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Abstract: Gaussian process (GP) models encounter computational difficulties with

large spatial data sets, because the models’ computational complexity grows cu-

bically with the sample size n. Although a full-scale approximation (FSA) using

a block modulating function provides an effective way to approximate GP mod-

els, it has several shortcomings. These include a less smooth prediction surface on

block boundaries and sensitivity to the knot set under small-scale data dependence.

To address these issues, we propose a smoothed full-scale approximation (SFSA)

method for analyzing large spatial data sets. The SFSA leads to a class of scalable

GP models, with covariance functions that consist of two parts: a reduced-rank

covariance function that captures large-scale spatial dependence, and a covariance

that adjusts the local covariance approximation errors of the reduced-rank part,

both within blocks and between neighboring blocks. This method reduces the pre-

diction errors on block boundaries, and leads to inference and prediction results

that are more robust under different dependence scales owing to the better approx-

imation of the residual covariance. The proposed method provides a unified view

of approximation methods for GP models, grouping several existing computational

methods for large spatial data sets into one common framework. These methods

include the predictive process, FSA, and nearest neighboring block GP methods,

allowing efficient algorithms that provide robust and accurate model inferences and

predictions for large spatial data sets within a unified framework. We illustrate

the effectiveness of the SFSA approach using simulation studies and a total column

ozone data set.

Key words and phrases: Conditional likelihood, full-scale approximation, markov

chain monte carlo, spatial covariance functions.

1. Introduction

Spatial data sets arising from ecology, climatology, and other disciplines are

of considerable interest to scientists. With the advent of remote sensing and

geographic information system (GIS) techniques, the quantity of spatial data

available has increased dramatically. As a result, statisticians often need to

process a large number of observations on variables of interest. This growth in the
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volume of data has imposed computational challenges on classical geostatistical

models (Stein (1999); Banerjee, Gelfand and Carlin (2014)), resulting in the

development of innovative computational methods capable of handling extremely

large data sets (e.g., Sun, Li and Genton (2012)).

One of the most popular models used for spatial data sets is the Gaussian

process (GP) model, which assumes that finite observations are jointly Gaussian.

Although GP models enjoy mathematical tractability for model fitting and pre-

diction, their computational complexity grows cubically with the sample size n,

in general, owing to their expensive matrix operations. Specifically, calculations

of the inverse and the determinant of an n×n covariance matrix of a GP typically

require O(n3) floating point operations per second (flops). Thus, fitting a GP

model becomes computationally prohibitive for very large n.

Recently, Sang and Huang (2012) proposed the so-called full-scale approxi-

mation (FSA) approach to approximate the original covariance function of GP

models for large spatial data sets. By combining the ideas of both low-rank

models and sparse models, the FSA approach can approximate the data covari-

ance matrix well for both large- and small-scale dependence structures. Popular

low-rank models (e.g., Higdon (2002); Banerjee et al. (2008); Cressie and Jo-

hannesson (2008); Katzfuss and Cressie (2011); Nguyen, Cressie and Braverman

(2012); Nguyen et al. (2014)) seek to approximate the original spatial process us-

ing a smoother process based on a reduced number of basis functions. Although

low-rank models can enjoy computational complexity linear with n, they may

fail to capture local variations well when using a limited number of basis func-

tions (Finley et al. (2009); Stein (2014)). Sparse approximation techniques either

shrink the covariance of distant pairs of spatial locations to zero to yield a sparse

covariance matrix (Furrer, Genton and Nychka (2006); Kaufman, Schervish and

Nychka (2008)), or assume a Gaussian–Markov property of the spatial random

field to yield a sparse precision matrix (Rue and Tjelmeland (2002); Lindgren,

Rue and Lindström (2011)). Another method used to induce sparsity of the

precision matrix is to use conditional likelihoods (e.g., Vecchia (1988)). Here,

Datta et al. (2016) proposed a nearest-neighbor GP (NNGP). A new permuta-

tion and grouping method that improves the performance of the NNGP method

can be found in Guinness (2018). Recent “hybrid” methods that extend low-rank

models include the works of Nychka et al. (2015), Katzfuss (2017), and Ma and

Kang (2017). Modern versions of local GP models (e.g., (Gramacy and Apley

(2015); Gramacy and Haaland (2016); Zhang, Lin and Ranjan (2018); Park and

Apley (2018))) can also be applied effectively to model large or massive spatial
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data. Lastly, the divide-and-conquer-based approaches have been proposed to

model large and nonstationary spatial data sets. See, for example, the treed

GP (e.g., Gramacy and Lee (2008); Konomi et al. (2014)) and the spatial meta

kriging (Guhaniyogi and Banerjee (2017)) methods.

Let C(·, ·;θ) be the original covariance function of a GP model. To give a

more accurate approximation to C(·, ·;θ), the FSA approach first approximates

the original covariance function using the covariance function of a Gaussian pre-

dictive process model (Banerjee et al. (2008)), denoted by Cl(·, ·;θ). Then the

“residual” covariance, defined as Cs ≡ C−Cl, is approximated by a sparse positive

semidefinite function. The covariance function of the FSA, denoted by C†(·, ·;θ),

can be written as Cl(·, ·;θ) + Cs(·, ·;θ)K(·, ·), where the function K, referred to

as a modulating function, is positive semidefinite and has a large number of ze-

ros evaluated on observed spatial locations. If we choose K(·, ·) as compactly

supported covariance functions (Gneiting (2002)), the resulting approximation

is referred to as FSA-Taper; if K(·, ·) = 1 when two locations belong to the

same data block and K(·, ·) = 0 otherwise, then the resulting approximation is

referred to as FSA-Block. Empirical results have shown that FSA-Block outper-

forms FSA-Taper (Sang, Jun and Huang (2011)), possibly because FSA-Block

is an unbiased approximation of the covariance within each data block and uses

parallel computation. Zhang, Sang and Huang (2015) extends the FSA-Block

approximation to GP models for large spatio-temporal data sets.

Although the FSA-Block approach can lead to an effective and scalable ap-

proximation to the covariance function of a GP model, it has several shortcom-

ings. First, its predictions around the boundaries of two adjacent blocks are

less smooth than those of other regions, mainly because of its assumption of

independent blocks for the residual covariance function, Cs. Thus, mismatches

between the predictions on block boundaries can result in large prediction er-

rors for locations close to block boundaries. Second, the overall performance

of the FSA-Block approach is more robust to the choice of knots and blocks,

respectively, than that of the predictive process and independent block estima-

tions. However, the approximation error for the residual covariance information

across blocks can be severe when the predictive-process part does not perform

well (e.g., when the underlying spatial process is less smooth or the number of

knots is insufficient), leaving room for further improvement.

In this study, we develop a new covariance approximation for spatial GP

models. We first extend the nearest-neighbor GP models developed by Datta et

al. (2016) to construct a nearest neighboring block GP model. We then apply
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our model to approximate the residual covariance, which we combine with a

reduced-rank predictive process. By doing so, we relax the independent-blocks

assumption of FSA-Block to further account for the dependence between each

block and its neighboring blocks in the residual covariance matrix. The proposed

method alleviates the discontinuities of predictions on boundary locations for

the FSA-Block approach. We call the proposed method the smoothed full-scale

approximation (SFSA) method.

We further show that the SFSA approach defines a class of valid GP models

that is scalable to large data sets. Therefore, the SFSA approach can perform

both parameter estimations and predictions under a unified framework owing

to the existence of a closed-form covariance function. The establishment of the

SFSA GP also allows it to be flexibly embedded into hierarchical spatial models,

which facilitates computation, while maintaining model richness.

The SFSA provides a unified view of approximations for spatial GP mod-

els, grouping together various existing popular approximation methods, includ-

ing the predictive process, FSA, conditional composite likelihood, independent

blocks method, and nearest-neighbor GP approximation. This unified modeling

framework enables direct comparisons and reveals the relations between various

computational methods for large spatial data sets.

The rest of the paper is organized as follows. Section 2 reviews the FSA-Block

approach and formulates the proposed SFSA approach. Section 3 discusses the

computational complexity of the SFSA and gives the algorithm used to evaluate

its log-likelihood. Section 4 describes the parameter estimation and prediction

procedures of the SFSA. Section 5 defines the valid GP constructed from the

SFSA. Then, we compare the SFSA with other current methods using simulation

studies in Section 6.1 and a total column ozone data set in Section 6.2. Finally

Section 7 concludes the paper with a brief summary and a discussion of potential

extensions to our work. The proofs of the theorems and additional numerical

results are given in the Supplementary Material.

2. Methodology

2.1. The spatial regression model

Let y(s) be a response variable observed at a spatial location s ∈ S ⊆ Rd,
where S is the spatial domain and d = 1, 2, 3. We model y(s) through the

following spatial regression model:

y(s) = x(s)Tβ + w(s) + ε(s), (2.1)
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where x(s) is a p-dimensional vector of covariates, β is a vector of regression

coefficients, w(s) is a latent mean-zero GP, and ε(s) is a Gaussian white-noise

process with a constant variance τ2, independent of w(s). The variance τ2 is

often referred to as the “nugget,” accounting for the measurement-error effect.

The dependence structure of w(s) is specified by a valid covariance function,

C(s, s′;θ) ≡ cov(w(s), w(s′)). For example, the Matérn covariance function (e.g.,

see Stein (1999)) is widely used in spatial statistics owing to its flexibility in

modeling the smoothness of a spatial process:

C(s, s′;θ) =
σ2

Γ(ν)
21−ν

(
h

φ

)ν
Kν

(
h

φ

)
, (2.2)

where σ2 > 0 is the variance parameter, φ > 0 is the dependence range parameter,

ν > 0 is the smoothness parameter, Γ(·) is the gamma function, and Kν(·) is the

modified Bessel function of the second kind of order ν. The Gaussian covariance

function, C(s, s′;θ) = σ2 exp(−h2/φ), and the exponential covariance function,

C(s, s′;θ) = σ2 exp(−h/φ), are two special cases of (2.2), with ν → ∞ and

ν = 0.5, respectively.

Now, suppose y(s) is observed at n spatial locations in S ≡ {s1, . . . , sn}.
Let y = (y(s1), . . . , y(sn))T be the observed response vector and x = (x(s1), . . . ,

x(sn))T be the n× p design matrix. The log-likelihood function is:

`(y|θ,β) = −1

2
(y − xβ)TC−1

y (y − xβ)− 1

2
|Cy| −

n

2
log(2π), (2.3)

where Cy ≡ var(y) is the data covariance matrix. In general, evaluating (2.3)

requires O(n3) flops to calculate |Cy| and C−1
y . Thus, the computational cost

can be very high (and even prohibitive) when n is very large.

2.2. The FSA-Block approach

In this subsection, we briefly review the FSA-Block approach. The approach

(Sang, Jun and Huang (2011); Sang and Huang (2012)) is motivated by the

decomposition of the latent spatial process w(s):

w(s) = wl(s) + ws(s), (2.4)

where wl(s) is the Gaussian predictive process (Banerjee et al. (2008)), and ws(s)

is referred to as the residual process of w(s) that is independent of wl(s). Approx-

imating w(s) using only wl(s) results in a loss of residual covariance information

in ws(s), which could lead to bias in the parameter estimations and inaccuracy

in the spatial predictions (e.g., see Finley et al. (2009); Stein (2014)).

Let S∗ ≡ {s∗1, . . . , s∗m} be a (pre-specified) set of locations in S, referred
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to as the knot set. In the following, we use the generic notation C(A,B) ≡
[C(si, sj)]si∈A,sj∈B to denote the covariance matrix for two location sets, A and

B. The covariance function of wl(s) is given by

Cl(s, s′) = C(s, S∗)C(S∗, S∗)−1C(s′, S∗)T . (2.5)

It follows that the covariance function of ws(s) takes the form

Cs(s, s′) = C(s, s′)− Cl(s, s′). (2.6)

Let Cwl
≡ Cl(S, S) be the covariance matrix of the predictive-process component

and Cws
≡ Cs(S, S) be the residual covariance matrix. By the Schur comple-

ment property of linear algebra, Cws
is positive definite when S ∩ S∗ = ∅, and

positive semidefinite otherwise. In general, Cws
has a dependence structure of a

smaller scale than that of the full covariance; however, it is still a dense matrix.

Sang, Jun and Huang (2011) proposed approximating Cws
using a block-diagonal

matrix to reduce the number of computations, while preserving the residual co-

variance entries within blocks. Specifically, let P be a partition rule that par-

titions the observed data vector y into K disjoint subvectors yk of length nk,

for k = 1, . . . ,K. If we group the observations according to blocks, then the

likelihood approximated by the FSA-Block approach follows the Gaussian dis-

tribution, N (xβ, (Cwl
+ Cws

◦ TB + τ2In)), where TB is a block-diagonal matrix

with 1nk
1Tnk

as its k-th block, 1nk
is an nk × 1 vector of ones, In is an identity

matrix of size n, and ◦ is the Schur product (entrywise product) of two matrices.

Compared with Cwl
from the predictive process model, the FSA-Block approach

incorporates an additional block-diagonal residual covariance matrix to correct

the approximation errors within each data block. Because (Cws
◦ TB + τ2In) is

block-diagonal, it takes O(n) order flops to compute its inverse and determinant.

It can be shown that the computational complexity of the FSA-Block approach

is linear with n (Sang, Jun and Huang (2011)).

However, the independent-blocks approximation of Cws
ignores the resid-

ual dependence across blocks. The loss of dependence information can be severe

when wl(s) does not provide a good approximation for w(s), such that the entries

across the blocks of the residual covariance matrix are not negligible (e.g., the

knots are not placed properly or the number of knots is insufficient). More impor-

tantly, because the approximation errors of the covariance matrix by FSA-Block

are zero for data within the same block and nonzero for data across blocks, there

exist jumps of approximation errors between each data block and its neighboring

blocks. This discontinuity of approximation errors can harm the prediction per-

formance, particularly around the block boundaries (see Section 6.1). To address
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these issues, we seek a new method that partially preserves the entries of Cws

across data blocks, while maintaining computational efficiency.

2.3. The SFSA approach

Let w∗ = (w(s∗1), . . . , w(s∗m))T denote the vector of w(·) evaluated on the

knot set. To motivate the new method, we write the data likelihood as

p(y|β,θ) =

∫
p(y|β,θ,w∗) · p(w∗|θ)dw∗,

where p(y|β,θ,w∗) follows N (xβ + C(S, S∗)C(S∗, S∗)−1w∗, Cws
+ τ2In). The

computational bottleneck lies in evaluating p(y|β,θ,w∗), because Cws
is a dense

matrix, in general. We propose replacing p(y|β,θ,w∗) with some Gaussian den-

sity that has less expensive computations. Then, after integrating out w∗, we

obtain an approximated Gaussian likelihood with a reduced computational cost.

Note that, compared with the original data covariance matrix, the covariance

matrix in p(y|β,θ,w∗) has entries closer to zero. Therefore, data located in

distant blocks are more likely to be independent, conditional on w∗. This ob-

servation motivates us to use the conditional block composite likelihood (CBCL)

approach of Stein, Chi and Welty (2004) to approximate p(y|β,θ,w∗).
Specifically, let P be a partition rule leading to the partition S = ∪Kk=1Sk,

with a corresponding partition of observations y = ∪Kk=1yk, where Sk and yk
have size nk, and

∑K
k=1 nk = n. Let y(k−1) = (yT1 , . . . ,y

T
k−1)T for k ≥ 2 and

y(0) = ∅. By the chain rule,

p(y|β,θ,w∗) =

K∏
k=1

p(yk|y(k−1),β,θ,w
∗).

When n is very large, it is computationally expensive to evaluate the full condi-

tional density, p(yk|y(k−1),β,θ,w
∗), for large k, because y(k−1) is high-dimensional.

Thus, following Stein, Chi and Welty (2004), we choose the conditional set as a

subvector of y(k−1) for the k-th block:

p̃(y|β,θ,w∗) =

K∏
k=1

p(yk|yN(k),β,θ,w
∗), (2.7)

where yN(k) is an nN(k)-dimensional subvector of y(k−1) with the location set

SN(k) (i.e., the neighboring observations of yk in y(k−1)). Here, we use the

convention that SN(1) = ∅. For notational simplicity, we focus on the special

case in which SN(k) contains all locations in the q nearest neighboring blocks of

the k-th block (e.g., “closeness” is measured by the Euclidean distances between
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the block centers). Specifically, SN(k) is defined as

SN(k) =


∅, if k = 1;

{S1, S2, . . . , Sk−1}, if k ≤ q;
q nearest blocks in {S1, S2, . . . , Sk−1}, if k > q.

In practice, we choose K to partition the data such that each data block contains

only a few hundred observations, for computation efficiency. By choosing q � K,

evaluating p̃(y|β,θ,w∗) is computationally efficient. The FSA-Block approach

is a special case of the proposed method when we use ∅ as the conditional set for

every yk. Usually, we choose q ≥ 1 to ease the discontinuity issue of approxima-

tion errors across data blocks. We later show that the prediction errors around

block boundaries can be reduced by applying the proposed approach. This yields

the proposed SFSA approach.

Next, we show that the SFSA approach generates a Gaussian likelihood

with a closed-form expression for its covariance matrix. For residual covariance

matrices of (ws(·) + ε(·)), we use the generic notation ΣA,B ≡ cov(ws(SA) +

ε(SA), ws(SB) + ε(SB)) and ΣA ≡ var(ws(SA) + ε(SA)), where SA and SB are

two sets of spatial locations. Now, for k, l = 1, . . . ,K, define

Bk,l =


Ink

, if l = k;[
−Σk,N(k)Σ

−1
N(k)

]
(·, n(l−1) + 1 : n(l)), if l ∈ N(k);

0, otherwise,

(2.8)

where n(l) =
∑

1≤i≤l,i∈N(k) ni. Here, Bk,l is an nk × nl matrix that encodes the

conditional dependence information between the k-th block and the l-th block.

Let B∗k = (Bk,1, . . . , Bk,K). Then, it can be shown that (see the Supplementary

Material, Section S1.1) the conditional density, p(yk|yN(k),β,θ,w
∗), is propor-

tional to

|Σk|N(k)|−1/2 exp

{
−1

2
(y − xβ − Uw∗)TB∗

T

k Σ−1
k|N(k)B

∗
k(y − xβ − Uw∗)

}
,

where Σk|N(k) = Σk − Σk,N(k)Σ
−1
N(k)Σ

T
k,N(k) is the residual covariance of the k-th

block, conditional on its neighboring blocks, and U = C(S, S∗)C(S∗, S∗)−1. The

SFSA approach yields the following likelihood:

p̃(y|β,θ) =

∫
w∗

K∏
k=1

p(yk|yN(k),β,θ,w
∗) · p(w∗|θ)dw∗.

The following theorem shows that this approximated likelihood corresponds to a

Gaussian density with a closed-form covariance matrix.
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Theorem 1. Let y ∼ N (xβ, Cy). Then, the approximated likelihood by the

SFSA approach, p̃(y|β,θ), follows N (xβ, C†y), where

C†y = B−1ΣconB
T−1

+ C(S, S∗)C(S∗, S∗)−1C(S, S∗)T ,

where Σcon is a block-diagonal matrix, with Σk|N(k) as its k-th block, and B =

(B∗
T

1 , . . . , B∗
T

K )T ∈ Rn×n.

The proof is given in the Supplementary Material, Section S1.1.

2.4. A new unifying view

The proposed method offers a unified approximation method for spatial GP

models. Evidently, the method is a direct generalization of the FSA-Block ap-

proach (SFSA with q = 0) and the conditional block composite likelihood ap-

proach (SFSA with m = 0). Hence, it includes both as special cases. Thus, the

SFSA provides a unified approximation framework for spatial GP models that

allows us to compare different methods directly.

Below, we compare the performance of each method in terms of their co-

variance matrix approximations. Figure 1 shows the absolute differences of en-

tries between the approximated data covariance matrix and the original data

covariance matrix for each of the approaches. Specifically, 4,000 locations were

randomly generated in a square domain [0, 10]× [0, 10]. Then, we used the expo-

nential covariance function C(s, s′) = exp(−‖s− s′‖) with a nugget effect of 0.01

to generate the covariance matrix on these locations. For all three approaches,

equally spaced blocks are generated and the block index takes an increasing or-

der from northwest to southeast; locations within the same block are grouped

together. For the SFSA and FSA-Block approaches, m = 50 knots were uni-

formly selected in the square domain; for the SFSA and CBCL, the neighboring

block set is the nearest neighboring block. We observe that for locations within

a certain band, the approximation errors by the SFSA are much smaller than

those by the FSA-Block approach, owing to the corrections of the residual co-

variance between neighboring blocks. Compared with the CBCL approximation,

both approaches provide good approximations for covariance entries within a

certain location band. However, the SFSA approach leads to smaller approxima-

tion errors for the residual covariance entries off the location band, owing to the

inclusion of the low-rank predictive-process component.

2.5. Choices of tuning parameters for the SFSA approach

The SFSA approach requires specifications of several tuning parameters, in-
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(a) FSA-Block, K = 100.
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(b) FSA-Block, K = 16.
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(c) CBCL, K = 100.
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(d) CBCL, K = 16.
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(e) SFSA, K = 100.
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(f) SFSA, K = 16.

Figure 1. Plots of the absolute differences between the approximated data covariance
matrix and the original data covariance matrix for three methods. SFSA: the smoothed
full-scale approximation; CBCL: the conditional block composite likelihood approxima-
tion.

cluding the knot set, block partition scheme, ordering of the data blocks, and

number of neighboring blocks q. For the knot set, random sampling, Latin hy-

percube sampling (McKay, Conover and Beckman (1979)), or a spatial grid can

be applied to place knots with a good space coverage. Alternatively, we can treat
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the knots as unknown parameters and model them stochastically (Guhaniyogi et

al. (2011); Katzfuss (2013); Zhang, Sang and Huang (2015)). For the block parti-

tion, Eidsvik et al. (2014) recommend using the empirical variogram to determine

the block width. The K-means clustering algorithm based on the Euclidean dis-

tances of locations is a simple choice for creating blocks; alternatively, we can

apply a clustering algorithm based on the estimated covariance matrix from a pi-

lot study to account for nonstationarity. For uniformly spaced spatial locations,

we recommend using regular rectangular blocks (e.g., see Eidsvik et al. (2014);

Katzfuss (2017)), which empirically work very well. We adopt this method here.

For highly nonuniformly distributed data, Delauny triangulation (e.g., see Lee

and Schachter (1980)) might be more effective to create meshes for the proposed

method.

After creating the blocks, it is necessary to order the blocks to construct the

residual likelihood of the SFSA. Following Guinness (2018), we compared the

model-fitting performance of the SFSA for a few ordering methods, including the

sorted-coordinate (SC) ordering, random ordering, maximum-minimum-distance

(MMD) ordering, and center-out (CO) ordering (see the Supplementary Material,

Section S2.1). Based on our simulation results, we recommend using the SC

ordering for uniformly spaced data and the CO ordering for nonuniformly spaced

data.

Lastly, the selection of the number of neighboring blocks (q) is a trade-off

between the computational time and the statistical efficiency. Here, a larger num-

ber of neighboring blocks yields a more accurate approximation by the SFSA.

Based on our simulation results (see the Supplementary Material, Section S2.3),

a small number of neighboring blocks, such as q = 3 or 4 (with a few hundred

observations), can already lead to statistically efficient parameter-estimation re-

sults. Here, because we focus on using regular rectangular blocks, the Euclidean

distance between the block centers becomes a natural choice to determine the q

nearest neighboring blocks. Alternatively, we can define the “closeness” of two

blocks using a distance metric between the residual correlations of observations in

two blocks. However, such an approach requires estimating residual correlation,

which increases the computational cost. Further details on finding the nearest

neighboring blocks using residual correlations are provided in the Supplementary

Material (Section S3).

3. Computational Aspects of the SFSA Approach

We first determine the computational complexity of evaluating the log-like-



1722 ZHANG, SANG AND HUANG

Table 1. Notation for the SFSA.

Sample size: n
Knot number: m
Block size: nb
Number of blocks: K
Number of neighbors: q

lihood of the SFSA (Table 1 gives the notations for the SFSA). For simplicity,

suppose all data blocks have an equal block size nb, such that n = Knb, and each

data block has at most q neighbors. The log-likelihood function of the SFSA, up

to a constant, is (see equation (S1.1))

log p̃(y|β,θ) = −1

2
(y − xβ)TBT (Σ−1

con − Σ−1
conBUΣw∗U

TBTΣ−1
con)B(y − xβ)

−1

2
|UTBTΣ−1

conBU | −
1

2
|Σcon| −

1

2
|C∗|, (3.1)

where Σw∗ = (UTBTΣ−1
conBU + C−1

∗ )−1 ∈ Rm×m and C∗ ≡ C(S∗, S∗).
Evaluating the determinant of the SFSA likelihood is computationally effi-

cient, because we need only calculate the determinants of two m×m matrices and

a block-diagonal matrix. When evaluating |UTBTΣ−1
conBU |, we need to obtain

BU and Σcon first. Note that B is a sparse matrix with at most (qnb+1) nonzero

entries per row. Hence, calculatingBU is computationally inexpensive, with com-

plexity O(nmqnb). To obtain each diagonal block of the block-diagonal matrix

Σcon, we need to invert a (qnb × qnb) residual covariance matrix for neighboring

observations, which has computational complexity O(q3n3
b). Hence, obtaining

Σcon has the order O(Kq3n3
b) = O(nq3n2

b).

Now, suppose Σcon has been obtained. To evaluate the quadratic term in

(3.1), the required quantities are (y − xβ)TBTΣ−1
conB(y − xβ), UTBTΣ−1

conBU ,

and UTBTΣ−1
conB(y−xβ). Recall that Σcon is block-diagonal and that its inverse

takes O(Kn3
b) = O(nn2

b) flops. Furthermore, BU has computational complexity

O(nmqnb), because B is a lower-triangular matrix with at most (qnb+1) nonzero

entries per row, and U is an n × m matrix. Similarly, evaluating B(y − xβ)

needs O(nqnb) flops. After Σ−1
con, BU , and B(y − xβ) are calculated, (y −

xβ)TBTΣ−1
conB(y − xβ) needs O(nnb + n) flops, UTBTΣ−1

conBU needs O(nm2 +

nmnb) flops, and UTBTΣ−1
conB(y − xβ) needs O(nnb + nm) flops.

Therefore, the computational complexity of the SFSA approach has the order

O(nq3n2
b + nmqnb + nm2). In practice, the data are partitioned into K blocks,

such that each block contains a few hundred observations. If we choose the knot
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size m to be a few hundred as well, and set q � K, the SFSA approach then has

computational complexity linear with n.

Algorithm 1 : Evaluating the log-likelihood function of the SFSA.

1: Compute C∗ = C(S∗, S∗) and U = C(S, S∗)C(S∗, S∗)−1. Factorize C∗ = QT
∗Q∗.

2: foreach k = 1 to K

3: Compute Σk, Σk,N(k), and ΣN(k). Then, compute B∗k = (Bk,1, . . . , Bk,K) according
to (2.8).

4: Compute Σk|N(k) = Σk − Σk,N(k)Σ
−1
N(k)Σ

T
k,N(k). Factorize Σk|N(k) = QT

k|N(k)

Qk|N(k).

5: Compute the quantities (y−xβ)TB∗
T

k Σ−1k|N(k)B
∗
k(y−xβ), UTB∗

T

k Σ−1k|N(k)B
∗
kU , and

UTB∗
T

k Σ−1k|N(k)B
∗
k(y − xβ).

6: end foreach

7: Sum the quantities for each block to obtain (y − xβ)TBT Σ−1conB(y − xβ),
UTBT Σ−1conBU , and UTBT Σ−1conB(y − xβ).

8: Compute the quadratic term in (3.1) and Σw∗ = UTBT Σ−1conBU +C−1∗ . Factorize
Σw∗ = QT

w∗Qw∗ .

9: Compute the log of determinants: log |Σw∗ | = 2 log |Qw∗ |, log |Σcon| =

2
K∑

k=1

log |Qk|N(k)| and log |C∗| = 2 log |Q∗|.

10: Evaluate the log-likelihood function in (3.1).

Parallel computation is possible for evaluating the SFSA’s likelihood. Recall

that B = (B∗
T

1 , . . . , B∗
T

K )T is a lower-triangular matrix, where B∗k = (Bk,1, . . . ,

Bk,K) encodes the residual conditional dependence information between the k-th

block and each of the individual blocks, for k = 1, . . . ,K. Because Σcon is a

block-diagonal matrix with Σk|N(k) as its k-th block, we have

(y − xβ)TBTΣ−1
conB(y − xβ) =

K∑
k=1

(y − xβ)TB∗
T

k Σ−1
k|N(k)B

∗
k(y − xβ).

Similarly,

UTBTΣ−1
conBU =

K∑
k=1

UTB∗
T

k Σ−1
k|N(k)B

∗
kU
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Figure 2. Computational time (on a log scale) per likelihood evaluation versus sample
size (on a log scale). For the SFSA and FSAB, m = nb = 200; the results were obtained
using 16 CPU cores.

and

UTBTΣ−1
conB(y − xβ) =

K∑
k=1

UTB∗
T

k Σ−1
k|N(k)B

∗
k(y − xβ).

Algorithm 1 describes how to evaluate log p̃(y|β,θ). A parallel-computing

technique can be applied to obtain the required quantities for each block simul-

taneously and, hence, avoid the loop in algorithm 1. Using K cores, the SFSA

has computational complexity O(q3n3
b + mqn2

b + nbm
2). In addition, because

U ∈ Rn×m, it will require a significant amount of memory to store U for very

large n. Note that because of the sparsity of B∗k, only Uk = C(Sk, S∗)C(S∗, S∗)−1

and UN(k) = C(SN(k), S
∗)C(S∗, S∗)−1 are required to calculate B∗kU when evalu-

ating the likelihood of the SFSA.

Figure 2 shows the computational time of the SFSA for different sample

sizes. As the figure shows, evaluating the likelihood of the SFSA with q = 1 can

still be done in a short time, even for two million observations.

4. Parameter Estimation and Prediction

4.1. Maximum likelihood estimation

The maximum likelihood estimators maximize the log-likelihood function in

(2.3). To facilitate the computations, we replace the full covariance matrix Cy

with the approximated covariance matrix C†y in Theorem 1. The log-likelihood

approximated by the SFSA is:
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log p̃(y|β,θ) = −1

2
(y − xβ)TC†

−1

y (y − xβ)− 1

2
|C†y| −

n

2
log(2π).

We calculate the inverse covariance matrix as (see equation (S1.2))

C†
−1

y = Σ−1
con − Σ−1

conBUΣw∗U
TBTΣ−1

con.

Then, we can evaluate the quadratic term in the log-likelihood efficiently using

Algorithm 1. For |C†y| (see equation (S1.3)),

|C†y| = |UTBTΣ−1
conBU + C−1

∗ | · |Σcon| · |C∗|.

Calculating UTBTΣ−1
conBU involves multiplying an n× n matrix B by an n×m

matrix U . Recall that B is a sparse matrix with at most (qnb+1) nonzero entries

per row. Hence, calculating BU is computationally inexpensive with complexity

O(nqnbm). Then, efficient computations are achieved, because calculating C†y
requires computing the determinants of two m × m matrices and one block-

diagonal matrix only.

4.2. Bayesian inference on model parameters

The Bayesian inference starts by specifying the prior distributions of β and

θ. The conjugate Gaussian prior π(β) ∼ N (µ0,Σ0) can be assigned to β. The

prior of θ depends on the form of the covariance function. Taking the Matérn

covariance function in (2.2) as an example, the inverse gamma prior IG(a, b) can

be assigned to the variance parameter σ2 and the nugget τ2, where hyperparam-

eters a and b are chosen to assign vague priors, or to reflect reasonable guesses

for the mean and variance. For the dependence range parameter φ, a uniform

prior with a reasonable support of practical dependence ranges can be used. For

the smoothness parameter ν, a uniform prior at (0, 3] is commonly used, because

high smoothness values are rarely identified from real data sets.

The marginalized likelihood that integrates out both β and w is

p(y|θ) =

∫
β
p(y|β,θ)π(β)dβ ∼ N (µy,Σy),

where µy = ΣyC
−1
y x(xTC−1

y x + Σ−1
0 )−1Σ−1

0 µ0 and Σy = Cy + xΣ0x
T . Be-

cause the posterior distribution of θ does not have a closed form, we first draw

posterior samples of θ based on the marginalized likelihood p(y|θ) using the

Metropolis–Hastings algorithm (Gelman et al. (2014)). Since p(β|θ,y) is Gaus-

sian and p(β|y) =
∫
θ p(β|θ,y)p(θ|y)dθ, the posterior samples of β can be drawn

from p(β|y) using the method of composition. Similarly, the posterior samples

of w can be recovered by sampling from
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p(w|y) =

∫
θ

∫
β
p(w|y,θ,β)p(β|y)p(θ|y)dβdθ.

When n is large, we replace Cy with C†y (see Theorem 1) in p(y|θ), p(β|θ,y),

and p(w|y,θ,β) in order to draw posterior samples efficiently.

4.3. Prediction

Let Sp ≡ {s1, . . . , snp
} be a set of predictive spatial locations such that

Sp ∩ S = ∅, with yp = (y(s1), . . . , y(snp
))T as the corresponding response vector.

Using the same partition rule P that partitions S into K disjoint blocks, suppose

Sp is partitioned into K disjoint location blocks Sp,k (Sp,k may be empty), with

yp,k as the response vector of y(·) evaluated on Sp,k, for k = 1, . . . ,K. We start

from the joint density of yp and y,

p(yp,y|β,θ) =

∫
p(yp|y,w∗,β,θ) · p(y|w∗,β,θ) · p(w∗|θ)dw∗.

When n is very large, because p(yp|y,w∗,β,θ) and p(y|w∗,β,θ) are high-dimen-

sional, their exact computations may not be feasible. Thus, we define the follow-

ing approximated conditional density:

p̃(yp|y,w∗,β,θ) =

K∏
k=1

p(yp,k|yk,yN(k),w
∗,β,θ),

where we set p(yp,k|yk,yN(k),w
∗,β,θ) = 1 if yp,k = ∅. This definition assumes

that yp,k is independent of the other predictive responses (conditional on w∗), the

observations in the same block yk, and the observations in the neighboring blocks

yN(k). Note that for the predictive response vector yp,k, its neighboring location

set is Sp,N(k) ≡ {SN(k), Sk}, for k = 1, . . . ,K, where SN(k) is the neighboring

location set for the observed response vector yk.

Then, an approximated marginal joint density with computational efficiency

can be obtained as

p̃(yp,y|β,θ) =

∫
p̃(yp|y,w∗,β,θ) · p̃(y|w∗,β,θ) · p(w∗|θ)dw∗, (4.1)

where p̃(y|w∗,β,θ) is the Gaussian density given in (2.7). The (approximated)

predictive distribution, p̃(yp|y,β,θ), can be readily obtained from p̃(yp,y|β,θ).

Let xp,k be the design matrix for yp,k, Up,k = C(Sp,k, S∗)C−1
∗ , and Σp,k|N(k)

be the residual conditional variance of yp,k, given yk and yN(k). Then, define

Bp,k = (Bp,k,1, . . . , Bp,k,K), where Bp,k,l is defined similarly to Bk,l in (2.8). This

encodes the residual conditional dependence information of yp,k given its neigh-

bors y(Sp,N(k)) for the l-th block, for l = 1, . . . ,K. Let xp = (xTp,1, . . . ,x
T
p,K)T ,
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Up = (UTp,1, . . . , U
T
p,K)T , Bp = (BT

p,1, . . . , B
T
p,K)T , and Σp,con be a block-diagonal

matrix with Σp,k|N(k) as its k-th block. The following proposition shows that

p̃(yp|y,β,θ) follows a Gaussian distribution.

Proposition 1. The approximated conditional density p̃(yp|y,β,θ) based on

(4.1) follows a Gaussian distribution N (µp,Σp), where

µp = xpβ + FpC
†−1

y (y − xβ),

Σp = Σp,con +BpB
−1ΣconB

T−1

BT
p + UpC∗U

T
p − FpC†

−1

y F Tp ,

Fp = (−BpB−1ΣconB
T−1

+ UpC∗U
T ).

The proof of Proposition 1 is given in the Supplementary Material, Sec-

tion S1.2. The conditional mean µp is the kriging formula for spatial predictions

under the SFSA approximation. In fact, in Section 5, we prove that the SFSA

approach can induce a valid GP with a closed-form covariance function.

Remark 1. There are different ways to approximate p(yp,y|β,θ) for predic-

tions. For example, consider the case in which the predictive response vector

yp belongs to some block l. Then, we can approximate the augmented data

likelihood, p̃(yp,y|β,θ), defined as∫ ∏
1≤k≤K,k 6=l

p(yk|yaugN(k),w
∗,β,θ) · p(yp,yl|yN(l),w

∗,β,θ) · p(w∗|θ)dw∗,

where yaugN(k) = (yTp ,y
T
N(k))

T if block l is a neighbor of the k-th block, and yaugN(k) =

yN(k) otherwise. However, the prediction obtained by this approximation cannot

yield a valid GP, because integrating out yp cannot, in general, lead to p̃(y|β,θ)

in Theorem 1 (except for the special case where l = K, such that yaugN(k) = yN(k)

for k = 1, . . . ,K, which corresponds to the proposed prediction method).

5. The SFSA Spatial Process

In this section, we show that the SFSA approach equipped with the predic-

tion method in Section 4 yields a valid spatial GP with a closed-form covariance

function. Therefore, both the parameter estimation and the prediction of the

SFSA can be performed in a unified GP framework. Recall that in Section 2.2

we showed that the underlying spatial process w(s) can be decomposed into two

independent processes wl(s) and ws(s), where wl(s) is the predictive process with

covariance function Cl(·, ·), and ws(s) is the exact residual process with covari-

ance function C(·, ·)−Cl(·, ·). Let w̃s(s) = ws(s)+ε(s) be the new residual process

that incorporates the measurement-error term. Then, the data process is
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y(s) = xT (s)β + wl(s) + w̃s(s).

In the following, we show that the SFSA approximates the process w̃s(s) using the

nearest neighboring block GP, thus extending the nearest-neighbor GP developed

in Datta et al. (2016). Hence, the process approximated by the SFSA approach

is a valid GP.

Given a partition rule P leading to S = ∪Kk=1Sk, the key assumption when

deriving the likelihood of the SFSA approach is

p̃(y|β,θ,w∗) =

K∏
k=1

p(yk|yN(k),β,θ,w
∗),

which is equivalent to

p̃(w̃s(S)|θ) =

K∏
k=1

p(w̃s(Sk)|w̃s(SN(k)),θ). (5.1)

Let P also partition a set of predictive locations Sp into K disjoint blocks Sp,k,

for k = 1, . . . ,K. The assumption in Section 4,

p̃(yp|y,w∗,θ) =

K∏
k=1

p(yp,k|yk,yN(k),w
∗,θ),

is equivalent to

p̃(w̃s(Sp)|w̃s(S),θ) =

K∏
k=1

p(w̃s(Sp,k)|w̃s(Sk), w̃s(SN(k)),θ). (5.2)

Note that assumptions (5.1) and (5.2) are the block versions of the key assump-

tions for the nearest-neighbor GP defined on w̃s(s).

Consider an arbitrary set of locations Sv ⊂ S. Let Sp = Sv \S be the subset

of Sv that is outside of S (predictive locations). We define

p̃(w̃s(Sv)|θ) =

∫
p̃(w̃s(Sp)|w̃s(S),θ)p̃(w̃s(S)|θ)

∏
si∈S\Sv

dw̃s(si), (5.3)

where p̃(w̃s(Sp)|w̃s(S),θ) has the expression in (5.2) and p̃(w̃s(S)|θ) has the

expression in (5.1). The following theorem shows that the approximated process

with finite-dimensional densities defined in (5.3) is a valid GP.

Theorem 2. Let w̃†s(s) be the constructed process with the finite-dimensional dis-

tribution defined in (5.3). Then, w̃†s(s) is a valid GP with a covariance function

defined as
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C̃†s(s, s′) =



Σ†y(s, s′), if s, s′ ∈ S;

−BsΣ
†
y(S, s′), if s /∈ S, s′ ∈ S;

BsΣ
†
yB

T
s′ , if s, s′ /∈ S, and s, s′

belong to different blocks;

BsΣ
†
yB

T
s′ + Σp,k|N(k)(s, s

′), if s, s′ /∈ S, and s, s′ belong

to the same block k,

(5.4)

where Bs and Bs′ are defined similarly to Bp in Section 4.3, under the spe-

cial scenario that the predictive location set Sp = {s} or {s′}. In addition,

Σ†y ≡ B−1ΣconB
T−1

is the approximated residual covariance matrix in Theo-

rem 1; Σp,k|N(k) is the residual variance of w̃s(Sp,k), conditional on its neighbors

in w̃s(S); and Σ†y(S1, S2) and Σp,k|N(k)(S1, S2) denote the sub-matrices of Σ†y and

Σp,k|N(k) for corresponding location sets S1 and S2, respectively.

The proof of Theorem 2 basically follows Datta et al. (2016) (see the Supple-

mentary Material, Section S1.3). Now, adding the predictive process covariance-

function part, the covariance function of the SFSA GP is

C†(s, s′) = Cl(s, s′) + C̃†s(s, s′). (5.5)

Utilizing the finite-dimensional distribution given in Theorem 2, we can re-

cover the conditional distribution expression given in Proposition 1 using the

properties of multivariate Gaussian distributions. Specifically, following the re-

sults in (5.4) and (5.5), the approximated cross-covariance between the pre-

diction set Sp and the training set S is (UpC∗U
T − BpΣ

†
y); the usual kriging

formula yields the conditional mean and the conditional variance of yp, given y,

presented in Proposition 1.

6. Numerical Examples

In this section, we illustrate the effectiveness of our method by means of

simulations. The implementations of the NNGP, SFSA, and FSA-Block were

written in MATLAB. We used the R package “laGP” to obtain the results of the

local GP method with adaptive local designs (Gramacy and Apley (2015)). All

methods were run on an AMD Opteron (tm) processor with 2.3 GHz CPUs and

32 GB memory. For the log-likelihood function optimization, we used the mat-

lab function, fminunc, which implements a Broyden–Fletcher–Goldfarb–Shanno

(BFGS)-based quasi-Newton method. We used the parfor command in MATLAB

for parallel computations.
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Figure 3. MSPEs versus the predictive locations. Crosses denote the locations of knots
and the dotted lines indicate the block boundaries. The results were obtained based on
200 simulated data sets.

6.1. Simulation studies

We use the following example to show that, compared with the FSA-Block

approach, the SFSA approach with q ≥ 1 can alleviate the prediction errors

around block boundaries. We generated 500 data observations from a GP with

mean zero and Matérn covariance function in (2.2) on an equally spaced grid

in the domain S ≡ [−1, 7]. Then, predictions were performed at 100 equally

spaced locations in S, and the rest of data were used for training. For both the

FSA-Block and SFSA approaches, we partitioned [−1, 7] equally to create K = 4

blocks, with five knots placed equally on [−1, 4]. Therefore, the block boundaries

are s = 1, 3, 5, and there are no knots close to the boundary s = 5. For the SFSA,

we set q = 1 and N(k) = {k − 1}, for k = 2, 3, 4. We experimented with both

the Matérn covariance function, with σ2 = 1, ν = 1.5, φ = 0.2, and τ2 = 0.01,

and the Gaussian covariance function, with σ2 = 1, φ = 0.1, and τ2 = 0.01.

The parameter settings correspond to smooth GP processes with relatively small

dependence ranges.

Figure 3 plots the mean squared prediction errors (MSPE) against the pre-

dictive locations. For the Matérn-covariance case (left panel), the MSPEs by

the FSA-Block approach are particularly large around the block boundaries

(s = 1, 3, 5). In contrast, the SFSA approach reduces the prediction errors around

the block-boundary points by borrowing dependence information from neighbor-

ing blocks. Thus, the MSPEs of the SFSA are almost indistinguishable from

those of the full model. Similar conclusions hold for the Gaussian-covariance
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case (right panel). Thus, for a smooth spatial process with a relatively small

dependence range, the SFSA approach with q ≥ 1 is preferred, because it signif-

icantly alleviates discontinuities of predictions around block boundaries.

6.2. Application to a total column ozone data set

In this section, we analyze the total column ozone (TCO) level 2 data set

collected on October 1, 1988 (previous analyses of this data set can be found in

Cressie and Johannesson (2008); Eidsvik et al. (2014)). This TCO level 2 data

set has n = 173, 405 observations. We partitioned the data into a training set

and a prediction set under two prediction scenarios: 1) predictions on 25, 000

randomly selected locations (MAR); and 2) predictions on locations in a hold-

out 15 degree × 15 degree rectangular region (MBD), which consists of around

600 predictive locations. For both prediction scenarios, we randomly generated

three sets to evaluate the prediction performance of the various methods.

Following the analysis in Eidsvik et al. (2014), we used a fixed mean parame-

ter and a Cauchy covariance function C(s, s′) = σ2(1+‖s−s′‖/φ)−3 with a nugget

effect to model the TCO data set, where σ2 > 0 and φ > 0 are the variance and

range parameters, respectively. We also considered a Matérn covariance function

(see (2.2)) with the smoothness ν fixed at one, as suggested by a pilot study using

the full covariance model on 10, 000 randomly selected observations. The con-

stant mean was removed before estimating the covariance function parameters.

We compare the SFSA with the FSA-Block, NNGP, and LaGP methods in terms

of their prediction performance, considering the MSPE and the mean continuous

rank probability score (CRPS) (e.g., see Gneiting and Raftery (2007)). For the

SFSA and FSA-Block, we used 24× 24 regular blocks and 225 regular-grid knots

such that both the block size nb and the knot size m are around 200. For the

SFSA, we applied the sorted-coordinates (SC) ordering for the MAR scenario

and the center-out (CO) ordering for the MBD scenario. We specified the num-

ber of neighboring blocks as q = 1. For the NNGP and LaGP, 50 neighbors were

used for both the parameter estimation and the prediction. For the LaGP, the

“mspe” heuristic was considered.

Table 2 shows the prediction results for the various methods. We focus on

the results of the Matérn covariance, because, in general, it leads to better MSPE

results than the Cauchy covariance does, except for the SFSA under the MBD

scenario. For the MAR scenario testing the small-range predictions, the NNGP

performs best, with slightly smaller MSPE and CRPS values than those of the

SFSA. However, for the MBD scenario, the SFSA method results in the best
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Table 2. Prediction performance of the SFSA, FSA-Block, NNGP, and LaGP for the
TCO data. The results were obtained based on three prediction sets for each prediction
scenario.

Scenarios SFSA FSA-Block NNGP LaGP-mspe
Matérn Cauchy Matérn Cauchy Matérn Cauchy

MAR MSPE 27.06 27.77 27.24 27.98 26.67 27.43 38.03
CRPS 2.51 2.53 2.53 2.55 2.50 2.52 3.78
Time (min) 58 33 47 31 57 27 121

MBD MSPE 16.73 16.32 21.46 24.26 21.77 23.88 23.47
CRPS 2.75 2.54 2.91 2.90 2.88 2.85 3.31
Time (min) 79 27 72 31 100 38 4

prediction results. The NNGP results in larger MSPE and CRPS values than

those of the SFSA for the MBD scenario, which may be because the correlations

of the TCO data have a relatively large scale. As a result, borrowing informa-

tion from non-neighboring locations helps to improve the prediction accuracy.

Compared with the other methods, the LaGP leads to much larger prediction

errors (especially for the MAR scenario), which may be because its methodology

is developed based on the Gaussian covariance, which is too smooth for modeling

the TCO data set. Using other covariance functions (e.g., the Cauchy or Matérn

covariance functions) may improve its prediction performance significantly, but

the current LaGP package does not support this.

For the computational times (including both the parameter-estimation and

prediction steps), the SFSA, FSA-Block and NNGP have comparable speeds.

Compared with the other methods, the LaGP has a much longer computational

time for the MAR scenario, but a much shorter time for the MBD scenario.

The reason is that its computational time depends mainly on the total number

of the predictive locations. In contrast, for the SFSA, FSA-Block, and NNGP,

the computational bottleneck lies in the parameter-estimation step, rather than

the prediction step, because the high-dimensional likelihood of the training data

needs to be evaluated repeatedly by the optimization function in the parameter-

estimation step.

The prediction plots on a 288 × 180 longitude–latitude regular grid using

the Matérn covariance are shown in the left column of Figure 4. The SFSA,

FSA-Block, and NNGP produce very similar prediction surfaces, owing to their

comparable capability for short-range predictions. Their associated prediction

standard errors (on a log scale) are shown in the right column. We can observe

that the prediction standard errors are particularly large for regions without
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Figure 4. Prediction surfaces and prediction standard errors (on a log scale) for the
SFSA, FSA-Block, and NNGP.

any observations. For the SFSA and FSA-Block, relatively larger prediction

standard errors are observed around the block boundaries. However, this effect

is less evident for the SFSA than it is for the FSA-Block.
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7. Discussion

We have proposed the SFSA approach that extends the FSA-Block approach

by correcting the approximation errors of the covariance between each block and

its neighboring blocks. We prove that the SFSA approach yields a class of valid

GP models, such that both the parameter estimation and the prediction of the

SFSA can be performed within a unified framework. The proposed method

incorporates the FSA-Block approach and the block conditional composite like-

lihood approach as special cases. Hence, it achieves better statistical efficiency.

Compared with the FSA-Block, the SFSA reduces prediction errors at locations

around block boundaries, which helps to produce a smoother prediction surface.

A natural extension of the proposed method is to the spatio-temporal setting

(Katzfuss and Cressie (2011); Bevilacqua et al. (2012); Zhang, Sang and Huang

(2015)), where we consider a spatio-temporal partition of observations and define

the neighboring blocks in space and time. In this case, the Euclidean distance

between spatio-temporal locations may not be a good way to identify neighbors.

We will explore using other measures to define the block partition and neigh-

boring blocks that minimize the residual covariance for nonneighboring blocks in

order to improve the approximation accuracy.

For modeling non-Gaussian observations from the exponential family of dis-

tributions, the SFSA can be embedded in hierarchical spatial generalized linear

models (GLM) (e.g., Diggle, Tawn and Moyeed (1998); Banerjee, Gelfand and

Carlin (2014)) to speed up computations. The spatial GLM proposed by Diggle,

Tawn and Moyeed (1998) for modeling non-Gaussian spatially dependent obser-

vations involves two stages. In the first stage, the data conditional on a latent

spatial process are independent and identically distributed exponential family

random variables. In the second stage, the latent spatial process is modeled as a

GP, with both fixed and random effects. For this modeling strategy, the SFSA

approximation is applied to η(s) ≡ g(E(y(s)|η(·))) = x(s)Tβ+w(s) + ε(s) in the

second stage, where g(·) is a link function, y(·) is the data process, and η(·) is

the latent spatial process. Similarly to the Gaussian case, we approximate w(s)

using the process induced by the SFSA, denoted by w†(s), to facilitate compu-

tations for evaluating the joint likelihood function. However, the marginalized

likelihood that integrates out the latent spatial process η(·) does not have an

analytical form. Hence, MCMC algorithms need to be employed to obtain pos-

terior samples of model parameters θ, along with η(s). Alternatively, the EM

algorithm can be used to estimate the model parameters for the spatial GLM
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(e.g., see Sengupta and Cressie (2013)).

Supplementary Material

The supplementary material contains the proofs of the theorems, and addi-

tional numerical results used to compare the SFSA with other methods.
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