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S1 Dimension reduction with factor models

For a general [-variate problem, where the dependence is specified through
a Gaussian Process w*(s) ~ GP;(0,C(-|8)), the specification of C(-|0) is
complicated by the fact that it must be a nonnegative definite function, and

it must meet the symmetry constraint C(h|6) = C(—h|0) (see |[Ver Hoef
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and Barry, 1998} (Chiles and Delfiner} 2009; |Genton and Kleiber;, [2015)). In
addition to the difficulty in specifying a suitable covariance function, the size
of the LiDAR signals in our application makes modeling directly this joint
high-dimensional spatial component a computationally daunting task. As
such, we take advantage of the gains achieved using the spatial factor model
structure, which reduces the computational burden in two ways. First, it
dramatically reduces the dimensionality of the stochastic processes used,
and second, it assumes that the multivariate stochastic processes considered
are composed of independent univariate processes.

Under the SFM structure, the spatial dependence is introduced by
defining the spatial process as w*(s) = Aw(s) ~ GP(0,H(-|¢)), where
A is a factor loadings matrix (commonly tall and skinny) and w(s) is a
small-dimensional vector of independent spatial GP’s, providing the non-

separable multivariate cross-covariance function given by
Hh|¢p) = cov(Aw(s),Aw(s+h))
Zpk LA, = ch )Tk, (SL1)

for locations s, s+h € D. Here, C(h|¢x)’s are univariate parametric correla-
tion functions, and Ay is the kth column of A, which also corresponds to the
eigenvector associated to the only positive eigenvalue of the rank one matrix

Ty. This cross-covariance matrix is induced by ¢-variate (¢ < [) spatial fac-
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tors w(s) with independent components wg(s) ~ GP(0,Ck(-| ¢x)). Hence,
var(wg(s)) = 1, cov(wg(s), w,(r)) = 0 for k # r, and cov(w(s), wi(s+h)) =
Cr(h| o).

Additional constraints are required for factor models to be identifiable
(Anderson), [2003). Nevertheless, conveniently with spatial factor models
only two groups of orthogonal transformations lead to non-identifiability is-
sues, as shown in Ren and Banerjee (2013) . The first of them is produced
by an orthogonal matrix Py resulting from the product of Householder re-
flectors, which is diagonal with 1’s and —1’s. The non-identifiability comes
from the fact that PyH(h|¢)P); = H(h|¢). The second type are per-
mutation matrices Pp, given that APpP,w(s) < Aw(s), where “L7 rep-
resents equality in distribution. Both of these situations can be avoided,
either through the conventional approach of making the upper triangle of
the loadings matrix equal to 0 and its diagonal elements all equal to 1; or as
in Ren and Banerjee (2013)), by fixing the sign of one element in each column

of A, while enforcing an ordering constraint on the univariate correlation

functions.
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S2 Nearest Neighbor Gaussian Processes

In spite of the dimension reduction achieved with the factor model struc-
ture, given the formidable number of locations considered, even the factor
model representation is prohibitive with dense Gaussian processes. Under
a Bayesian approach, ¢, + ¢, covariance matrices, each of dimension n X n,
have to be estimated and inverted at each iteration of the sampling algo-
rithm. In view of this, we resort to the sparse approximation provided by
the NNGP approach.

The Nearest Neighbor Gaussian Process approach belongs to the class
of sparsity inducing methods that introduce zeros in the precision matrix to
impose conditional independence, exploiting the graphical structure avail-
able for points distributed across space and/or time. The idea underlying
this method is to derive a sparse approximation of a parent GP, which is a
proper GP itself. The NNGP has been shown to provide an accurate and
computationally efficient approximation to the dense parent GPs (see for
example Datta et al. 2016b,cla; Finley et al., [2017).

To elaborate, consider a univariate spatial Gaussian Process w(s) ~
GP(0,C(-| ¢)) for s € D C R?% Recall that when observed at a finite
collection of locations T = {sy,...,s,}, the process constrained to these

locations is such that w = (w(s;),...,w(s,)) ~ N, (0,C), with C =
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<<C(||SZ —s;; ¢)>> Alternatively, this joint density can be decomposed

into the product of conditionals
p(wy) p(walwy)...p(wiw; 11 <j<i)...p(wy|w; : 1 <j<n),

where w; = w(s;). This representation and the multivariate normality of
w imply the linear model given by w; = n; and w; = Z;;ll bijw; + n;, with
n; ~ N(0,7;), where 7 = var(w;) and 7; = var(w;|w; : 1 < j <1).

If locations are suitably ordered, a good approximation can be obtained
by replacing the conditioning set {w; : 1 < j <}, for i = 2,...,n, by a
subset N (i) that contains a reduced number of nearest neighbors. When
considering neighborhoods of sizes up to m, the sparse approximation to
the dense linear model becomes

wi =Y bywi & = biwne + &, (S2.1)

Sj EN(2)

where N (i) contains the m; = min {m,i — 1} nearest neighbors within the
conditioning set {w; : 1 < j < i}, and wyu) = {w; :s; € N(i)}. Denote
by Cpy represent the submatrix of C indexed by the rows correspond-
ing to locations in set U and by columns indexed by locations in V', and
Cy be the square matrix with rows and columns indexed by locations in-
dexed by U. Using this notation, we have that b = CivN(i)Cj_\/tiﬁ ie.,

the kriging weights conditioned on the neighbor set. Additionally, the last
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term on the right hand side & ~ N(0, F;), where F; = var(w;|wn()) =
C; — Ci,N(i)C]’Vl(i)C N(),- Hence, both b; and F; are entirely characterized
by the covariance function C(-,-|¢) from the parent process. Note that
the dense and the sparse process share the same equations for locations
1=1,2,...,m+ 1. This implies that the covariance among the first m + 1
locations under the NNGP is the same as that of the parent process.

In vector form, the sparse model can be written as w = Bw + &.
Here, € ~ N, (0,F), where F = diag {F; : i =1,...,n}, and B is the lower
triangular matrix with zeros along the diagonal, and at most m nonzero
values in each row. The nonzero values in the ith row of B are located in

columns {j : s; € N(i)}. Hence, this representation implies that
w = (I—-B)'¢ ~ N,(0,C), (S2.2)

where C = (I—B)'F(I—B) 7 (with C~! sparse), which provides a good
approximation to the original covariance matrix C. For more details on the
construction and appealing features of the NNGP methodology, we direct

the reader to the meticulous construction presented in Datta et al. (2016a).
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S3 Sampling algorithm

To begin with, given that we have a two-step process, where w(s) is assumed
to exclusively capture the spatial patterns in the z(s), the full conditional
for w(s;) is proportional to

Ng, (W(Si)’ng) ) H qu( w(s;) |B WN(J)7F(w)> X
s;EP(i)

Nl ( (Sz) ‘ Xz(si) IBz + Azw(si)a \Ilz) 7(831>
where P(i) = {s; € T :s; € N(j)}, is the set of locations to which s; is a
neighbor. To simplify (S3.1)), let s;, be the dth neighbor of s; € D (for

1 <d < m). The columns in ng) indexed by the set

IN(j) :{(d—l)q+1,...,(d—1)q+q}

7sjd

relate s; and s;,. Denote by B the ¢ X ¢ matrix containing the columns

indexed by Zy(j)s;, in B}’

. From the component of the expression above
corresponding to locations s; € P(i), we may rewrite the quadratic form
within the exponential function in the normal density, as

(wio = 30 Bifiwls) B (wls) = 3 Bwiss) =

JaEN(J) JaEN(J)

(Bﬁ-j;”) (s~ x) (B (B

where x%]) =w(sj) = D2 BJ(ZZW(SM)-
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Making use of this notation, the full conditional for w(s;) for s; € T, is
Ny, (w(s) |2 ™, 2, with

1

p = ((F““) B W+ Y (B ES)T ‘f?+A;\Ilzl<z<si>—xz<si>’ﬁz>>,and
59673()
—1
) < Rl ST (BMWYFEY) IBJ(-“f)JrA’z‘I’ZlAz) .
SJEP(Z)

Similarly, the full conditional for v(s;) is Ny, (v(s;)| S pl”, ), where

“Ev) _ <(F§v))1B§v) )+ Z (B(v)) Fv)) 1 (v)+r‘1, (y(s )—Xy(si)’ﬂy—Ayw(Si))> , and
s; €P (i)

-1
=" = ((F"” + > By EY) 1B§.j;)+r’\1:y1r> :

s; €P (1)

To obtain the full conditional density for 8, and 3,, let W, be the
n, X ¢, matrix with rows given by w(s) for s € 7,. Define analogously
the n, x ¢, and n, x q, matrices Wz, and V7, , respectively. Represent
A= (ATt s AL Ay = (X5 s ALY, and T = (3, 505 )"
Additionally, for j = 1,...,h, and k = 1,...,h,, define z; = (2;(s) :
s € T.), and y, = (yr(r) : r € T,). Also denote the n, x p,; matrix
of predictors for the jth outcome in z(-) by X% = (xi(s) : s € T.) for

j=1,..., h;. Similarly, let X} = (x](r1) : ... : x}(ry,)) for k=1,..., h,.

Thus, assuming flat priors for 8, and 3, the full conditionals are

HNPZJIB ‘QZ/J’ﬁ )
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1

where p} = (%(X;)/(zj — WTZ}\JZ)> and €2 = 1% ((X;)’Xj)i , and

hy

By" ~ Hpr,k(ﬁZ|Qka79k)7

k=1

where pf = <¢Lg(XZ)'(Yk —Wr A — Vﬁ/'yk)) and QY = ¢ ((XY)X,) "
Given the identifiability restrictions imposed on A, let ¢; = min {j — 1, ¢, }

for 2 < j < h,, and denote by S\j = (Aj1,- .., Aj,,)" the vector of unrestricted

elements in the jth row of A,. Define Wy,; = (W; ---w;) (i.e., the matrix
with the first j columns of W, ). Using the definitions above, the full con-

ditional density for A, can be represented as H?iz Ny, (5\] | Pz Q,\5>,

where
.
A fjwllz(j—l)(zj = XEB; —w;) i 2<j<qu -
AT ;
7 Wi (2 — X33) if > qu
( -1
0 (%Wiz(]‘—nwlr(a‘—l) + Ij—1> if 2<j<qu
o= B
(FWr Wz +1,,) i 5>
\ J

The elements in A, are all unrestricted; hence, the full conditional

posterior for A, corresponds to HZL Ny, (AZ | Q MY Q /\Z)’ with

1 —1
g = Wi e = XUBL = Vi), and - Oy = 0 (Wi W, +1,, )
k

The sampler for I" has a similar form to that of A, with the upper trian-

gular elements equal to zero; however, given that we make no dimension re-

duction for the forest outcomes, the diagonal elements are only constrained



10 D. Taylor-Rodriguez, et al.

to be positive (instead of setting them to one). First, for 2 < k < h,, let
qr = min{k —1,¢,}, denote 4, = (Y1, - - -, Vrg,)s and let Vi = (V- vy)
denote the matrix with the first k columns of V... Then, the full conditional
posterior density for I' is szzz Ny, (’yk Q1 Q%), with

(
wlzvllz(k—l)(yk = XiBi = Wr Al —mve) i 25k <q
Tk

BV (v — XUBL — WA if k> g,

\
i

1
(%zvllz(k_l)vl:(kz—l) + Ik—l) if 2<k<gq

-1
(V5 V7 + 1) it k> g,

\

As mentioned before, the diagonal elements of I' are assumed to be
positive. Hence to sample the kth diagonal element in I we assume a prior
o< Ipy,,>0p- This yields a truncated normal distribution, obtained from a
normal with mean p.,, and variance §,,, and truncated to be greater than

zero, where

Py = (Vrvk)_lvr(yk — XZ,BZ — WEA% - Vl:(kfl)’?k%
Ui

V. Vi

g’Ykk =

Given that the half-¢ distribution is a mixture of two Inverse-Gamma
distributions, the full conditionals for 1, and 1, (the vectors of diagonal

elements of ¥, and ¥, respectively) are conjugate with their corresponding
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likelihoods. Sampling them amounts to drawing from

v+ n, v 1 z ! 2z 2\
5 T3 Y (zi(si) — x3(s:) B — (X)) W(Si))Q) ,
J s;€72

hz
1179 (wi
j=1

with hyperparameters a, = (af,...,aj_ ) sampled from

i %)

a.[e, HIQ (

L5 Y (kls) —x(s0/BE — (A w(s) — () V(s |

s; €Ty

Hzg U

with hyperparameters a, = (af, ... ,azy) sampled from

)

Lastly, we may use a Metropolis within Gibbs steps to sample ¢,, and

ay|/¢y HIg (ak

¢,, with target densities proportional to

(3 )N (w710, €)= TT 7(0u,0)Nn (Wrl0, €1 (00)) , and

7(§Nui, (v7,10,C7) = [ 760N, (¥:10,C0(01) ).
r=1

which can both be sampled using a random walk Metropolis.
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S4 Additional results from the simulation exercise
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Figure 1: Posterior median and 95% credible set vs true values of 3, for q,, € {3,5,8,10}.
The rows vary by the number of spatial factors used in model fitting, the columns vary

by predictor.
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Figure 2: Posterior median and 95% credible set vs true values of 1.
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Figure 4: Fitted vs true factor loadings (95% credible sets and medians) for the model with ¢, = 10. Each panel represents a

column in A,. The true parameter values for columns Ag and A1y are set to zero since these are not part of the true model.
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exercise.
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