the proofs of our main results.

Lemma 1. Let {Xn, n ≥ 1} be a sequence of nonnegative NOD random variables,

and let {Yn, n ≥ 1} be a sequence of nonnegative NOD random variables. Assume

that {Xn, n ≥ 1} and {Yn, n ≥ 1} are independent. Then {XnYn, n ≥ 1} is a

sequence of NOD random variables.

The following theorem is the Marcinkiewicz–Zygmund strong law for ran-

domly weighted sums of NOD random variables.

Theorem 1. Let 1 ≤ p < 2. Let {X,Xn, n ≥ 1} be a sequence of NOD and

identically distributed random variables, and let {wnk, n ≥ 1, 1 ≤ k ≤ n} be an

array of rowwise NOD random variables, with

sup
n≥1

n−1
n∑
k=1

E|wnk|α <∞, (2.1)
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for some α > 2p. Assume that {Xn} and {wnk} are independent. If E|X|β <∞,
where 1/α+ 1/β = 1/p, then

n−1/p
n∑
k=1

(wnkXk − EwnkEX)→ 0 a.s.. (2.2)

If we further assume that all weights wnk have the same distribution, then

the case α = 2p is possible (see the following corollary).

Corollary 1. Let 1 ≤ p < 2. Let {X,Xn, n ≥ 1} be a sequence of NOD and

identically distributed random variables, and let {w,wnk, n ≥ 1, 1 ≤ k ≤ n} be

an array of rowwise NOD random variables identically distributed as w. Assume

that {Xn} and {wnk} are independent. If E|w|α < ∞, for some α ≥ 2p, and

E|X|β <∞, where 1/α+ 1/β = 1/p, then

n−1/p
n∑
k=1

(wnkXk − EwEX)→ 0 a.s.. (2.3)

Remark 1. The assumption α ≥ 2p is needed. Let P (X = 1) = 1. Then, the

sufficient moment condition for (2.3) is E|w|2p < ∞ (see Taylor, Patterson and

Bozorgnia (2002)). Furthermore, assume that {w,wnk, n ≥ 1, 1 ≤ k ≤ n} is

an array of i.i.d. random variables. Then, by the Borel–Cantelli lemma, (2.3)

is equivalent to
∑∞

n=1 P (|
∑n

k=1(wnk − Ew)| > n1/pε) < ∞, ∀ε > 0. The latter

is also equivalent to E|w|2p < ∞ (see Katz (1963)). Hence, the necessary and

sufficient moment condition for (2.3) is E|w|2p <∞.

Remark 2. For any α′ ∈ (0, α), by Hölder’s inequality and Jensen’s inequality,

sup
n≥1

n−1
n∑
k=1

E|wnk|α
′ ≤ sup

n≥1

(
n−1

n∑
k=1

E|wnk|α
)α′/α

<∞.

Hence, condition (2.1) becomes increasingly stronger as α increases.

Remark 3. Let 1/α + 1/β = 1/p. If α > 2p, then β < 2p. Hence, α > β.

Conversely, if α > β, then α > 2p (if α ≤ 2p, then β ≥ 2p, and so α ≤ β). Hence,

under the condition 1/α+ 1/β = 1/p, α > 2p and α > β are equivalent.

Remark 4. Thanh, Yin and Wang (2011) obtained a randomly weighted version

of Theorem 3.1 in Li et al. (1995). However, the result of Thanh, Yin and Wang

(2011) does not include Theorem 1.

If p = 2, we have the law of the single logarithm for randomly weighted sums

of NOD random variables.

Theorem 2. Let {X,Xn, n ≥ 1} be a sequence of NOD and identically distributed
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random variables, and let {wnk, n ≥ 1, 1 ≤ k ≤ n} be an array of rowwise NOD

random variables satisfying (2.1), for some α > 4. Assume that {Xn} and {wnk}
are independent, EwnkXk = 0 for all n ≥ 1 and 1 ≤ k ≤ n, EX2 = 1, and

E|X|β/(log |X|)β/2 < ∞, where 1/α + 1/β = 1/2. If X ≥ 0 a.s. and wnk ≥ 0

a.s. for all n ≥ 1 and 1 ≤ k ≤ n, then

lim sup
n→∞

|
∑n

k=1wnkXk|√
2n log n

≤ ρ a.s., (2.4)

where ρ = inf{u > 0 :
∑∞

n=1 exp(−u2n log n/
∑n

k=1Ew
2
nk) <∞}.

Remark 5. The following inequalities hold (the proof is provided in the online

supplementary material):

lim inf
n→∞

(
n−1

n∑
k=1

Ew2
nk

)1/2

≤ ρ ≤ lim sup
n→∞

(
n−1

n∑
k=1

Ew2
nk

)1/2

.

Hence ρ = limn→∞
(
n−1

∑n
k=1Ew

2
nk

)1/2
whenever the limit exists.

Remark 6. The nonnegative conditions on X and wnk ensure that {wnkXk, 1 ≤
k ≤ n} is also a sequence of NOD random variables, by Lemma 1. If one of the

nonnegative conditions is excluded, we can apply Theorem 2 to {X+, X+
n , n ≥ 1}

and {X−, X−n , n ≥ 1} (where x+ = max{x, 0} and x− = max{−x, 0}), or to

{w+
nk, n ≥ 1, 1 ≤ k ≤ n} and {w−nk, n ≥ 1, 1 ≤ k ≤ n}, respectively. Hence, (2.4)

can be replaced by

lim sup
n→∞

|
∑n

k=1wnkXk|√
2n log n

≤ 2ρ a.s..

Then, the upper bound has increased by a factor of two. Similarly, if all of the

nonnegative conditions are excluded, (2.4) can be replaced by

lim sup
n→∞

|
∑n

k=1wnkXk|√
2n log n

≤ 4ρ a.s..

Then, the upper bound has increased by a factor of four.

Remark 7. If {X,Xn, n ≥ 1} and {wnk, n ≥ 1, 1 ≤ k ≤ n} are all independent,

then (2.4) also holds without the nonnegative conditions on X and wnk, because

{wnkXk, 1 ≤ k ≤ n} is a sequence of independent, and hence NOD.

If we further assume that all weights wnk are i.i.d. and {Xn, n ≥ 1} are inde-

pendent, then the reverse inequality of (2.4) holds (see the following corollary).

Thus, the upper bound of (2.4) is optimal.

Corollary 2. Let {X,Xn, n ≥ 1} be a sequence of i.i.d. random variables, and

let {w,wnk, n ≥ 1, 1 ≤ k ≤ n} be an array of i.i.d. random variables independent
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of {X,Xn, n ≥ 1}. If E(wX) = 0, E|w|α < ∞ for some α > 4, EX2 = 1, and

E|X|β/(log |X|)β/2 <∞, where 1/α+ 1/β = 1/2, then

lim sup
n→∞

|
∑n

k=1wnkXk|√
2n log n

=
√
E(w − Ew)2 a.s.. (2.5)

3. Applications

In this section, we apply our main results to bootstrap sample means and

least-squares estimators.

We first consider bootstrap samples, which were introduced by Efron (1979).

Let Yn1, Yn2, . . . , Ynm(n) be a sample selected randomly, with replacement, from

the set of random variables {Xi, 1 ≤ i ≤ n}. Here, {Yn1, Yn2, . . . , Ynm(n)} is

called a bootstrap sample from {Xi, 1 ≤ i ≤ n}, with bootstrap sample size

m(n). We can write Yni = XZni
, where Zn1, Zn2, . . . , Znm(n) are independent

and uniformly distributed on {1, 2, . . . , n} and independent of {Xi, 1 ≤ i ≤ n}.
Setting the weights wnk as

wnk =
1

m(n)

m(n)∑
i=1

I(Zni = k), 1 ≤ k ≤ n,

the bootstrap sample mean is

X̄∗n =
1

m(n)

m(n)∑
i=1

Yni =

n∑
k=1

wnkXk.

Note thatm(n)(wn1, . . . , wnn) follows a multinomial distribution with parameters

(m(n), 1/n, . . . , 1/n).

By the application of Theorems 1 and 2, we obtain the convergence rate of

the bootstrap strong law of large numbers for NOD random variables. To prove

it, the following lemma is needed. The proofs of the results in this section are

also provided in the online supplementary material.

Lemma 2. Let Xn follow a binomial distribution with parameters n and pn.

Then the following statements hold.

(i) If npn ≤ c for some positive constant c, then EXk
n ≤ Cknpn for all k ≥ 1,

where Ck is a positive constant depending only on k.

(ii) If npn ≥ d for some positive constant d, then EXk
n ≤ Dk(npn)k for all k ≥ 1,

where Dk is a positive constant depending only on k.

Theorem 3. Let 1 ≤ p ≤ 2, {X,Xn, n ≥ 1} be a sequence of NOD and identically

distributed random variables with E|X|β <∞, for some β > p. If n = O(m(n)),

then we have the following:
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(i) If 1 ≤ p < 2, then

n1−1/p
(
X̄∗n − EX

)
→ 0 a.s.. (3.1)

(ii) If p = 2, then

lim sup
n→∞

√
n

2 log n

∣∣X̄∗n − EX∣∣ ≤√(r + 1)EX2 a.s., (3.2)

where r = lim supn→∞ n/m(n).

Remark 8. To the best of our knowledge, no studies have investigated the con-

vergence rate of the unconditional strong law of large numbers for the bootstrap

mean. Thus, Theorem 3 is a new result.

Remark 9. Arenal-Gutiérrez, Matrán and Cuesta-Albertos (1996) proved the

bootstrap strong law of large numbers (i.e., X̄∗n → EX a.s.) under the condi-

tions that n log n = o(m(n)) and {X,Xn, n ≥ 1} is a sequence of pairwise i.i.d.

random variables, with E|X| < ∞. The moment condition is weaker than that

of Theorem 3, but the condition on the bootstrap sample size is stronger.

We next consider a simple linear regression model with random design:

Ynk = a+ bXnk + εk, 1 ≤ k ≤ n. (3.3)

Here, a and b are unknown parameters, the random design points {Xnk, n ≥
1, 1 ≤ k ≤ n} form an array of rowwise NOD random variables identically dis-

tributed as a random variable X, {Ynk, n ≥ 1, 1 ≤ k ≤ n} is an array of observable

variables, and the errors {εn, n ≥ 1} form a sequence of NOD and identically dis-

tributed random variables independent of {Xnk, n ≥ 1, 1 ≤ k ≤ n} and with the

same distribution as a random variable ε. Then the least-square estimators of b

and a are

b̂n =

∑n
k=1(Ynk − Ȳn)(Xnk − X̄n)

S2
n

, ân = Ȳn − b̂nX̄n, (3.4)

respectively, where X̄n = n−1
∑n

k=1Xnk, Ȳn = n−1
∑n

k=1 Ynk, and S2
n =

∑n
k=1

(Xnk − X̄n)2, n ≥ 1.

In the following, as applications of Corollaries 1 and 2, we obtain the con-

vergence rates for the strong consistency of the least-square estimators of the

unknown parameters.

Theorem 4. Let 1 ≤ p ≤ 2. Under model (3.3), we have the following:

(i) When 1 ≤ p < 2, we assume that E|X|α <∞ for some α ≥ 2p, Eε = 0, and

E|ε|β <∞, where 1/α+ 1/β = 1/p. Then,

n1−1/p|b̂n − b| → 0 a.s. (3.5)
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and

n1−1/p|ân − a| → 0 a.s.. (3.6)

(ii) When p = 2, we assume that E|X|α < ∞ for some α > 4, Eε = 0,

and E|ε|β/(log |ε|)β/2 < ∞, where 1/α + 1/β = 1/2, and further assume that

{Xnk, n ≥ 1, 1 ≤ k ≤ n} is an array of i.i.d. random variables and {εn, n ≥ 1}
is a sequence of i.i.d. random variables. Then,

lim sup
n→∞

√
n

2 log n
|b̂n − b| =

√
Eε2

E(X − EX)2
a.s. (3.7)

and

lim sup
n→∞

√
n

2 log n
|ân − a| = |EX| ·

√
Eε2

E(X − EX)2
a.s.. (3.8)

Supplementary Materials

The online supplementary material contains technical details.
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