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Abstract: Large-scale directed social network data often include degree heterogene-

ity, reciprocity, and transitivity properties. Thus, a sensible network-generating

model should consider these features. To this end, we propose a popularity-scaled

latent space model for large-scale directed network structure formulations. This

model assumes each node occupies a position in a hypothetically assumed latent

space. Then, the nodes close to (far away from) each other should have a higher

(lower) probability of being connected. Thus, reciprocity and transitivity can be

derived analytically. In addition, we assume a popularity parameter for each node.

Nodes with larger (smaller) popularity are more (less) likely to be followed. By

assuming different distributions for the popularity parameters, we model various

types of degree heterogeneity. Based on the proposed model, we construct a com-

prehensive probabilistic index for link prediction. We demonstrate the performance

of the proposed model using simulation studies and a Sina Weibo data set. The

results show that the performance of the model is competitive.

Key words and phrases: Degree heterogeneity, large-scale social network, latent

space model, link prediction, reciprocity, transitivity.

1. Introduction

We consider a network with n nodes (indexed by i = 1, . . . , n) and a set of

directed edges (denoted by aij ∈ {0, 1}, with 1 ≤ i, j ≤ n). Here, aij = 1 if a

relationship exists from node i to node j, and aij = 0 otherwise. For example, in

Twitter, aij = 1 implies that node i follows node j. Throughout the rest of this

paper, we do not allow any node to directly follow itself, that is, aii = 0 for any

1 ≤ i ≤ n. This leads to a high-dimensional binary matrix A = (aij) ∈ Rn×n,

called an adjacency matrix. An adjacency matrix is an important tool used to

describe a network structure. For example, it can be used to describe a large-scale

social network (e.g., Facebook or Twitter), where different users are nodes and

their relationships are edges. It can also be used to describe connections between
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websites, where individual websites are nodes and hyperlinks are edges Adamic

and Huberman (2000). Note that network data, which can be represented by

an adjacency matrix, are common in various scientific disciplines, including an-

thropology, economics, education, marketing, psychology, physics, and sociology.

For a good summary, refer to Holland and Leinhardt (1981), Wasserman and

Faust (1994), Knoke and Yang (2008), and Newman (2010). As a result, related

problems are becoming increasingly relevant.

As an important research direction, a large body of literature studies how

network structures (i.e., the adjacency matrix A) are generated. Accordingly,

various probabilistic models have been proposed. The simplest of these is the so-

called Erdös-Rényi model (Erdős and Rényi (1960)), in which edges (i.e., aij) are

assumed to be independently generated from a Bernoulli distribution. To allow for

reciprocal dependence, Holland and Leinhardt (1981) proposed the well-known p1
model. Later, Wang and Wong (1987) and Nowicki and Snijders (2001) extended

the model to accommodate stochastic block structures. See also Airoldi et al.

(2008), Bickel and Chen (2009), Choi, Wolfe and Airoldi (2012), and Bickel et al.

(2013) for relevant discussions. Because these models are all based on certain

independence assumptions about either edges or dyads, they cannot describe

more complicated higher-order dependence structures. Consider, for example,

three arbitrary nodes (denoted by i, j, and k). Here, we expect the marginal

probability P (aij = 1) to be very small and close to zero, because large-scale

social networks are typically extremely sparse (Huang et al. (2015)). However,

given aik = 1 and akj = 1, the conditional probability P (aij = 1|aikakj =

1) should be nontrivial and clearly above zero. This interesting phenomenon is

referred to as the transitivity property (Hoff, Raftery and Handcock (2002); Faust

(1988)) and has been observed extensively in empirical networks. Unfortunately,

it cannot be described by any of the aforementioned network models.

In another related literature stream, Frank and Strauss (1986) studied an

exponential random graph model (ERGM), which has a more flexible theoret-

ical framework. According to the ERGM, the random behavior of A is fully

determined by a p-dimensional sufficient statistic through an exponential trans-

formation. Based on the choice of sufficient statistics, the ERGM might contain

p1 and stochastic block models as special cases. The ERGM might also have

the transitivity property if the sufficient statistic is selected appropriately. How-

ever, the likelihood function involves a normalizing constant, the computation of

which requires ultrahigh-dimensional integration. This makes the ERGM difficult

to estimate for a large-scale social network. To solve this problem, the Markov
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chain Monte Carlo (MCMC)-type algorithms and accompanying R packages have

been developed (Hunter et al. (2008)). From a practical perspective, a pseudo-

likelihood method has been proposed (Van Duijn, Gile and Handcock (2009)).

However, MCMC algorithms are not feasible for large-scale networks because

they involves sampling networks in each iteration, which leads to a prohibitive

computational cost when n is large (Hunter and Handcock (2006)).

Another research direction is the latent space model (LSM) (Hoff, Raftery

and Handcock (2002)). In the LSM, nodes are assumed to be embedded in a

hypothetically assumed latent space. Thus, the probability of two nodes being

connected is assumed to be negatively correlated with their Euclidean distance in

the latent space. Hoff, Raftery and Handcock (2002), employed a logit-type link

function and considered a set of observed covariates. As a result of the symmetry

of the Euclidean distance, the LSM cannot describe degree heterogeneity (Hoff

(2003); Krivitsky et al. (2009)), which is observed extensively in the empirical

network data sets. To fix this problem, Hoff (2003) and Krivitsky et al. (2009)

introduced nodal random effects and Austin, Linkletter and Wu (2013) regressed

the latent positions on nodal attributes. The aforementioned latent space meth-

ods are conceptually attractive, but their estimations require computationally

intensive MCMC algorithms. Most recently, graphon-based methods have been

proposed for network modeling (Wolfe and Olhede (2013); Olhede and Wolfe

(2014); Gao, Lu and Zhou. (2015)). A graphon is a nonnegative symmetric func-

tion f , measurable and bounded, used to model the probability of two nodes

being connected, such as P (aij = 1) = f(Zi, Zj), where Zi and Zj are latent

variables. In contrast to the classical LSM, which typically assumes a multivari-

able normal distribution for the latent variables, graphon-based models suppose

Zi and Zj are drawn from a uniform distribution between zero and one, which

leads to elaborate theoretical properties.

In this work, we propose a new latent space model, which we refer to as

a popularity-scaled latent space model (PSLSM) for large-scale social network.

Similar to the LSM (Hoff, Raftery and Handcock (2002)), the new model as-

sumes each node i occupies a position Zi ∈ R1 in a hypothetically assumed

latent space. Then, for two arbitrary nodes i and j, the PSLSM assumes that

the likelihood for aij = 1 is negatively correlated with the scaled inter-node dis-

tance (Zi − Zj)2/γ2j . Here, (Zi − Zj)2 is the inter-node Euclidean distance, and

γj > 0 is a positive scale parameter for j. Intuitively, γj measures the popularity

of the ending node j. For example, if j is popular, then its popularity parameter

γj should be large, making the scaled inter-node distance (Zi − Zj)2/γ2j small.
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Consequently, the probability of i following j should be large. Accordingly, j’s

in-degree, defined as dj =
∑

i aij , should be high. However, the probability of

j following i remains small, because it is determined by (Zi − Zj)2/γ2i , and γi
should be small for a usual node. Accordingly, i’s in-degree should be small.

As a result, degree heterogeneity is accommodated. Popularity parameters have

been considered in several works. For example, Karrer and Newman (2011) pro-

posed a degree-corrected blockmodel for detecting communities of networks with

hubs. Sarkar and Moore (2005), Krivitsky et al. (2009), and Daniel and Chen

(2015) have tried a similar idea of including popularity parameters in a latent

space model. However, although this improved the flexibility of the model, the

computational complexity increased, primarily because they use logit links in

the models. Compared with the above models, the proposed PSLSM is a type

of LSM. Therefore, higher-order network properties (e.g., transitivity) can be

easily accommodated. However, unlike the the other methods, the PSLSM is an-

alytically tractable and thus, computationally simple owing to the probit link

function in (2.1). For instance, a comprehensive probabilistic index can be ana-

lytically derived for link prediction. Its competitive performance is demonstrated

using simulation studies and a Sina Weibo (a Chinese social network similar to

Twitter) data set.

The rest of this paper is organized as follows. Section 2 presents the model

and analytically discusses its properties. The corresponding probability index for

link prediction is constructed in Section 3. Here, we also demonstrate the finite-

sample performance of the proposed model using a simulation and a Sina Weibo

data set. A brief discussion of our findings is given in Section 4.

2. A Popularity-Scaled Latent Space Model

2.1. Model and notation

Consider a network with n nodes, indexed by 1 ≤ i ≤ n. Next, define a

binary variable aij = 1 if i follows j, and aij = 0 otherwise. Following the

standard literature, we require aii = 0 for 1 ≤ i ≤ n. Next, in a given latent

space (Hoff, Raftery and Handcock (2002)), we assume each node occupies a

position Zi ∈ Rd, d ≥ 1. These positions are collected by Z = {Zi : 1 ≤ i ≤ n}.
Then, PSLSM is defined as,

P (aij = 1|Z,P) = P (aij = 1|Zi, Zj , γj) = exp

{
−‖Zi − Zj‖

2

2γ2j

}
, (2.1)

where γj > 0 is j’s popularity parameter, and all popularity parameters are
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collected by P = {γi : 1 ≤ i ≤ n}. Note that covariates could be involved

in the model. For simplicity, we consider the model with no covariates in this

paper. Conditional on Z and P, the variables aij are assumed to be independent.

This never implies that they are marginally independent. In fact, edges could be

marginally well correlated, if they share a common node. Moreover, we can easily

verify that γj , Zi, and Zj are not jointly identifiable. To demonstrate this, let c

be an arbitrary nonzero constant. We can then redefine γ′j := cγj , Z
′
i := cZi, and

Z ′j := cZj . Then, model (2.1) remains valid. To fix the problem, we assume that

Zi is independently generated from a standard normal distribution. As a result,

γj > 0 can be identified (Refer to subsection 2.2 for further detail). Theoretically,

many distributions can be assumed for Zi. We adopt a normal distribution only

because it works well with the model formulation (2.1). Furthermore, if we assume

that d = 1, this leads to elegant and analytically tractable derivations (see the

next four subsections). Therefore, throughout this paper, we assume d = 1, and

that Zi is drawn from a standard normal distribution.

2.2. Degree distribution

We first study the degree distribution implied by (2.1). We consider both

in- and out-degrees (Wasserman and Faust (1994); Barabási and Albert (1999);

Clauset, Shalizi and Newman (2009); Zhang and Chen (2013)) given by, respec-

tively, di =
∑

j aji and d∗i =
∑

j aij . The out-degree d∗i counts the number of

followees. Intuitively, active nodes are likely to have many followees. Thus, the

out-degree d∗i can be viewed as a rough measure of how active i is. In contrast,

the in-degree di denotes the number of followers. Intuitively, popular nodes are

likely to have many followers. Thus, di should have a close relationship with i’s

popularity parameter γi. We consider the in-degree first. For convenience, let

Tij = Zi − Zj . Then, the random variable Tij follows a normal distribution with

mean 0 and variance 2. Thus, we have

E(di|γi) = (n− 1)E(aji|γi) = (n− 1)P (aji = 1|γi)

= (n− 1)

∫
R2

P (aji = 1|γi, Zi, Zj)dFZ(zi)dFZ(zj)

= (n− 1)

∫
R
P (aji = 1|γi, Tij)dFT (t)

=
(n− 1)

2
√
π

∫
R

exp

{
− t

2

2

(
1

γ2j
+

1

2

)}
dFT (t)
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=
(n− 1)γi√

2 + γ2i
. (2.2)

Note that large-scale networks are typically extremely sparse (Watts and Strogatz

(1998); Schweinberger and Handcock (2015); Huang et al. (2015)). Empirically,

the observed in-degree for each node is bounded, on average. For example, for

Sina Weibo, each node is allowed to have no more than 2,000 followees. Thus,

the average out-degree is bounded. Because the total number of links is fixed,

the average in-degree and average out-degree should be the same. This makes the

average in-degree bounded. Mathematically, this requires that E(di|γi) = Op(1).

However, by (2.2), if γi is fixed, di should diverge towards infinity as the network

size n→∞. To satisfy E(di|γi) = Op(1), we must have γi = Op(1/n). Therefore,

we redefine σi = nγi for the remainder of this paper, leading to σi = Op(1). For

convenience, we also refer to σi as i’s popularity. Then, model (2.1) becomes,

P (aij = 1|Z,P) = exp

{
−n

2(Zi − Zj)2

2σ2j

}
, (2.3)

and the expected degree (2.2) can be re-expressed as

E(di|γi) =
σi√

2 + σ2i /(n− 1)2
=

σi√
2

+Op

(
1

n2

)
. (2.4)

By (2.4) and for a given node i, the expected in-degree is determined mainly

by its popularity σi. Correspondingly, any type of degree heterogeneity can be

expressed approximately, as long as an appropriate distribution is assumed for

σi. For example, if a power-law or log-normal type distribution is assumed for σi,

we expect the observed degree sequence to be very heavy-tailed (Barabási and

Albert (1999); Liben-Nowell et al. (2005); Kim and Leskovec (2012)). Similarly,

for the out-degree,

E(d∗i |γi) =
1

n

∑
i 6=j

σj√
2

+Op

(
1

n2

)
=
E(σi)√

2
+Op

(
1

n1/2

)
,

which is approximately constant and not siginificantly affected by i’s popularity

σi. Therefore, we expect that the variability exhibited by d∗i should be substan-

tially smaller than that of di. This is confirmed by many empirical data sets (e.g.,

the Sina Weibo data set in Section 3.3).

2.3. Reciprocity

The reciprocity property is explored in this section under model (2.1). Con-

sider two arbitrary nodes i and j. P (aij = 1) is expected to be close to zero, be-
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cause large-scale social networks are typically extremely sparse. However, given

aij = 1, the conditional probability P (aji = 1|aij = 1) should be well above zero,

which is referred to as reciprocity (Faust (1988); Hoff, Raftery and Handcock

(2002)). We evaluate this probability for the PSLSM as follows:

P (aji = 1|aij = 1, γi, γj) =
P (ajiaij = 1|γi, γj)
P (aij = 1|γi, γj)

.

Note that the numerator is given by

P (ajiaij = 1|γi, γj) =

∫
R2

P (ajiaij = 1|γi, γj , Zi, Zj)dFZ(zi)dFZ(zj)

=

(
σ2i σ

2
j

2n2σ2i + 2n2σ2j + σ2i σ
2
j

)1/2

.

Combining this result with (2.1), we obtain

P (aji = 1|aij = 1, γi, γj) =

(
2n2σ2i + σ2i σ

2
j

2n2σ2i + 2n2σ2j + σ2i σ
2
j

)1/2

=

(
σ2i

σ2i + σ2j

)1/2

+Op

(
1

n2

)
. (2.5)

Note that (2.5) confirms the reciprocity property, that is, P (aji = 1|aij = 1, γi, γj)

is approximately a fixed positive number σ2i /(σ
2
i + σ2j ). However, this changes if

j has many followers. In that case, we should have a large σ2j and an extremely

small reciprocal probability. Practically, this means that many normal users like

to follow celebrities. However, celebrities seldom follow them back. Thus, the

reciprocity property fails.

2.4. Transitivity

Transitivity is another stylized network phenomenon that needs to be in-

vestigated for the PSLSM (Hoff, Raftery and Handcock (2002); Krivitsky et al.

(2009)). For three arbitrary nodes, denoted by i, j, and k, transitivity refers to the

fact that P (aji = 1) should be clearly above zero, if both i and j are connected

to a common node k in some way. Otherwise, the likelihood for aji = 1 should

be extremely low, because large-scale social networks are extremely sparse. This

amounts to evaluating the probability

P (aji = 1|i and j are connected with common node k). (2.6)

Based on how i and j are connected to node k, the above probability can be

grouped into nine different types; see Figure 1 for an intuitive illustration. In this
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Figure 1. We consider nine typical transitivity types. j is a starting node, and i is an
ending node. An arrow implies a follower-followee relationship. For example, k → j
means akj = 1.

paper, the nine structures in Figure 1 are referred to as a generalized transitivity

structure. The detailed analytical results are given below. See Appendix A for

technical details. The probabilities are,

Type 1. P (aji = 1|aikajk = 1,P) =

(
σ2i

σ2i + 2σ2k

)1/2

+Op

(
1

n2

)
,

Type 2. P (aji = 1|aikakj = 1,P) =

(
σ2i

σ2i + σ2j + σ2k

)1/2

+Op

(
1

n2

)
,

Type 3. P (aji = 1|akiajk = 1,P) =

(
σ2i

2σ2i + σ2k

)1/2

+Op

(
1

n2

)
,

Type 4. P (aji = 1|akiakj = 1,P) =

(
σ2i

σ2i + 2σ2j

)1/2

+Op

(
1

n2

)
,

Type 5. P (aji = 1|aikakiajk = 1,P) =

(
σ4i + σ2kσ

2
i

σ4i + 3σ2kσ
2
i + σ4k

)1/2

+Op

(
1

n2

)
,
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Type 6. P (aji = 1|aikakiakj = 1,P)

=

(
σ4i + σ2i σ

2
k

σ4i + σ2i σ
2
j + σ2jσ

2
k + 2σ2i σ

2
k

)1/2

+Op

(
1

n2

)
,

Type 7. P (aji = 1|aikakjajk = 1,P)

=

(
σ2i σ

2
j + σ2jσ

2
k

σ2i σ
2
j + σ2i σ

2
k + 2σ2jσ

2
k + σ4k

)1/2

+Op

(
1

n2

)
,

Type 8. P (aji = 1|akiajkakj = 1,P)

=

(
σ2i σ

2
j + σ2i σ

2
k

2σ2i σ
2
k + σ2jσ

2
k + 2σ2i σ

2
j

)1/2

+Op

(
1

n2

)
,

Type 9. P (aji = 1|aikakiajkakj = 1,P)

=

(
σ4i σ

2
j + σ4i σ

2
k + σ2i σ

4
k + σ2i σ

2
jσ

2
k

σ4i σ
2
j + σ4i σ

2
k + 2σ2i σ

4
k + 3σ2i σ

2
jσ

2
k + σ4kσ

2
j

)1/2

+Op

(
1

n2

)
.

The above results share the following common properties. Holding σ2i , σ
2
j ,

and σ2k fixed and letting n→∞, all transitivity probabilities given above converge

to a nonzero constant. However, if the common node k has many followers in an

extreme case σ2k → ∞, the transitivity probabilities of Types 1, 2, 3, 5, and 7

converge to zero. This is because, for these five cases, the super popular common

node k fails to follow i and j simultaneously. This provides no evidence that the

latent positions of i and j should be sufficiently close to each other. However,

as long as k follows both i and j simultaneously (i.e., Types 4, 6, 8, and 9), the

transitivity property remains valid, even if k has many followers. This suggests

that the probability (2.6) is greatly affected by both the transitivity type (i.e.,

one of the above nine types) and the popularity level of the common node (i.e,

σ2k).

2.5. Common neighbors

The previous subsection presented explicit expressions of nine types of gen-

eralized transitivity structures, among which, we find the Type 3 is particularly

important. This is because, for many empirical directed networks, this type of

transitivity is especially useful for link predictions (Lü and Zhou (2011); Yu and

Wang (2014)); see the next section for further detail. The Sina Weibo data set in

Section 3.3 provides empirical evidence. Thus, we are motivated to explore this

particular type of transitivity property in greater depth. Specifically, we focus

on the type of network structure given in Figure 2, which can be viewed as a
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Figure 2. Common neighbors. j is a starting node and i is an ending node. i and j share
m common neighbors, denoted by k1, k2, . . . , km.

generalization of the Type 3 transitivity in Figure 1. By Figure 2, there exist m

common neighbors (of Type 3) of i and j. Thus, the conditional likelihood of j

following i is a problem of interest. Theoretically, this amounts to evaluating the

transitivity probability in (2.6), but with multiple common neighbors, which is

P

(
aji = 1

∣∣∣∣∣
m∏
l=1

ajklakli = 1,P

)
=

{ ∑m
l=1(σ

2
kl

+ σ2i )
−1

σ−2i +
∑m

l=1(σ
2
kl

+ σ2i )
−1

}1/2

+Op

(
1

n2

)
.

(2.7)

See Appendix B for the technical details. Once again, the transitivity proba-

bility in (2.7) can be arbitrarily close to 0, if the common neighbors all have

many followers. Note that if i and j share only m − 1 common neighbors (i.e.,

k1, . . . , km−1), the corresponding transitivity probability becomes

P

(
aji = 1

∣∣∣∣∣
m−1∏
l=1

ajklakli = 1,P

)
=

{ ∑m−1
l=1 (σ2kl + σ2i )

−1

σ−2i +
∑m−1

l=1 (σ2kl + σ2i )
−1

}1/2

+Op

(
1

n2

)
.

(2.8)

We can easily verify that( ∑m
l=1(σ

2
kl

+ σ2i )
−1

σ−2i +
∑m

l=1(σ
2
kl

+ σ2i )
−1

)1/2

≥

( ∑m−1
l=1 (σ2kl + σ2i )

−1

σ−2i +
∑m−1

l=1 (σ2kl + σ2i )
−1

)1/2

.

The interpretation confirms our intuition. That is, the more common neighbors

two nodes share, the more likely it is that they are connected. In an extreme

situation, as the number of shared common neighbors tends to infinity, the prob-

ability of the nodes being connected tends to one.

Note that similar conclusions were also obtained in recent studies. For exam-
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ple, Sarkar, Chakrabarti and Moore (2011) provide upper and lower bounds of

the conditional link probability P (aji = 1|
∏m
l=1 aiklajkl = 1,P) for the classical

LSM Hoff, Raftery and Handcock (2002). They proved that the probability tends

to one as the number of common neighbors tends to infinity. Sarkar, Chakrabarti

and Bickel (2015) established the same results for stochastic block models. How-

ever, the proofs in both studies are technically challenging because a number of

sophisticated high-level inequalities need to be used. In contrast, (2.8) explicitly

presents the conditional link probability, which is fairly intuitive and straightfor-

ward.

3. Link Prediction

3.1. Probability index

We next demonstrate how the proposed PSLSM can be used in a large-

scale social network. Here, we discuss one particular type of application, namely

link prediction. Statistically, the problem is one of estimating the likelihood of

aji = 1, based on the observed network information. This is of fundamental

importance in industry applications (Lü and Zhou (2011)). As a result, many

methods have been developed. Define Γini = {j : aji = 1} as the set of nodes

following i, and Γouti = {j : aij = 1} as the set of nodes that i follows. Then,

for two arbitrary nodes i and j, the set Γini
⋂

Γoutj contains the Type 3 common

neighbors between i and j. Its total number is given by |Γini
⋂

Γoutj |, which is

referred to as the common neighbor index (CNI) in directed networks (Yu and

Wang (2014)). Intuitively, two nodes i and j are more likely to be connected, if

they share a great number of common connected nodes. Thus, the simplest way

to conduct a link prediction for aji is to check whether CNI is sufficiently large

(Kossinets (2006); Yu and Wang (2014); Lü and Zhou (2011)). To further improve

the CNI, a number of variants have been developed. For example, Chowdhury

(2010) penalized |Γini
⋂

Γoutj | using the degrees of each node, leading to the Salton

Index (SI). See Lü and Zhou (2011) for a comprehensive discussion and Table 1

for a succinct summary of similar indices.

The indices listed in Table 1 are constructed based on two sources of in-

formation: (1) the number of nodes in the neighborhood set Γini
⋂

Γoutj ; and (2)

the degrees di, dj , or d∗k (k ∈ Γini
⋂

Γoutj ). Past experience suggests that the in-

dices given in Table 1 are closely related to whether aji = 1. However, none

of the indices give a direct estimate of the conditional link probability (Sarkar,

Chakrabarti and Moore (2011)). In contrast, a comprehensive estimate can be
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Table 1. Local similarity indices for a symmetric network.

Method Index
Common Neighbors Index (CNI) |Γin

i

⋂
Γout
j |

Salton Index (SI) |Γin
i

⋂
Γout
j |/

√
di × dj

Sørensen Index (SOI) 2|Γin
i

⋂
Γout
j |/(di + dj)

Hub Promoted Index (HPI) |Γin
i

⋂
Γout
j |/min{di, dj}

Hub Depressed Index (HDI) |Γin
i

⋂
Γout
j |/max{di, dj}

Leicht-Holme-Newman Index (LHNI) |Γin
i

⋂
Γout
j |/(di × dj)

Adamic-Adar Index (AAI)
∑

k∈Γin
i

⋂
Γout
j

(log d∗k)−1

Resource Allocation Index (RAI)
∑

k∈Γin
i

⋂
Γout
j

d∗−1
k

obtained under the PSLSM using (2.7). More specifically, a probability index

(PI) can be constructed as

PI(j, i) =

∑m
l=1(σ̂

2
kl

+ σ̂2i )
−1

σ̂−2i +
∑m

l=1(σ̂
2
kl

+ σ̂2i )
−1 , (3.1)

where σ̂i =
√

2di and is an asymptotically unbiased estimate of σi, by (2.4). In

contrast to the aforementioned methods, PI(j, i) is a direct measure of the con-

ditional link probability. To implement the proposed PI method, three remarks

are required.

Remark 1. To make a prediction, for each user j, other users i (i 6= j) are

reordered based on decreasing PI values. Thus, a higher PI value indicates a

larger probability of a link from j to i. In practice, a network platform only

recommends the top L (for example, 3–5) users with the highest probability for

user j.

Remark 2. If j and i have no connected nodes in common, then Γini
⋂

Γoutj = ∅,
which means PI(j, i) = σ̂2i . Thus, those i who have no connected nodes in common

with j have the same PI values. If only Γink
⋂

Γoutj 6=∅, we have PI(j, k) > PI(j, i).

Remark 3. With regard to the computational complexity of PI, we need to

estimate σi. Because σ̂i =
√

2di, the cost of calculating PI is linear in the sample

size n, that is, O(n). Therefore, PI has computational complexity of the same

order as the local similarity indices defined in Table 1.

3.2. Simulation studies

To demonstrate the finite-sample performance of the proposed PI method,

we present three examples.

Example 1. (PSLSM with Power-law Popularity) In this example, the adjacency
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matrix is generated according to the PSLSM defined in (2.3), as follows. First,

the popularity parameters σi(1 ≤ i ≤ n) are independently and identically drawn

from a power-law-type distribution P (σi = k) = ck−α, where c is a normalizing

constant. The exponent parameter α ∈ {1.7, 1.5, 1.3}. Second, for each node i,

we generate the latent space variable Zi from the standard normal distribution.

Third, we generate the adjacency matrix A from (2.3).

Example 2. (PSLSM with Hub Nodes) We repeat the steps in Example 1 to

obtain an initial adjacency matrix A, except that σi (1 ≤ i ≤ n) is independently

and identically drawn from a standard normal distribution. Then, we randomly

select H nodes (H ∈ {0, 100, 200}) to be super popular nodes, or hub nodes (New-

man, Barabási and Watts (2006)). A total of 600 nodes are randomly selected to

follow each hub node.

Example 3. (Power-law Degree) We follow Clauset, Shalizi and Newman (2009)

to simulate A using power-law distributed degrees. First, in-degree di is generated

according to the discrete power-law distribution, that is, P (di = k) = ck−α, as

in Example 1. The exponent parameter α ∈ {1.7, 1.5, 1.3}. Here, a smaller α

indicates a heavier tail of the distribution. Next, for the ith node, we randomly

select di nodes as its followers, with aji = 1.

We compare the performance of PI with the local similarity indices listed

in Table 1. The prediction accuracy is measured by the area under the receiver

operating characteristic curve, referred to as AUC (Lü and Zhou (2011)). The

network size n is fixed at 1,000. For a reliable evaluation, the experiment is

randomly replicated M = 1,000 times. The value of ÂUC
(m)

is calculated based

on 10-fold cross-validation in the mth (1 ≤ m ≤ M) replication. Here, 10-fold

cross-validation means we randomly split the data into 10 parts. One part is

used as a testing set, and the remainder are used as training sets. Then, ÂUC
(m)

k

can be computed using all PI values and aij in the k-th fold. Thus, ÂUC
(m)

=

10−1
∑10

k=1 ÂUC
(m)

k is the average of the AUC results from the testing set for

all 10 parts. We report both ÂUC = M−1
∑

m ÂUC
(m)

and the Monte Carlo

standard deviation of ÂUC
(m)

, that is, SE∗ = {M−1
∑

m(ÂUC
(m)
− ÂUC)2}1/2.

Detailed results for these three examples are shown in Tables 2–4.

Based on Tables 2, 3, and 4, we make the following observations. First, in

terms of ÂUC, PI has a similar link prediction capability to the other indices when

α = 1.7 in Example 1 and H = 0 in Example 2. Second, in all other cases, PI

outperforms the other methods, because the latter do not provide direct estimates
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Table 2. Detailed results for the indices in Example 1.

Method PI RAI CNI AAI HDI HPI LHNI SI SOI
α = 1.7 0.750 0.747 0.749 0.749 0.749 0.749 0.746 0.749 0.749

(0.015) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.014)
α = 1.5 0.795 0.772 0.789 0.788 0.788 0.789 0.784 0.789 0.788

(0.010) (0.011) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
α = 1.3 0.845 0.799 0.817 0.817 0.814 0.817 0.808 0.818 0.815

(0.007) (0.009) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.007)

Table 3. Detailed results for the indices in Example 2.

Method PI RAI CNI AAI HDI HPI LHNI SI SOI
H = 0 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862 0.862

(0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016)
H = 100 0.832 0.811 0.811 0.811 0.812 0.808 0.785 0.812 0.812

(0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.014) (0.005) (0.005)
H = 200 0.822 0.787 0.787 0.787 0.787 0.773 0.761 0.788 0.787

(0.005) (0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.004) (0.005)

Table 4. Detailed results for the indices in Example 3.

Method PI RAI CNI AAI HDI HPI LHNI SI SOI
α = 1.7 0.714 0.699 0.707 0.706 0.702 0.709 0.689 0.703 0.702

(0.034) (0.031) (0.032) (0.033) (0.031) (0.031) (0.033) (0.031) (0.032)
α = 1.5 0.838 0.799 0.815 0.815 0.797 0.822 0.786 0.477 0.477

(0.017) (0.015) (0.015) (0.015) (0.014) (0.015) (0.015) (0.018) (0.018)
α = 1.3 0.9107 0.843 0.843 0.843 0.810 0.853 0.787 0.829 0.811

(0.006) (0.005) (0.005) (0.005) (0.005) (0.004) ( 0.006) (0.005) (0.005)

of the link probability. Last, the ÂUC of PI increases as α decreases, or as the

number of popular nodes H increases. Therefore, PI is quite suitable for a degree

distribution with a heavier tail.

3.3. A real-data example

We next illustrate the performance of the proposed method using a real-data

analysis. The data are collected from Sina Weibo (www.weibo.com), which has

more than 500 million registered users and is the largest social media platform,

similar to Twitter in China. For this example, we start with the four official

Weibo accounts of four well-respected MBA programs in China. However, owing

to a constraint imposed by the Sina Weibo API, only n = 8, 591 active followers

are obtained. Their follower–followee relationships are recorded by the adjacency

matrix A = (aij) ∈ Rn×n.

www.weibo.com
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Figure 3. Histograms of the degrees in the real-data example. The left panel is the
histogram of in-degrees and the right panel is that of out-degrees.

To better understand the network structure, we provide histograms for the

in- and out-degrees in Figure 3. We find that both distributions are highly skewed.

Comparatively speaking, the distribution of the in-degree has a far heavier tail.

Next, we evaluate the reciprocity property. To this end, we calculate the empiri-

cal link probability (or network density) as P̂ (aij = 1) = (
∑
aij)/{n(n − 1)} =

0.0107, which is fairly close to zero. However, the conditional probability is

P̂ (aji = 1|aij = 1) =
∑
aijaji/

∑
aij = 0.1892, which is much larger and well

bounded away from zero. This confirms that the reciprocity property does hold

in this real data set.

Next, we examine the transitivity properties. We consider the Type 1 tran-

sitivity in Figure 1 first. This probability is estimated by P̂1 =
∑
aikajkaji(1 −

aki)(1−akj)/
∑
aikajk(1−aki)(1−akj) = 0.0289. Similar calculations can be per-

formed for the other transitivity types. This leads to P̂2 = 0.0219, P̂3 = 0.2385,

P̂4 = 0.1929, P̂5 = 0.1979, P̂6 = 0.0954, P̂7 = 0.0652, P̂8 = 0.2238, and

P̂9 = 0.2495. Thus, Type 3 has an excellent transitivity probability, P̂3 = 0.2385,

and ranks as the second highest of these probabilities. This implies that link pre-

dictions based on Type 3 transitivity should be useful. Even though the Type 9

transitivity probability is slightly larger than that of Type 3 (i.e., P̂3 = 0.2385 vs.

P̂9 = 0.2495), the total number of triplets that qualify is over ten times smaller for

Type 9:
∑
aikakiajkakj = 37, 644, 336 for Type 9, and

∑
aikajk = 469, 566, 693

for Type 3. As a result, focusing on Type 3 transitivity in (3.1) is empirically

justified. Lastly, we compare the performance of PI with that of the competing

methods listed in Table 1. The average AUCs based on 10-fold cross-validation
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Table 5. AUC values of the various methods for the sina weibo data set.

PI RAI CNI AAI HDI HPI LHNI SI SOI
0.899 0.871 0.888 0.886 0.836 0.868 0.613 0.861 0.847

are summarized in Table 5. Once again, PI performs best, with an associated

AUC value of 0.899. The second-best performance was achieved by CNI with an

AUC of 0.888.

4. Conclusion

To conclude the paper, we discuss a number of interesting topics for fu-

ture study. First, individual characteristics may also influence the network struc-

ture, and so should be taken into account. Second, the PSLSM provides a flexi-

ble framework model for large-scale network structures. However, extending the

model to include other network structures, such as community structures, would

be worthwhile.
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Appendix

Type 1 transitivity probability

Before the calculation, we define the following matrices,

Bij =

 1 −1 0

−1 1 0

0 0 0

 , Bjk =

0 0 0

0 1 −1

0 −1 1

 and Bik =

 1 0 −1

0 0 0

−1 0 1

 .

To calculate the probability of Type 1 transitivity amounts to compute,

P1 := P (aji = 1|aikajk = 1, γk, γi) =
P (ajiaikajk = 1|γk, γi)
P (aikajk = 1|γk)

. (A.1)

First, by Eq. (2.1), we compute the denominator of the right hand side in

(A.1),

P (aikajk = 1|γk, Zi, Zj , Zk) = exp

[
−
{

(Zi − Zk)2

2γ2k
+

(Zj − Zk)2

2γ2k

}]
= exp

{
−1

2
X>(γ−2k Bik + γ−2k Bjk)X

}
, (A.2)

where X = (Zi, Zj , Zk)
> satisfies a standard normal distribution N (0, I), I is

an identical matrix. Define Σ1 = γ−2k (Bik + Bjk) + I, by integration over X,

P (aikajk = 1|γk) = (det Σ1)
−1/2 = γ2k(γ4k + 4γ2k + 3)−1/2,

Second, we consider the numerator of the right hand side in (A.1). Similarly

with (A.2), P (ajiaikajk = 1|γi, γk, Zi, Zj , Zk) = exp{−0.5X>(γ−2k Bik+γ−2k Bjk+

γ−2i Bij)X}. Thus, define Σ′1 = Σ1 + γ−2i Bij , we have P (ajiaikajk = 1|γk, γi) =

(det Σ′1)
−1/2 = γ2kγi(γ

4
kγ

2
i + 2γ4k + 4γ2kγ

2
i + 6γ2k + 3γ2i )−1/2.

Last, Type 1 transitivity is P1 = (γ2kγ
2
i + γ2i )1/2(γ2kγ

2
i + γ2i + 2γ2k)−1/2.

Type 2 transitivity probability

To calculate the probability of Type 2 transitivity amounts to compute,

P2 := P (aji = 1|aikakj = 1, γk, γj , γi) =
P (ajiaikakj = 1|γk, γj , γi)
P (aikakj = 1|γk, γj)

. (A.3)

First, based on Eq. (2.1), the denominator of the right hand side in (A.3)

is, P (aikakj = 1|γk, γj , Zi, Zj , Zk) = exp{−0.5X>(γ−2k Bik + γ−2j Bjk)X}. Thus,

by integration over X, P (aikakj = 1|γk, γj) = (det Σ2)
−1/2 = (γ2kγ

2
j )1/2 (3 +

2γ2k + 2γ2j+ γ2kγ
2
j )−1/2. where Σ2 = γ−2k Bik + γ−2j Bjk + I. Second, by (2.1),

P (ajiaikakj = 1|γj , γk, Zi, Zj , Zk) = exp{−0.5X>(γ−2i Bij+γ
−2
k Bik+γ−2j Bjk)X}.
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Thus we have,

P (ajiaikakj = 1|γk, γj , γi) = (det Σ′2)
−1/2

= γkγjγi(γ
2
kγ

2
j γ

2
i + 2γ2i γ

2
j + 2γ2j γ

2
k + 2γ2kγ

2
i + 3γ2i + 3γ2j + 3γ2k)−1/2,

where Σ′2 = Σ2 + γ−2i Bij . Last, we have the Type 2 transitivity probability is,

P2 =

(
γ2kγ

2
j γ

2
i + 2γ2j γ

2
i + 2γ2kγ

2
i + 3γ2i

γ2kγ
2
j γ

2
i + 2γ2i γ

2
j + 2γ2j γ

2
k + 2γ2kγ

2
i + 3γ2i + 3γ2j + 3γ2k

)1/2

.

The other types of transitivity probability could be derived in the similar steps,

we only list the key steps as follows.

Type 3 transitivity probability

Consider the probability P3 := P (aji = 1|ajkaki = 1, γk, γi). First, by Eq.

(2.1), P (ajkaki = 1|γk, γi) = (det Σ3)
−1/2, where, Σ3 = γ−2k Bjk + γ−2i Bik + I.

Second, P (ajiajkaki = 1|γk, γi) = (det Σ′3)
−1/2, where Σ′3 = Σ3 + γ−2i Bij . As a

result, we can get the Type 3 transitivity probability as P3 = (γ4i γ
2
k+2γ4i +2γ2i γ

2
k+

3γ2i )1/2 (γ4i γ
2
k + 2γ4i + 4γ2i γ

2
k + 6γ2i + 3γ2k)−1/2.

Type 4 transitivity probability

Define P4 := P4(aji = 1|akjaki = 1, γj , γi). Based on Eq. (2.1), P (akjaki =

1|γj , γi) = (det Σ4)
−1/2, where Σ4 = γ−2j Bjk + γ−2i Bik + I. Similarly, we know

P (ajiakjaki = 1|γj , γi) = (det Σ′4)
−1/2, where Σ′4 = Σ4 + γ−2i Bij . Then, the Type

4 transitivity probability is P4 = (γ4i γ
2
j + 2γ4i + 2γ2i γ

2
j + 3γ2i )1/2 (γ4i γ

2
j + 2γ4i +

4γ2i γ
2
j + 6γ2i + 3γ2j )−1/2.

Type 5 transitivity probability

Define P5 := P (aji = 1|ajkaikaki = 1, γk, γi). Thus we have, P (ajkaikaki =

1|γk, γi) = (det Σ5)
−1/2, where Σ5 = γ−2k Bjk + γ−2k Bik + γ−2i Bik + I. In the

meanwhile, P (ajiajkakiaki = 1|γj , γi) = (det Σ′5)
−1/2, where Σ′5 = Σ5 + γ−2i Bij .

Finally, we can get

P5 =

(
γ4i γ

4
k + 4γ4i γ

2
k + 3γ4i + 2γ2i γ

4
k + 3γ2i γ

2
k

γ4i γ
4
k + 4γ4i γ

2
k + 4γ2i γ

4
k + 3γ4i + 3γ4k + 9γ2i γ

2
k

)1/2

.

Type 6 transitivity probability

Define P6 := P (aji=1|akjaikaki=1, γk, γi, γj) Based on Eq. (2.1), P (akjaikaki
= 1|γk, γi, γj) = (det Σ6)

−1/2, where Σ6 = γ−2j Bjk + γ−2k Bik + γ−2i Bik + I. Fur-

thermore, P (ajiakjaikaki = 1|γk, γj , γi) = (det Σ′6)
−1/2, where Σ′6 = Σ6 +γ−2i Bij .
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Thus,

P6 =

(
γ4i γ

2
kγ

2
j + 2γ4i γ

2
k + 2γ4i γ

2
j + 2γ2i γ

2
kγ

2
j + 3γ4i + 3γ2i γ

2
k

γ4i γ
2
kγ

2
j + 2γ4i γ

2
k + 2γ4i γ

2
j + 3γ4i + 4γ2i γ

2
kγ

2
j + 6γ2i γ

2
k + 3γ2i γ

2
j + 3γ2j γ

2
k

)1/2

.

Type 7 transitivity probability

Define P7 := P (aji = 1|ajkakjaik = 1, γk, γj , γi). Based on Eq. (2.1), P (ajkakj
aik = 1|γk, γj) = (det Σ7)

−1/2, where Σ7 = γ−2k Bjk + γ−2j Bjk + γ−2k Bik + I; and

P (ajiajkakjaik = 1|γj , γk, γi) = (det Σ′7)
−1/2, where Σ′7 = Σ7 + γ−2i Bij . Thus,

P7 =

(
γ2i γ

4
kγ

2
j + 2γ2i γ

4
k + 4γ2i γ

2
j γ

2
k + 3γ2i γ

2
k + 3γ2i γ

2
j

γ2i γ
4
kγ

2
j + 2γ2i γ

4
k + 4γ2i γ

2
j γ

2
k + 3γ2i γ

2
k + 3γ2i γ

2
j + 3γ4kγ

2
j + 3γ4k + 3γ2kγ

2
j

)1/2

.

Type 8 transitivity probability

Define P8 := P (aji = 1|ajkakjaki = 1, γk, γj , γi). Based on Eq. (2.1), P (ajkakj
aki = 1|γk, γj , γi) = (det Σ8)

−1/2, where Σ8 = γ−2k Bjk + γ−2j Bjk + γ−2i Bik + I;

and we know that P (ajiajkakjaki = 1|γj , γk, γi) = (det Σ′8)
−1/2, where Σ′8 =

Σ8 + γ−2i Bij . Thus we can get

P8 =

(
γ4i γ

2
kγ

2
j + 2γ4i γ

2
k + 2γ4i γ

2
j + 2γ2i γ

2
kγ

2
j + 3γ2i γ

2
j + 3γ2i γ

2
k

γ4i γ
2
kγ

2
j + 2γ4i γ

2
k + 2γ4i γ

2
j + 4γ2i γ

2
kγ

2
j + 6γ2i γ

2
k + 6γ2i γ

2
j + 3γ2j γ

2
k

)1/2

.

Type 9 transitivity probability

Define P9 := P (aji = 1|ajkakjaikaki = 1, γk, γj , γi). Based on Eq. (2.1),

P (ajkakjaikaki = 1|γk, γj , γi) = (det Σ9)
−1/2, where Σ9 = γ−2k Bjk + γ−2j Bjk +

γ−2i Bik+γ−2k Bik+I. And P (ajiajkakjaikaki = 1|γi, γj , γk) = (det Σ′9)
−1/2, where

Σ′9 = Σ9 + γ−2i Bij . Define Γijk = γ4i γ
4
kγ

2
j + 2γ4i γ

4
k + 4γ4i γ

2
kγ

2
j + 3γ4i γ

2
k + 3γ4i γ

2
j .

Thus,

P9 =

(
Γijk + 2γ2i γ

4
kγ

2
j + 3γ2i γ

4
k + 3γ2i γ

2
j γ

2
k

Γijk + 4γ2i γ
4
kγ

2
j + 6γ2i γ

4
k + 9γ2i γ

2
j γ

2
k + 3γ4kγ

2
j

)1/2

.

Technical details for (2.7)

The common neighbors probability could be written as,

P

(
aji=1

∣∣∣∣∣
m∏
l=1

ajklakli = 1,P

)
=
P (aji

∏m
l=1 ajklakli = 1|P)

P (
∏m
l=1 ajklakli = 1|P)

(A.4)
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First, we calculate the denominator of (A.4) as P (
∏m
l=1 ajklakli = 1|P) =

1

(2π)m/2+1

∫
Rm+2

exp

(
−1

2
XΣmX

>
)
dX = (det Σm)−1/2

where X = (Zi, Zj , Zk1 , . . . , Zkm)>, Σm = Bm + Im. Further define Σm =

[M,N ;N>, O], where,

M =

(
m/γ2i + 1 0

0
∑m

l=1 1/γ2kl + 1

)
2×2

, N =

(
−1/γ2i , . . . ,−1/γ2i
−1/γ2k1 , . . . ,−1/γ2km

)
2×m

.

O =

1/γ2k1 + 1/γ2i + 1 0 . . .

0
. . . 0

0 0 1/γ2km + 1/γ2i + 1


m×m

,

So we have det(Σm) = det(M −NO−1N>) det(O).

Second, we compute P (aji
∏m
l=1 ajklakli = 1|P) = (det Σ′m)−1/2, where Σ′m =

B′m + Im, B′m = Bm + L, and

L =

 1/γ2i −1/γ2i , 0, . . .

−1/γ2i 1/γ2i , 0, . . .

0
. . .


(m+2)×(m+2)

.

Thus, Σ′m =

(
M ′ N

N> O

)
and M ′ =

(
(m+ 1)/γ2i + 1 −1/γ2i
−1/γ2i

∑m
l=1 1/γ2kl + 1 + 1/γ2i

)
.

Finally, the common neighbors probability is,

P

(
aji=1

∣∣∣∣∣
m∏
l=1

aiklajkl=1,P

)
=

{
(det Σm)

(det Σ′m)

}−1/2
=

{
det(M −NO−1N>)

det(M ′ −NO−1N>)

}−1/2
.

Define b =
∑m

l=1 γ
2
kl

(γ2kl + γ2i + γ2klγ
2
i )−1/2, c =

∑m
l=1 γ

2
i (γ2kl + γ2i + γ2klγ

2
i )−1/2

and d =
∑m

l=1 (γ2kl + γ2i + γ2klγ
2
i )−1/2 for simplicity, then det(M − NO−1N>) =

(d+ c+ 1)(d+ b+ 1)− d2 and det(M ′ −NO−1N>) = (d+ c+ 1 + 1/γ2i )(d+ b+

1 + 1/γ2i )− (d+ 1/γ2i )2. Thus, by σi = nγi, we have,

P

(
aji = 1

∣∣∣∣∣
m∏
l=1

ajklakli = 1,P

)
=

{ ∑m
l=1 (σ2kl + σ2i )

−1

1/σ2i +
∑m

l=1 (σ2kl + σ2i )
−1

}1/2

+Op

(
1

n2

)
.
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