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1. Additional figures

Figure 1: Scatter plots of the square roots of the PM2.5 observations, with respect to relative

humidity (left) and temperature (right)



2. PROOF OF THEOREM 1

Figure 2: (Top) Standardized residuals are plotted against fitted values; (Bottom) Standardized

residuals are plotted corresponding to different months

2. Proof of Theorem 1

Note that the set-up of our problem is similar to a generalized least squares (GLS) problem, where Y = Xθ + ε, such that

ε ∼ N(0, σ2Ω). Following our previous notations, Ω = (Σv +D), where D is a diagonal matrix with diagonal elements equal

to some τ2j .

Now, for proving the required result, we define three different estimators of θ. Below, θ̂ is the estimator we are considering
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in this study, θ̂G denotes the usual GLS estimator, and θ̂F is a feasible GLS estimator.

θ̂ = (X ′Ω̂−1/2W Ω̂−1/2X)−1(X ′Ω̂−1/2W Ω̂−1/2Y )

θ̂G = (X ′Ω−1X)−1(X ′Ω−1Y )

θ̂F = (X ′Ω̂−1X)−1(X ′Ω̂−1Y )

In the above, W is the weight matrix as defined in Section 3.2 of the main paper and Ω̂ is our estimate of the covariance

matrix. For convenience, we use N = nT hereafter. Following Baltagi [2011, Chapter 9], we know that
√
N(θ̂G − θ) and

√
N(θ̂F − θ) have the same asymptotic distribution N(0, σ2Q−1), where Q = lim(X ′Ω−1X/N) as N → ∞, if X ′(Ω̂−1 −

Ω−1)X/N
P−→ 0 and X ′(Ω̂−1−Ω−1)ε/N

P−→ 0. Further, a sufficient condition for this to hold is that Ω̂ is a consistent estimator

for Ω and that X has a satisfactory limiting behavior.

Let us now assume that the estimate τ̂2j is consistent for τ2j , for all j. That would automatically ensure the consistency of

Ω̂ and thereby we can conclude that θ̂F and θ̂G have same asymptotic distribution. Further, note that X ′Ω̂−1/2W Ω̂−1/2X −

X ′Ω̂−1X = X ′Ω̂−1/2(W − I)Ω̂−1/2X. Taking any appropriate norm (2-norm, for example) on both sides, we can argue that

∥∥∥X ′Ω̂−1/2W Ω̂−1/2X −X ′Ω̂−1X
∥∥∥→ 0

as N →∞, in view of the fact that ‖W − I‖ = 2/ logN , and that Ω̂ is a consistent estimator for Ω, the population covariance

matrix. In a similar fashion, we can show that

∥∥∥X ′Ω̂−1/2W Ω̂−1/2ε−X ′Ω̂−1ε
∥∥∥→ 0

as N →∞, and thus we can conclude that
√
N(θ̂ − θ) and

√
N(θ̂F − θ) have the same asymptotic distribution.

Clearly, all we need to prove is that τ̂2j is a consistent estimator for τ2j for all j. To this end, recall that τ̂2j is the

maximum likelihood estimator (MLE) of τ2j for the problem ε̂j ∼ N(0, (Σ
(j)
v + τ2j I)), where ε̂j is the vector of scaled residuals

corresponding to the jth season and Σ
(j)
v is the submatrix of Σv corresponding to the same. It is known that MLE is a

consistent estimator for such problems. Let nj be the length of εj . Since T →∞, it is clear that the number of observations

per season will also approach infinity, and thus nj → ∞. Hence, τ̂2j is consistent for τ2j and that ends our proof for the

asymptotic normality of θ̂. The consistency result follows automatically from the above.
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